
Int. J. Advance Soft Compu. Appl, Vol. 7, No. 3, November 2015

ISSN 2074-8523

A Lossless Compression Technique to Increase

Robustness in Big Data Transmission System

Shiladitya Bhattacharjee1, Lukman Bin Ab. Rahim1, and

Izzatdin Bin A Aziz1

1Department of Computer & Information Science,

Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Malaysia

e-mail: shiladityaju@gmail.com, lukmanrahim@petronas.com.my,

izzatdin@petronas.com.my

Abstract

 Data loss during big data transmission is an important issue. Data
loss occurs due to various transmission errors, channel noises and
huge data size, which increases channel congestion and transmission
delay. However, these issues can be controlled by using data
compression. Generally, these compression techniques are lossy and
lossless in nature. The lossy technique degrades data quality during
compression while in lossless compression, the output remains the
same as the input. Among the two types of lossless compression,
variable length coding (VLC) is efficient to compress data while fixed
length coding (FLC) produces poor efficiencies in big data
compression. Furthermore, VLCs offer poor robustness against
various errors and channel noises during transmission. Hence, to
solve the problem of compression efficiency, robustness and time
delay in big data transmission, we have designed a FLC based
compression. Efficiencies of the proposed technique in various
aspects are measured using standard files of various types and sizes
as inputs. The result shows that it offers better compression
efficiencies by producing lower compression ratio and better
compression percentage than other existing techniques. Its capacity
to produce better signal to noise ratio (SNR) and throughput justify
its capacity to increase robustness and reduce time delay.

 Keywords: Lossless Compression, Compression Ratio, Fixed Length Coding,
SNR, Throughput.

1 Introduction

Big data is the collection of data sets so large and complex that it is always difficult

to process and transmit the data over the network. The large size itself is a big

Shiladitya Bhattacharjee et al. 127

challenge for big data. Due to its huge size, channel congestion and transmission

delay increases and data loss may occur. Various compression techniques are

invented to control these data sizes. However, some compression techniques are

inefficient to produce desired compression efficiencies and some are inefficient to

offer robustness against various errors, channel noise and data loss.

With the rapid use of Internet, a transmission of big size electronic media files e.g.

text, image, audio and video requires compression to avoid any transmission

overhead and reduces channel congestion. As we know, compression can be divided

into two categories: lossy and lossless compressions. In the lossy compression,

some of the statistically redundant data sets are permanently eliminated to compress

the data and the eliminated data cannot be retrieved during decompression.

However, these data losses do not impact on the originality and the user may not

identify the difference. As the lossy compression techniques [1] remove some data

permanently, it offers higher compression efficiency. Lossy compression [1, 2] is

generally used for video, audio and image compression. The examples of these

lossy compressions are MP3, Mpeg and Jpeg. But in the lossless compression, the

numbers of data bit remain the same as original after decompression. In lossless

compression techniques, data are rewritten to in a more efficient way [3]. As there

is no information losses occurred in it, the lossless compressed file size will be

larger than the lossy compressed file size. Rarely, some changes to data are required

but if the compression technique is strong, these changes will not be noticeable

during decompression [4]. It can be used in video, audio, image and text

compression. Zip, PNG and GIF are some examples of lossless compressions [3,

4].

Among the two categories of lossless coding, variable length coding techniques

(VLCs) produce their compressed codes by depending upon prefix codes where the

prefix code makes the difference between two consecutive codes. Apart from these,

the prefix codes can be easily influenced by the various types of channel noises or

data errors. Sometimes, if a single bit of the prefix code gets corrupted during the

transmission, the whole compressed code will be unreadable. Thus, the corruption

of prefix code may cause partial or complete data loss [8, 9]. Therefore, the existing

VLC compressions are not robust against the various data errors and channel noises.

The example of such VLCs are Huffman coding, Lampel Ziv coding, dictionary

based coding and others [9]. On the other hand, another category of lossless coding

is fixed length coding techniques (FLCs). FLCs can solve the robustness issue as

they do not depend upon prefix code during compressed code generation. However,

these existing FLCs are inefficient to produce required compression efficiencies in

big data application [6, 7]. The available FLCs are run length coding, ASCII coding,

EBCDIC and so on [7]. Therefore, we have designed a FLC based compression

technique for big data which fulfills the following objectives:

• Higher efficiency than the existing technique for big input size data.

• Better robustness by reducing the data error during transmission.

128 A Lossless Compression Technique to Increase

• Better processing speed to reduce the transmission delay and channel

efficiencies.

According to the objectives, our proposed FLC based compression can be applied

in many real life big data applications when data loss is an important concern. The

proposed compression technique can be applied in areas where data loss and

corruption during transportation will affect the applications. Examples of these

areas are scientific research, healthcare, industrial data storage, and governmental

and geographical surveillance.

In this paper, Section 2 discusses the background study, Section 3 depicts the

proposed technique more precisely and Section 4 contains the results of

implementation to justify our claim. Section 5 represents an assessment platform

which includes experimental setup and some important definitions, which will be

used in result analysis section. A conclusion is drawn in Section 6 to conclude the

effectiveness and the drawback of the proposed technique.

2 Background Study

Here is the list of nomenclature which will be used throughout the text:

Nomenclature:

Each of the following symbol represents,

∑ Finite set of all numbers and characters

∅ Null Sequence

⌊ ⌋ Floor function

�	� Celling function

modulo Reminder Division

〈 〉 Element sequence of a set

During big data transmission, its size is a considerable issue. So, to control such

data size various compression techniques are used. These compression techniques

are either lossy or lossless in nature. As lossy compression techniques degrade data

quality during retrieval of the original data from the compressed string. In [1-2], the

proposed lossy compression techniques are designed for real time data compression.

Here the difference between the original and decompressed data is very

insignificant. They offer high compression efficiency and high processing speed

too. However, it does not offer higher robustness and even small changes in the

compressed code can damage the entire data. Therefore, we have not included lossy

compression in our discussion.

Among the two types of lossless compression, examples of FLCs are ASCII coding

and run length coding [6] and examples of VLCs are Arithmetic Coding, Huffman

Coding, Lempel-Ziv Coding and Dictionary based coding. Fixed length coding

Shiladitya Bhattacharjee et al. 129

converts the symbols of a source file into a new weighted binary code depending

upon a few certain bits. Probability of each symbol to be appeared in the original

file is estimated and then put in decreasing order during the generation of

compressed code [5, 6].

These types of coding techniques are generally asymptotic in nature and less

sensitive to channel noise i.e. if any bit gets corrupted during transmission, it does

not affect the whole data block. In (FLC) technique, no special symbol is used to

separate the characters but the opposite occurs in VLCs. The main disadvantage of

fixed length coding is that it produces equal length of code word for both max and

min frequent symbol. Seldom, the code lengths are the same or even larger than the

original character or symbol lengths [5-7].

Variable length codes permits inputs for compressing and decompressing without

any error. Independent and similar distributed inputs are compressed by these

techniques which are near to their entropy [8, 9,20-21]. Generally prefix code can

be defined in such a way that no code word is a prefix of any other code word [10,

11]. Coding scheme, structured in this scheme is as similar as the prefix property

and unambiguously decodable at any time. In this representation, the size of the set

of integers (
) should be known in advance. Code size (�′) can be determine as

�′ = 1 + ⌊����
⌋																																																										(1)
Entropy coding can be used for different media, i.e. video, image, audio or text, as

it has the property of not to be media specific. Furthermore, the retrieved data are

of the same size as the original and there are no losses of data occurred during the

retrieval, so they are called the lossless coding techniques [24]. The process of

entropy coding can be differentiated into two parts: modeling and coding. The

Huffman coding and the arithmetic coding techniques are the most relevant

examples of such entropy coding techniques [20-21]. Other different types of VLC

techniques that are widely used are Lempel Ziv, Dictionary based coding [19] and

Deflate [23].

During the transmission process, compressed code can be erroneous by the various

types of data errors and noises, whether they are hardware or software. Sometimes

noises in the channel or environment plays a role to corrupt the transmitted data [21,

22]. Data errors can be of various types: single bits, multiple bits, discrete or

continuous errors. Generally, data link layer is responsible for controlling such

transmission errors. However, most of the time, all data errors cannot be corrected.

Therefore, when we transmitted a compressed string over the internet, these

compressed codes should be robust against such data errors and noises [23].

According to [12], in arithmetic compression techniques, message is encoded as a

real number in an interval between zero to one. As it works on a single character

rather than several code words, it produces better compression ratio than others.

The main disadvantage of such coding is if one bit is corrupted during the

compression or during transmission of compressed code over the network the whole

130 A Lossless Compression Technique to Increase

code will be irretrievable [12-13]. In Huffman coding, compressed codes are

generated by traversing the Huffman binary tree. Generally, Huffman binary tree is

designed by depending upon the frequencies of different symbols belonging to the

input file [14-15]. As the prefix code is generated depending upon the frequencies

of the different symbols and traversing the binary tree, any minor changes in the

compressed code due to any error or noise will make the whole compressed code

irretrievable. Lempel-Ziv compression technique incorporates a principle or

protocol for parsing of symbols from a finite alphabet into substrings where coding

scheme maps these substrings accordingly into genuine code words of fixed length

[16]. This type of coding technique is categorized into a few categories i.e. LZ77,

LZ78 and etc. LZ77 uses all the features of Lempel Ziv coding with the exception

that it uses the sliding buffer or window to store the substring [17]. Even in the

LZ77 and LZ78 compression technique, a sliding window is used to store the

character table during the creation of compressed code. Similarly, this sliding

window is used during decompression too. So, if any compressed code gets

corrupted during transmission, data loss may occur. Therefore, though the variable

length coding techniques are channel efficient as they produces better compression

efficiencies, they are not robust against the continuous or discrete data errors,

channel noise and they are inefficient to protect data losses.

In [4-5], the proposed lossless based data compression for floating seismic depends

upon arithmetic coding that can achieve higher compression ratio and low data loss

rate as compared to other lossless algorithms. It even offers higher SNR which

shows its potentiality to offer robustness against various noise and errors. However,

it processes the data quite slowly and its implementation is very expensive. In [7-

9], the techniques being used generate compressed codes by trimming the redundant

texture and using space transformation method. These types of compression

techniques are very useful when the dynamic expansion is not possible. These

techniques are very slow and the usage of modular arithmetic as well as data

transformation decreases correlation in every case.

From the discussion above, we have seen that both fixed length and variable length

coding based compressions have some disadvantages where the FLCs offer poor

compression efficiency and VLCs offer poor robustness against various data errors

and noises. Therefore, existing compression techniques are not suitable for

compressing large input size file for transmission. Thus, we proposed in this paper

a new FLC compression algorithm that is has higher efficiency and robust against

data errors and channel noise for transmitting large files.

3 Proposed Methodology

To overcome the limitations of both existing fixed and variable length coding, we

have proposed a fixed length coding based compression technique for big data

transmission. It is useful for squeezing big data file and not fully dependent on

Shiladitya Bhattacharjee et al. 131

prefix code thus offering high robustness against channel noises and errors. To

elaborate more precisely we have drawn our proposed model in Fig.2.

Fig. 2: Proposed Fixed Length Compression Model

From Fig.2, we can see that, the proposed compression technique can be divided

into two major parts: creation of character table and creation of compressed code.

The different operations related to our proposed compression technique are

described in the following subsection.

3.1 Operations related to proposed compression technique

In the first half of the proposed compression model, the character table is generated.

Therefore, to create a character table, take the input file (��) and convert it into a

binary string as,

1) Check the �� size is divisible by 8 or not by

� = ((��	����)	������	8)																																														(2)

Here K is an ordinary variable. If � < 8 then concatenate (8 − �) number of bits

at the Most Significant Bit (MSB) position of the �� string.

2) Separate #$%&'()* + numbers of substrings from the input file (��) string and

store them into the sub strings 〈��,-〉 as	0 ≤
 ≤ #$%&'()* +.

3) Construct the symbol table �0�,12, by eliminating redundant data from
〈��,-〉 by

132 A Lossless Compression Technique to Increase

�0�,12, = #��,-� +																																																				(3)

Here �	is the number of irredundant substring in	#��,-� +, where	0 ≤ � ≤ 256.

4) Accumulate the frequencies of each #��,-� + in 〈�6�78〉 from the	〈��,-〉.
5) Sort all the string of 〈�0�,12,8〉 according the frequencies at 〈�6�78〉	in

decreasing order using any sorting algorithm.

In the second part, we create the code table 〈9���8〉 and separator ��:	using

Algorithm-1.

Algorithm-1: Compressed Code Generation

(b1) 2, ,, <, �, � are ordinary variables where 2 = 0 ;

(b2) =>6, =>61, =>62 are string variables;

(b3) if (� ≥ 0) and (� ≤ 2@)
(b4) 2 = 2 + 5; // if � ≤ 40 put 2 = 4

(b5) if (� ≥ 0)	and B� ≤ (2C − 2)D
(b6) for , = 0 to 2

(b7) < = �/2F;

(b8) � = <	������	2F;

(b9) Concatenate (=>6, �);
(b10) end for

(b11) 9���8 = =>6;
(b12) end if

(b13) if	B� > (2C − 2)D and I� ≤ #2(CJK) − (2 × 2)+M
(b14) � = (2C − 4);
(b15) for , = 0 to 2

(b16) < = �/2F;

(b17) � = <	������	2F;

(b18) Concatenate (=>61, �) ;
(b19) end for

(b20) Repeat step (b6) to (b10);

(b21) Concatenate (=>62, =>61, =>6) ;
(b22) 9���8 = =>62;

(b23) end if

Algorithm-1: Compressed Code Generation (Contd…)

(b24) if	(� > (2(CJK) − (2 × 2))	and	� ≤ ((3 × 2C) − (3 × 2))
(b25) � = (2C − 3);

Shiladitya Bhattacharjee et al. 133

(b26) Repeat step (b15) to (b22);

(b27) end if

(b28) if B� > B(3 × 2C) − (3 × 2)D	D and 	� ≤ (2(CJ�) − (4 × 2))
(b29) 										� = (2C − 2);
(b30) Repeat step (b15) to (b22);

(b31) end if

(b32) if I� > #2(CJ�) − (4 × 2)+M and B� ≤ 2(CJ�)D
(b33) � = (2C − 1);
(b34) Repeat step (b15) to (b22);

(b35) end if

(b36) � = 2C;

(b37) for (, = 0 to 2)

(b38) Repeat step (b16) to (b17);

(b39) Concatenate (�, ��:);

(b40) end for

(b41) end if

(b42) if (� ≥ 0) and (� ≤ 2*)
(b43) 			2 = 2 + 6;

(b44) Repeat step (b5) to (b40);

(b45) end if

Pseudo code lines (b1) and (b2) declare and initialize some ordinary and string

variables. Lines (b3) to (b41) is for creating code when the value of �	varies	0 ≤
� ≤ 127. Lines (b5) to (b12) creates a code substring when	0 ≤ � ≤ 26. Lines

(b6) to (b9) convert the value of � into a binary string to create a compressed code

for each symbol. Line (11) put these binary strings into the code table. Similarly,

lines (b14) to (b19) are for creating the prefix code of the second level. Lines (b20)

to (b23) are for creating a code for the second range and this code is concatenated

with the prefix code. Line (b22) adds this concatenated code into the code table. In,

fourth and fifth level, the prefix and the compressed codes are generated using

similar fashion. These compressed codes are then included into the code table with

the help of lines (b13) to (b41). Similarly, lines (b42) to (b45) generate the code

and include them into the code table when	128 ≤ � ≤ 256.

6) Replace all the substrings from the 〈��,-〉 by the corresponding code

from	〈9���8〉 to form a code string table	〈9����>612,-〉 to create compressed

string (9��:�>6).

7) Concatenate all code string from the symbol table 〈�0�,12,-〉 into a single

string �0�,�>6 as,

�0�,�>6 = B�0�,�>6 × 10O(&P8FQCFR)D + �0�,12,8																	(4)
Where, �(�0�,12,8) = BS���KT&P8FQCFRU + 1D

134 A Lossless Compression Technique to Increase

8) Concatenate all strings of 〈9����>612,-〉 into a single	�0�,9����>6 using

Eqn.4.

9) Create the final compressed string (9��:�>6) by concatenating code string

(�0�,�>6), separator string (��:) and compressed string (9��:�>6) using

Eqn.4. Finally, transmit the compressed string (9��:�>6) to the receiving

end.

3.2 Operations related to Decompression

Decompression is done at the receiving end after receiving the complete

compressed data. Decompression technique is a reversal process of the proposed

compression technique. During decompression, the symbol table (�0�,�>6)	is

separated based on separator	(��:′) from the compressed string	(9��:�>6). The 8

bits symbols are generated from the	�0�,�>6 by reversing the process and form

the symbol table. Then construct the code table from the symbol table by using

Algorithm-1. Similarly, separate each code substring from 	�0�,9����>6 and

replace each code substring by the corresponding symbol from the symbol table by

comparing them from the code table. Finally, concatenate all symbols into a single

string using Eqn.4 and generate the output file.

4 Assessment Platform

To analyze the performance of our proposed technique for big data transmission,

we need to measure its capacity to produce compression efficiency and to offer

robustness against various errors and data noises. Therefore, this section includes

definition of required parameters that relate to our experiment and the experimental

setup.

4.1 Experimental setup

We have conducted several experiments to measure the efficiency of the proposed

algorithm in different aspects. We have used LINUX (Fedora 18) as the operating

system. However, any operating system can be used for implementing it. We have

used a 32 GB of DDR3 RAM and cloud storage at the High Performance

Computing Center of Universiti Teknologi PETRONAS for our experiment.

However, the minimum hardware requirement is 2GB of RAM and 1TB of storage

space. The proposed compression technique is implemented using the Java

programming language to conduct all experiments in NetBeans Integrated

Development Environment. The input file sizes vary for conducting our

experiments from 35 GB to 1TB (considered as big data). Files of different types

and sizes have been taken as input to measure the efficiency of our proposed

compression technique. Data transmissions are done via wireless network

infrastructure during the experiment.

Shiladitya Bhattacharjee et al. 135

4.2 Some Important Definition

This subsection is included to provide a brief idea about some important parameters

and describes their different features. These parameters help to justify our claim by

analyzing the results of different experiments at the result analysis section.

4.2.1 Compression Ratio (CR)

In any data compression technique, the Compression Ratio represents the ratio of

compressed file size and original file size. It is an important parameter to measure

the efficiency of any compression technique.

CR = 9�:6�==��	����	����
X6���
2�	����	���� 																																														(5)

Generally, the compression ratio is inversely proportional to the percentage of

compression, i.e. if any compression technique produces low compression ratio

then it will produce high percentage of compression or vice versa.

4.2.2 Percentage of Compression (CP)

Percentage of compression (CP) signifies the ability to compress the input data

(in %) after certain compression process is applied on that input file. The percentage

of compression (CP) can be formulated as,

9� = Y<>�2�	���� − 9��:6�==��	����
Y<>�2�		=��� × 100																															(6)

The percentage of compression signifies the capacity of reducing a file size of any

compression technique. If any compression technique produces higher CP, it

signifies that this particular compression technique is efficient to compress the input

file or vice versa.

4.2.3 Signal to Noise Ratio (�Z[\])

Signal-to-noise ratio is the ratio of the amplitude of a desired analog or digital data

signal to the amplitude of noise in a transmission channel at a specific point in time.

SNR is typically expressed logarithmically in decibels (dB). SNR can be formulated

using the following formula:

�Z[^_ = 10 × `��KTa∑ cd(-)/∑ ecd(-)fPd(-)ghh i																																					(7)

136 A Lossless Compression Technique to Increase

In Eqn.7, j(
) is the original sample length whereas 0(
) is the sample length of

the output file. Generally, if �Z[^_ of a file is high then it is said to be less noisy

or less erroneous or vice versa.

4.2.4 Percentage of Information Loss (IL)

During data transmission, some portion of the transmitted data can be modified or

corrupted by channel noises or some unwanted interference. This information

cannot be retrieved at the receiving end. This facet is known as information loss (IL)

and it is measured in percentage. The percentage of information loss can be

formulated as:

�` = X6���
2�	����	 − [�>6��k�	����	
�6���
2�		���� × 100																									(8)

Generally percentage of IL, produced by any compression technique is inversely

proportional to its capacity to produce robustness against various errors, i.e. when

the IL is high then the robustness is low and vice versa.

4.2.5 Throughput (TP)

Throughput or TP is the amount of work being done in a given time. It is measured

to calculate the processing speed of compression or decompression techniques.

Generally, TP is inversely proportional to time and can be measured as:

1�(9��:.) = I 9��:6�==��		����
9��:6�==��
	1���M																																		(9)

																															1�(n�<��:.) = [�>6�k�	����	����
n�<��:6�==��
	1���																														(10)

4.2.5 Peak Signal-to-Noise Ratio (PSNR)

The peak signal-to-noise ratio (PSNR) is the ratio between a maximum power of a

particular signal and the power of the incorporated noise into that signal. It is used

to measure the quality of reconstructed images that have been compressed. Each

picture element (pixel) has a color value that can change when an image is

compressed and then uncompressed. Signals can have a wide dynamic range, thus

PSNR is usually expressed in decibels.

If the original signal strength of any image file is =[
] and the signal strength with

the noise is j[
] then the peak signal to noise ratio (PSNR) can be calculated as:

 ��Z[= qr
qs = qr

|c[-]fu[-]|d 																																													(11)

Shiladitya Bhattacharjee et al. 137

Where,

 �u = ∑ =�[
] = |=[
]|�vfv 																																										(12)

According to this equation, if the PSNR of any image is higher then it is less

erroneous and is less affected by noise and vise versa.

5 Result Analysis

Compression efficiency, robustness and processing speed produce by the proposed

technique are calculated in terms of their corresponding parameters. We have also

considered some standard existing VLCs and FLCs to compare our proposed

algorithm in different aspects to prove our claims.

5.1 Compression efficiency measurement

Compression efficiency is calculated by measuring the compression ratio offered

by various VLCs, FLCs and the proposed compression technique using Eqn. 5. The

results are tabulated in Table 1 and Table 2.

Table 1: CR offered by our tech. and other VLCs
File

Name

Arithmetic

coding

Huffman

BWT

LZSS

BWT

Dictionary based Proposed

Technique

BIB 0.6819 0.5546 0.5356 0.5085 0.4621

GEO 0.6888 0.5571 0.5321 0.5023 0.4618

OBJ1 0.6887 0.5547 0.5399 0.5061 0.4613

PAPER1 0.6879 0.5551 0.5301 0.5073 0.4604

PAPER2 0.6851 0.5525 0.5354 0.5045 0.4597

PAPER3 0.6834 0.5556 0.5347 0.5022 0.4604

PAPER4 064845 0.5588 0.5342 0.5081 0.4647

PAPER5 0.6819 0.5501 0.5325 0.5076 0.4661

PAPER6 0.6827 0.5585 0.5366 0.5079 0.4612

PROGC 0.6817 0.5527 0.5371 0.5067 0.4609

PROGL 0.6820 05781 0.5345 0.5081 0.4598

PROGP 0.6818 0.5533 0.5369 0.5089 0.4586

Table 2: CR offered by our tech. and other FLCs
File

Name

ASCII

Coding

EBCDIC

Run Length

Coding

Proposed

Technique

BIB 0.9546 0.9256 0.9985 0.4621

GEO 0.9571 0.9221 0.9623 0.4618

OBJ1 0.9547 0.9299 0.9761 0.4613

PAPER1 0.9551 0.9301 0.9773 0.4604

PAPER2 0.9525 0.9354 0.9845 0.4597

PAPER3 0.9556 0.9247 0.9822 0.4604

138 A Lossless Compression Technique to Increase

PAPER4 0.9588 0.9342 0.9881 0.4647

PAPER5 0.9501 0.9325 0.9776 0.4661

PAPER6 0.9585 0.9266 0.9879 0.4612

PROGC 0.9527 0.9271 0.9767 0.4609

PROGL 0.9578 0.9245 0.9681 0.4598

PROGP 0.9533 0.9269 0.9789 0.4586

From Table 1 and Table 2, we can see that our proposed technique produces lower

compression ratio than other existing standard FLCs and VLCs. Here, the

compression ratio for various existing compression techniques and the proposed

technique are calculated by using different standard Calgary Corpuses as input file.

The efficiencies of the proposed compression technique are further compared with

other FLCs and VLCs with respect to their ability of producing percentage of

compression (CP). The percentages of compression produced by these existing

FLCs and VLCs and our proposed technique with the help of Eqn.6 are shown in

Table 3 and Table 4.

Table 3: CP produced by our tech. and other VLCs
File Size

(GB)

Arithmetic

coding

Huffman

BWT

LZSS

BWT

Dictionary

based

Proposed

Technique

35 21.01 30.2 34.1 41.6 56.7

56 23.34 30.9 35.2 42.0 57.0

90 18.39 32.1 33.0 43.5 57.1

120 24.23 33.7 34.7 43.0 56.9

200 25.32 31.3 34.0 43.7 58.0

350 22.12 30.6 35.1 42.9 58.2

450 23.45 31.5 35.2 44.0 58.8

600 21.67 32.0 34.3 45.0 55.9

800 21.45 29.9 36.7 44.1 56.5

1024 21.21 30.7 35.0 43.9 56.8

Table 4: CP produced our tech. and other FLCs
File Size

(GB)

ASCII

Code

EBCDIC

Code

Run Length

Coding

Proposed

Technique

35 0.0002 0.0001 -1.0055 56.7

56 0.0003 0.0002 -1.0026 57.0

90 0.0001 0.0004 0.0001 57.1

120 0.0001 0.0004 -0.998 56.9

200 0.0002 0.0001 -0.762 58.0

350 0.0003 0.0002 -0.985 58.2

450 0.0001 0.0003 -0.976 58.8

600 0.0003 0.0002 -1.112 55.9

800 0.0002 0.0001 -1.007 56.5

Shiladitya Bhattacharjee et al. 139

1024 0.0001 0.0002 0.0001 56.8

In Table 3 and Table 4, it can be seen that our proposed compression technique

offers higher percentage of compression (CP) than the various exiting standard

FLCs and VLCs. Here, we have used various text files of different size as input.

From Table 1 to Table 4, we can see that our proposed technique offers low

compression ratio and higher percentage of compression which reflects that our

proposed technique is more compatible to reduce data overhead rather than the other

existing compression techniques. Thus, we have obtain our first objective.

Apart from that, we can see from Table-2 and Table-4 that, the existing FLCs

produce unacceptable compression efficiencies which is not applicable for big data

transmission. Therefore, we have not compared the performance of the proposed

compression techniques with the existing FLC techniques.

5.2 Robustness to protect data error and information loss

We have further tested the ability of our proposed technique to produce robustness

against various data errors. For this purpose, we have calculated signal to noise ratio

(�Z[^_) of our proposed technique and various exiting techniques with the help of

Eqn.7. From our previous subsection we can see that, the existing FLCs produce

very poor compression efficiencies. So, we have not included or compared this

FLCs with our proposed technique. Fig.3 shows the �Z[^_ values generated by

the proposed techniques and various existing VLCs using different samples as input,

taken from related text files of different sizes.

Fig.3: �Z[^_ produced by proposed tech. and other VLCs

140 A Lossless Compression Technique to Increase

From Fig.3, we can see that our proposed technique can produce �Z[^_ from 58.5

dB to 62.9 dB which are higher and consistent than other existing techniques. This

fact indicates that the probability of noises and errors in retrieving the data samples

is very low while our proposed compression technique is used apart from other

existing.

We have also used our compression technique to compress image files and compare

the PSNR value produced by it with the various existing image compression

technique using the Eqn.11. Standard image is being used in this experiment and

the results are shown in Table-5.

Table 5: PSNR offered by existing image compressions and proposed technique
Image Name JPEG-LS JPEG2000 SPIHT ADCTC Proposed

Technique

House 32.69 33.10 34.78 36.37 45.2

Milk 32.26 32.53 34.86 35.76 44.8

Jet 31.95 32.89 34.76 35.73 46.3

Tiffany 31.32 32.90 34.80 35.49 49.2

Pepper 32.44 32.57 34.79 35.46 48.9

Baboon 32.65 32.71 34.78 34.73 47.3

Random-noise 31.82 31.85 34.81 34.33 47.8

According to Table-5, we can see that our proposed technique is more efficient and

produce better PSNR than the other existing image compression technique for every

standard input image. This fact implies that our proposed compression technique is

much more efficient to reduce the affect of various data noise during transmission.

This fact also reflects that the perceptual difference between the original image and

the decompressed image is very low which can be seen by the following Fig.4.

Fig.4(a) Original Image Fig.4(b) Decompressed Image

Fig. 4(a) and Fig. 4(b) show that the decompressed figure is perceptually the same

as the original figure. Therefore, Table-5 and Fig.4 justifies that our proposed

technique is efficient to produce higher robustness for the different file formats.

Another parameter for justifying the capacity of our proposed technique to offer

robustness against various noises and data errors is percentage of information loss.

The percentage of information loss (IL) produces by the proposed technique and

various existing VLCs are calculated with the help of Eqn.8 using various input text

Shiladitya Bhattacharjee et al. 141

files of various sizes. The percentage of information losses offer by our proposed

fixed length coding based compression technique and various VLC compression

techniques are compared are shown in Fig.5.

Fig.5: IL produced by propose tech. and other VLCs

From the Fig.5, we can see that, our proposed technique is producing lower

percentages of information loss (IL) than other existing VLCs. This fact also

highlights that the proposed FLC based compression technique offer more

robustness against the other existing VLC based compression techniques.

Therefore, from the Fig.3, Fig.4, Figure-5 and Table-5 we can conclude that our

proposed compression technique produced a better robustness against various

channel noise, environmental noise, and hardware or software errors during the

transportation process in wireless environment. These facts justify our second

claim.

5.3 Measurement of processing speed

Another important aspect is increasing the channel efficiency in any transmission

system. Generally, the channel efficiency can be increased with the increment of

data processing speed and with good compression efficiency. From Table-1 to

Table-4, we have already seen that our proposed technique is better than other

existing in this aspect. Now, we examined how it is efficient to produce the time

efficiency in terms of processing speed. From the definition sub section, we can see

that the processing speed produced by any compression or decompression technique

can be measured by measuring its capacity of offering Throughput. The Throughput

offers by our proposed technique and various existing variable length coding

142 A Lossless Compression Technique to Increase

techniques at the time of their compression and decompression are measured with

the help of Eqn.9 and Eqn.10 using various input text files of different sizes. The

following Table 6 includes the comparison of Throughput offered by the proposed

technique and various existing VLCs.

Table 6: TP offered by our tech. and other VLCs

Throughput in MB/Sec

(Compression (C) / Decompression (D))

Input File

Size (GB)

Arithmetic

Coding

Huffman

BWT

LZSS BWT Dictionary

Based

Proposed

Technique

(C) (D) (C) (D) (C) (D) (C) (D) (C) (D)

35 1.56 1.58 0.78 0.79 0.81 0.82 0.93 0.95 3.52 3.51

56 1.61 1.62 0.82 0.85 0.86 0.84 0.99 0.98 3.56 3.53

90 1.64 1.63 0.85 0.87 0.89 0.91 0.95 0.96 3.54 3.55

120 1.65 1.66 0.88 0.89 0.84 0.85 0.96 0.97 3.56 3.54

200 1.71 1.72 0.85 0.86 0.87 0.86 0.98 0.99 3.57 3.55

350 1.77 1.76 0.88 0.87 0.91 0.93 0.95 0.97 3.58 3.57

450 1.76 1.78 0.87 0.86 0.95 0.97 0.97 0.99 3.59 3.57

600 1.75 1.77 0.86 0.88 0.98 0.99 0.95 0.96 3.57 3.56

800 1.73 1.79 0.88 0.89 0.96 0.97 0.97 0.98 3.61 3.59

1024 1.75 1.75 0.91 0.89 0.99 0.98 0.98 0.99 3.62 3.58

From Table 6, we can see that our proposed technique produces better Throughputs

in every situation for both compression and decompression. These facts establish

that our proposed technique is far better to produce higher processing speed than

the other existing VLCs during both compression and decompression. Thus, we

have proved that our third claim.

6 Conclusion

From the literature review, we have found that channel congestion and transmission

errors are the prime grounds of such data loss. On the other hand, the big data size

increases the channel congestion during transmission and transmission delay. So

we have proposed a fixed length coding based compression technique, which

reduces the file sizes considerably as well as reduces data loss by offering high

robustness against various data errors, and minimizing channel congestion and

transmission delay. Therefore, this paper discusses how our proposed fixed length

coding based lossless compression technique reduces information overhead during

the transmission, increases the processing speed and reduces the effects of channel

noises or errors during transmission. From Table 3 and Table 4 we can see that our

proposed technique achieved up to 56.8% of compression efficiency during our

experiment. As our proposed technique includes the fixed length coding technique,

so channel noise effects very less on data, thus it is reducing the data error. The

Shiladitya Bhattacharjee et al. 143

�Z[^_	of the proposed technique increased up to 61.95 dB meaning that the error

rates in the retrieve information are very low. Table-5 and Fig.4 show that the

proposed technique offers high robustness against various noises during image file

compression. It justifies that our proposed algorithm is robust again channel noises

and errors for different file formats. As it produces high throughput (up to 3.59

MB/Sec), therefore, the proposed technique offers high processing speed. It also

reduces the size of the input files, so it is space efficient too.

The variable length coding techniques are popular as they produce better

compression percentage. From the literature review, we found that variable length

coding techniques are not robust to the channel noise. If some portion of the variable

length code gets corrupted during the transmission, the whole compressed code will

be uncompressible. But, though our proposed technique relates to the fixed length

coding technique, it produces much greater compression efficiency than some well-

known existing techniques in terms of compression ratio and bits per code. In our

case if some portion is lost or gets corrupted during the transmission, it will not

affect the decompression operation at all. In the section 5, we have compared our

proposed algorithm with some existing compression techniques. We have also

compared our proposed technique with some existing fixed length coding technique

with the some well-known existing fixed length coding techniques with respect to

their ability to produce compression ratios (CR) and percentage of compression

(CP). From Table 1 to Table 4, we can see that the compression efficiency,

produced by our proposed technique is far better than other existing fixed length

coding and variable length coding based compression techniques in terms of CR

and CP.

We have shown that we have achieved the three objectives from the results of our

experiments. The proposed fixed length based compression is efficient for reducing

channel congestion, reducing errors and reducing transmission delay during big

data transmission. However, from our discussion it can be also seen that, our

proposed technique is partially dependable of prefix code to a certain extend. So, if

we transmit the information over a noisy network and some bits in the prefix code

are corrupted during the transmission, our proposed technique is not capable to

avoid information loss. As we see form Fig. 5 there are some information loss

occurred during data retrieval, which implies that more research is needed to reduce

the data loss. The throughputs shown in the Table-6 are good but it can be improved

further via research to produce better processing speed and reduce the transmission

delay.

References

[1] Lukin V.V., Zriakhov M.S., Ponomarenko N.N., Krivenko S.S., Zhenjiang M.

2010. Lossy compression of images without visible distortions and its

application. IEEE, pp. 698-701.

144 A Lossless Compression Technique to Increase

[2] Goyal V.K., Fletcher A.K., Rangan S. 2008. Compressive sampling and lossy

compression. Signal Processing Magazine, IEEE, Vol. 25, pp. 48-56.

[3] Al-Bahadili H. 2008. A novel lossless data compression scheme based on the

error correcting Hamming codes. Computers & Mathematics with Applications,

Vol. 56, pp. 143-150.

[4] Fout N., Kwan-Liu M. 2012. An Adaptive Prediction-Based Approach to

Lossless Compression of Floating-Point Volume Data. Visualization and

Computer Graphics, IEEE Transactions on, Vol. 18, pp. 2295-2304.

[5] Klein S.T., Shapira D. 2014. Practical fixed length Lempel–Ziv coding. Discrete

Applied Mathematics, Vol. 163, pp. 326-333.

[6] Sugimoto K., Hattori R., Sekiguchi S.I. 2011. A novel high efficiency fixed

length coding for video compression based on symbol probability estimation.

pp. 1-4.

[7] Kattan A., Poli R. 2008. Evolutionary lossless compression with GP-ZIP*.

ACM, pp. 1211-1218.

[8] Ye B., Zhao Q., Zhou D., Wang X., Luo M. 2011. Test data compression using

alternating variable run-length code Integration. The VLSI Journal, Vol. 44, pp.

103-110.

[9] Baron D., Jacob T. 2012. Variable Length Compression of Codeword Indices

for Lossy Compression. Signal Processing Letters. IEEE, Vol. 19, pp. 849-852.

[10] Gorev M., Ellervee P., 2010. Variable byte-length data compression algorithm.

IEEE, pp. 353-356.

[11] Bhavsar K., Mehta U. 2011. Analysis of test data compression techniques

emphasizing statistical coding schemes. ACM, pp. 1219-1224.

[12] Chuang C.-P., Chen G.-X., Liao Y.-T., Lin C.-C. 2012. A Lossless Color

Image Compression Algorithm with Adaptive Arithmetic Coding Based on

Adjacent Data Probability. IEEE, pp. 141-145.

[13] Tang J., Zhang X., Zhao L., Zou C. 2010. A novel arithmetic coding on data

compression and encryption with asymptotic deterministic randomness. IEEE,

pp. V2-10-V12-14.

[14] Sacaleanu D., Stoian R., Ofrim D.M. 2011. An adaptive Huffman algorithm

for data compression in wireless sensor networks. IEEE, pp. 1-4.

[15] Golander A., Taharlev S., Glass L., Biran G., Manole S. 2013. Leveraging

predefined huffman dictionaries for high compression rate and ratio. ACM,

Article 19.

[16] Shun J., Zhao F. 2013. Practical Parallel Lempel-Ziv Factorization. IEEE, pp.

123-132.

Shiladitya Bhattacharjee et al. 145

[17] Santhanam N.P., Modha D. 2011. Lossy Lempel-Ziv like compression

algorithms for memoryless sources. IEEE, pp. 1751-1756.

[18] Jain P., Jain A., Agrawal C. 2013. Effective dictionary based data compression

and pattern searching in dictionary based compressed data. IEEE, pp. 1-6.

[19] Mansour A.M.A., Fouad M.A. 2013. Dictionary based optimization for

adaptive compression techniques. IEEE, pp. 421-425.

[20] Marpe D., Schwarz H., Wiegand T. 2010. Entropy coding in video

compression using probability interval partitioning. IEEE, pp. 66-69.

[21] Zheng Y., Qi C., Wang G. 2010. A New Image Pre-Processing for Improved

Performance of Entropy Coding. IEEE, pp. 1-6.

[22] Nkom B. 2011. Concise schemes for realizing 1-Wire® cyclic redundancy

checks. IEEE, pp. 70-79.

[23] Brown R.D. 2011. Reconstructing corrupt DEFLATEd files, digital

investigation.Vol. 8, pp. S125-S131.

[24] Horvath K., Stogner H., Uhl A., Weinhandel G. 2011. Lossless compression

of polar iris image data, Pattern Recognition and Image Analysis. Springer, pp.

329-337.

