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Abstract 
 

     Image data fusion is the process of setting together information 
gathered by different heterogeneous sensors, mounted on different 
platforms. This paper presents an effective multi-resolution image data 
fusion methodology, which is based on utilizing the Principal 
Component Analysis “PCA” and Histogram Specification “HS” 
techniques. The first principal component “PCA1” involves much of the 
variability in the spectral data; while the reminder PCAs contain the 
remaining variability in a descend order. In this research, the low 
resolution multispectral   are, firstly, resized (i.e. enlarged) into the high 
resolution “panchromatic” image size, then transformed into several 
PCAs. The high resolution panchromatic image should be normalized to 
have the same number of gray levels as the PCA1. The renormalized 
panchromatic image, then, replace the PCA1 of the low- resolution-
multispectral image in the PCA transformed domain. The preliminary 
high-resolution-multispectral images are produced by inversely 
transform the modified PCA’s file. The final high-resolution-
multispectral bands are created by pushing the histogram of each 
created image bands toward the histogram of its corresponding original 
multispectral band, utilizing the histogram-specification method. 
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1      Introduction 

 
In recent years, many solutions for multi-resolution image data fusion have been 
proposed, for instance see [1-6]. In remote sensing applications, the increasing 
availability of space borne sensors gives a motivation for different image fusion 
algorithms. Several situations in remote sensing require high spatial and high 
spectral resolutions being existed in a single image. Most of the available 
equipments are not capable to provide such data. Therefore, image fusions may be 
used to provide the integration of different information sources; i.e. the fused 
image can have complementary spatial and spectral resolution characteristics. 
Generally, the standard image fusion techniques distort the spectral information of 
the multispectral data; mostly they fall into two categories; i.e. feature space and 
spatial domain techniques [7]. The feature space fusion is performed by 
transforming the multispectral images into a new space in which one image 
represents the correlated component; e.g. the PCA1, using the PCA 
transformation, or adopting the intensity in a space created with Color-Space 
Transform (CST). In both these methods, the correlated component is replaced by 
the higher resolution image and transforms the result back to the image space. 
However, the spatial domain fusion techniques transfer the high-frequency 
contents of the higher-resolution image to the lower resolution image. In best 
cases, the mentioned methods have not satisfied enlargement more than 7.5:1 
times, see the table at chapter-8, pp.373-374 of Schowengerdt[7]. 

Normally, the problem of image data fusion comes when different sensors 
imaging the same object and we try to obtain a result that integrates the best 
characteristics of each of those sensors. In this research, to overcome this 
problem, our fusion technique will concern on improving both the spatial 
characteristic (utilizing PCA), and enhancing the spectral characteristic (using the 
HS).  

2   The PCA Transformation 
 
The PCA is a feature space transformation method designed to remove the 
redundancies existed between similar functions or images. It is a linear transform 
of the type[8]. 
 

 YWPCA PCA .=                                                           (1) 
Where; PCA is the output principal component vector, Y is the image spectral 
vector, and WPCA is a weight matrix, referred as the transformation kernel, 
represented as;  
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Where: eij is the jth element of the ith covariance matrix eigenvector. 
 
This transformation kernel alters the covariance matrix C as follows; 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

==

K

T
PCAPCA PCA

CWWC

λ

λ
λ

λ

...0
.....
....
....
0...

3

21

1

                             (3) 

 
The zero values of the off-diagonal elements refer to that; the elements of the PCA 
vectors are uncorrelated. Keep in mind that λK are the eigenvalues of C can be 
found as the roots of the following characteristic equation7; 
 

0|| =− IC λ                                                       (4) 
Where: I is the diagonal identity matrix. 
 
The PCA coordinate axes are defined by the K eigenvectors eK, that can be 
obtained from the following vector-matrix equation, for each eigenvalue λi;; i.e. 
 

,...,K,for  ieIC ii 21    ;0|| ==− λ                          (5) 
 
3    Histogram Specification Technique 

 
Particularly, it is useful sometimes to be able to specify the shape of the histogram 
that we wish to process an image to have it; the method is called histogram 
matching or histogram specification[9]. Let we have consider continuous gray 
levels r and a continuous random variables z, and let pr(r) and pz(z) denote their 
probability density functions. In this notation, r and z denote the gray levels of the 
input and output (processed) images, respectively. We can estimate pr(r) from the 
given input image, while pz(z) is the specified probability density function “pdf” 
that we wish the output image to have. Let s be a random variable with the 
property; 
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Where w is a dummy variable of integration. 
 
Similarly, suppose we define another random variable z with the property; 

sdttpzG
z
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0

)()(                                                    (7) 

It then follows from the above two equations that; z must satisfy the following 
condition; 

)]([)( 11 rTGsGz −− ==                                              (8) 
The discrete formulations of the above equations are as follows[9]:  
 
For equation(6); 
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For equation(7); 
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Finally the discrete version of equation(8) is; 
 

1,.....,2,1,0   ,     )]([)( 11 −=== −− LkrTGsGz kkk        (11) 
 
Where n is the total number of pixels in the image, nj is the number of pixels with 
gray level rj, and L is the number of discrete gray levels. 
 
4    Samples of the used Images 
 
The used samples of images represent the Campus of Baghdad University with 
different spatial resolutions. The low-resolution-multispectral bands, acquired by 
Landsat-7 satellite imagery with the Enhanced Thematic Mapper “ETM+” sensor 
(Dated 2000, Spatial Resolution 14.25m), and their “RGB” colored version (Blue 
0.45-0.52 µm, Green 0.52-0.6 µm, and Red 0.63-0.69 µm) are shown in fig.1. 
Figure.2 represents their histograms. The high-resolution image, representing the 
same area, acquired by QuickBird satellite imagery, pan-sharpened (0.6m, dated 
2003), and its histogram are shown fig.3. The studied area lies between the 
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latitudes 33.2987oN to 33.257oN and longitudes 44.356oE to 44.415oE, using 
UTM projection, WGS84 Datum (Zone 38 Northern Hemisphere), and covering 
an area of approximately 25.685 km2. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure-1: The ETM+ RGB bands, their colored combination, each of size 
388×326 pixels. 

 
Figure.2: Histograms of the Low-Resolution-Multispectral (ETM+), RGB bands. 
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Figure.3: The QuickBird panchromatic (0.6m) image and its histogram. 

 
5    Experimental Results 
 
As it has been mentioned in the abstract, the first step is to resize the low-
resolution-multispectral bands (388×326 pixels) to have the same size as the high-
resolution panchromatic (9217×7745 pixels) image. Here, the bilinear 
methodology[10]  is used to enlarge the smaller size ETM+ bands to the larger 
QuickBird size (about 23.758 times). Figure.4 shows the enlarged colored bands 
and their histograms.  
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Figure.4: The enlarged bands of the ETM+ and their histograms. 
 
The principal components of the resized bands have been computed and 
illustrated with their histograms in figs.5, 6 and 7, respectively. The statistical 
characteristics of the three PCAs are listed in Table-1. To produce the high-
resolution-multispectral bands, the first principal components “PCA1” shown in 
fig.5 should be replaced by the renormalized version of the QuickBird image 
shown in fig.2.  
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Figure.5: The PCA1 image of the enlarged ETM+ bands and its histogram. 
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Figure.6:The PCA2 image of the enlarged ETM+ bands and its histogram 
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Figure.7: The PCA3 image of the enlarged ETM+ bands and its histogram 
 

Let fin(x, y) and fout(x, y) represent, respectively, the original and the normalized 
QuickBird image gray values, using. 

111 )(
),(

),( PCAPCAPCA
QuickBirdQuickBird

QuickBirdin
Out MinMinMax

MinMax
Minyxf

yxf +−×
−

−
=           (12) 

The normalized version of the QuickBird image ant its histogram is shown in 
Fig.8.  
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Figure.8: The normalized version of QuickBird image and its histogram. 
 

The preliminary production of the high resolution multispectral QuickBird bands 
can now be produced by replacing the PCA1 image (shown in fig.5a) by the 
normalized QuickBird image (shown in fig.8a), and performing PCA’s inverse 
transformation. The resulted QuickBird multispectral bands obtained from the 
PCA inverse transformation and their histograms are illustrated in fig.9.  
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Figure.9: The preliminary produced version of the high resolution QuickBird 
bands image and their histograms. 

 
The final step in our present research is to push the gray distribution values of the 
reproduced high-resolution bands (shown in fig.9b) toward the distribution of the 
enlarged bands of the original ETM+ images (shown in fig.4b). Before proceeding 
further in this step, let us inspect carefully the statistical features of the image 
bands to be matched, as illustrated in fig.10. The first in our matching process is 
to normalizing the reproduced high-resolution bands to have the same gray 
distribution ranges as of the enlarged bands, using: 
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Where: fNor(x,y,i) represents the output normalized ith band, fQB(x,y,i) is input 
reproduced QuickBird band, MaxQB, MinQB, MaxEn, and MinEn are, respectively, 
the maximum and minimum values of the QuickBird and the Enlarged bands.  

Figure.10: illustrates the gray distributions of the images to be matched. 
 
Figure.11, illustrates the input and output gray distribution values obtained from 
Eq.(13), while Table-2 list the statistical features of these gray distributions. The 
final step is performed by utilizing Eq.(11) and pushing the normalized QuickBird 
distribution bands toward the enlarged distribution bands. The final produced 
high-resolution QuickBird bands are illustrated with their histograms, respectively, 
in figs.12a &b. For the purpose of comparison, the statistical features of the final 
produced high-resolution QuickBird bands are listed in Table-3. It is easy to 
deduce the similarities between the final produced and the original enlarged bands 
(shown in Tables-2&3).    
 

Figure.11: illustrates the gray distributions of the original reproduced QuickBird 
bands and their normalized versions. 
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Figure.12: The final produced version of the high resolution QuickBird bands; a) 
image, and b) their histograms. 
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Table 1: The statistical characteristic of the PCA’s of the enlarged ETM+ bands. 
 

 
 

Table 2: The statistical features of the gray distribution of the image bands shown 
in figs.10&11. 

    
 

Table 3: The statistical features of the gray distributions for the final high-
resolution QuickBird bands shown in fig.12. 

 

PC
A 

Min Max Mean Stdev Eigenvalues 
λi 

Energy 
λi/λtotal 

1 -125.515633 277.745819 0.0 52.027227 2706.832297 94.44
% 

2 -45.223461 53.248730 0.0 11.673224 136.264160 4.75% 
3 -20.780693 33.441925 0.0 4.802744 23.066348 0.81% 
Total 2866.162805 100% 
Note: last column represent the amount of image information that can be obtained 
by adopting each of the PCA in an inverse PCA’s transformation process. 

Image 
name 

Band 
name 

Bin-
size  

Bin 
numbers

Min 
value 

Max value Mean 
value 

Stdev 
value 

Enlarged 
Bands of 
ETM+ 
Images 

Red 1 240 13 252 86.389947 32.153117 
Green 1 236 11 246 88.806048 30.179703 
Blue 1 232 23 254 95.748008 30.356636 

Reproduced 
High-Res. 
QuickBird 
Bands 

Red 1.0997 255 -7.56972 271.751007 113.497848 63.939181 
Green 1.1549 255 -6.37874 286.966827 113.434840 60.056494 
Blue 1.0849 255 4.547344 280.117828 120.446427 55.825041 

The 
Normalized 
QuickBird 
Bans 

Red 1 240 13 252 116.591094 54.710140 
Green 1 236 11 246 106.983061 48.112371 
Blue 1 232 23 254 120.153556 46.796850 

Image 
name 

Band 
name 

Bin-
size 

Bin 
numbers 

Min 
value 

Max 
value 

Mean 
value 

Stdev 
value 

Final 
Produced 
Bands of the 
High-Res. 
QuickBird 
Bands 

Red 1  239 13 251 86.238791 32.377901
Green 1 236 11 246 88.658726 30.366838
Blue 1 232 23 254 95.620146 30.496099
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6   Conclusions 
 
High resolution multispectral bands are very valuable for too many applications in 
remote sensing; they can efficiently use to predict the crop production, monitoring 
vegetation health condition, for desertification researches, production of high-
resolution topographic and photometric maps etc. Unfortunately, high-resolution-
multispectral-sensors are not available. Therefore, multispectral bands with high-
resolution possessions are too costly. For these reasons our presented research 
insisted to produce multispectral bands having concurrent behaviors as the 
original lower-resolution bands. The simulation procedure in this research is 
based on three very important concepts; the first was the enlargement operation 
which is performed by the bilinear interpolation method and not other lower or 
higher order interpolation techniques. The suitability of this adoption can be 
clarified by comparing the image band histograms illustrated in figs.2 & 4b. The 
second adopted process was the implementation of the PCA transformation which 
is, normally, produced PCA1 band consisting, almost, the whole correlated 
information involved in the transformed bands. Thus, replacing the PCA1 by the 
gray’s normalized high-resolution image insured the produced inversely transform 
bands to consist most of the important information existed in the original low-
resolution multispectral bands, for instance see figs.5a & 8a. Finally, the 
histogram specification technique matched, well, the band’s features, as illustrated 
in figs.4b & 12b. It is remain to be mentioned that; we used the enlarged bands in 
the histogram matching process (i.e. not the original multispectral bands), because 
they have the sizes, and thus easier for comparison purposes.  
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