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Abstract 

 Data loss during big data transmission is an important issue. Data 
loss occurs due to various transmission errors, channel noises and 
huge data size, which increases channel congestion and transmission 
delay. However, these issues can be controlled by using data 
compression. Generally, these compression techniques are lossy and 
lossless in nature. The lossy technique degrades data quality during 
compression while in lossless compression, the output remains the 
same as the input. Among the two types of lossless compression, 
variable length coding (VLC) is efficient to compress data while fixed 
length coding (FLC) produces poor efficiencies in big data 
compression. Furthermore, VLCs offer poor robustness against 
various errors and channel noises during transmission. Hence, to 
solve the problem of compression efficiency, robustness and time 
delay in big data transmission, we have designed a FLC based 
compression. Efficiencies of the proposed technique in various 
aspects are measured using standard files of various types and sizes 
as inputs. The result shows that it offers better compression 
efficiencies by producing lower compression ratio and better 
compression percentage than other existing techniques. Its capacity 
to produce better signal to noise ratio (SNR) and throughput justify 
its capacity to increase robustness and reduce time delay. 

     Keywords:  Lossless Compression, Compression Ratio, Fixed Length Coding, 
SNR, Throughput.  

1      Introduction 

Big data is the collection of data sets so large and complex that it is always difficult 

to process and transmit the data over the network. The large size itself is a big 
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challenge for big data. Due to its huge size, channel congestion and transmission 

delay increases and data loss may occur. Various compression techniques are 

invented to control these data sizes. However, some compression techniques are 

inefficient to produce desired compression efficiencies and some are inefficient to 

offer robustness against various errors, channel noise and data loss. 

With the rapid use of Internet, a transmission of big size electronic media files e.g. 

text, image, audio and video requires compression to avoid any transmission 

overhead and reduces channel congestion. As we know, compression can be divided 

into two categories: lossy and lossless compressions. In the lossy compression, 

some of the statistically redundant data sets are permanently eliminated to compress 

the data and the eliminated data cannot be retrieved during decompression. 

However, these data losses do not impact on the originality and the user may not 

identify the difference. As the lossy compression techniques [1] remove some data 

permanently, it offers higher compression efficiency. Lossy compression [1, 2] is 

generally used for video, audio and image compression. The examples of these 

lossy compressions are MP3, Mpeg and Jpeg. But in the lossless compression, the 

numbers of data bit remain the same as original after decompression. In lossless 

compression techniques, data are rewritten to in a more efficient way [3]. As there 

is no information losses occurred in it, the lossless compressed file size will be 

larger than the lossy compressed file size. Rarely, some changes to data are required 

but if the compression technique is strong, these changes will not be noticeable 

during decompression [4].  It can be used in video, audio, image and text 

compression. Zip, PNG and GIF are some examples of lossless compressions [3, 

4]. 

Among the two categories of lossless coding, variable length coding techniques 

(VLCs) produce their compressed codes by depending upon prefix codes where the 

prefix code makes the difference between two consecutive codes. Apart from these, 

the prefix codes can be easily influenced by the various types of channel noises or 

data errors. Sometimes, if a single bit of the prefix code gets corrupted during the 

transmission, the whole compressed code will be unreadable. Thus, the corruption 

of prefix code may cause partial or complete data loss [8, 9]. Therefore, the existing 

VLC compressions are not robust against the various data errors and channel noises. 

The example of such VLCs are Huffman coding, Lampel Ziv coding, dictionary 

based coding and others [9]. On the other hand, another category of lossless coding 

is fixed length coding techniques (FLCs). FLCs can solve the robustness issue as 

they do not depend upon prefix code during compressed code generation. However, 

these existing FLCs are inefficient to produce required compression efficiencies in 

big data application [6, 7]. The available FLCs are run length coding, ASCII coding, 

EBCDIC and so on [7].  Therefore, we have designed a FLC based compression 

technique for big data which fulfills the following objectives:   

• Higher efficiency than the existing technique for big input size data. 

• Better robustness by reducing the data error during transmission. 
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• Better processing speed to reduce the transmission delay and channel 

efficiencies. 

According to the objectives, our proposed FLC based compression can be applied 

in many real life big data applications when data loss is an important concern. The 

proposed compression technique can be applied in areas where data loss and 

corruption during transportation will affect the applications. Examples of these 

areas are scientific research, healthcare, industrial data storage, and governmental 

and geographical surveillance.     

In this paper, Section 2 discusses the background study, Section 3 depicts the 

proposed technique more precisely and Section 4 contains the results of 

implementation to justify our claim. Section 5 represents an assessment platform 

which includes experimental setup and some important definitions, which will be 

used in result analysis section. A conclusion is drawn in Section 6 to conclude the 

effectiveness and the drawback of the proposed technique. 

2      Background Study 

Here is the list of nomenclature which will be used throughout the text: 

Nomenclature: 

Each of the following symbol represents, 

∑           Finite set of all numbers and characters 

∅           Null Sequence 

⌊ ⌋          Floor function 

�	�          Celling function 

modulo  Reminder Division 

〈 〉         Element sequence of a set 

During big data transmission, its size is a considerable issue. So, to control such 

data size various compression techniques are used. These compression techniques 

are either lossy or lossless in nature. As lossy compression techniques degrade data 

quality during retrieval of the original data from the compressed string. In [1-2], the 

proposed lossy compression techniques are designed for real time data compression.  

Here the difference between the original and decompressed data is very 

insignificant. They offer high compression efficiency and high processing speed 

too. However, it does not offer higher robustness and even small changes in the 

compressed code can damage the entire data. Therefore, we have not included lossy 

compression in our discussion.  

Among the two types of lossless compression, examples of FLCs are ASCII coding 

and run length coding [6] and examples of VLCs are Arithmetic Coding, Huffman 

Coding, Lempel-Ziv Coding and Dictionary based coding. Fixed length coding 
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converts the symbols of a source file into a new weighted binary code depending 

upon a few certain bits.  Probability of each symbol to be appeared in the original 

file is estimated and then put in decreasing order during the generation of 

compressed code [5, 6].  

These types of coding techniques are generally asymptotic in nature and less 

sensitive to channel noise i.e. if any bit gets corrupted during transmission, it does 

not affect the whole data block. In (FLC) technique, no special symbol is used to 

separate the characters but the opposite occurs in VLCs. The main disadvantage of 

fixed length coding is that it produces equal length of code word for both max and 

min frequent symbol. Seldom, the code lengths are the same or even larger than the 

original character or symbol lengths [5-7].  

Variable length codes permits inputs for compressing and decompressing without 

any error. Independent and similar distributed inputs are compressed by these 

techniques which are near to their entropy [8, 9,20-21]. Generally prefix code can 

be defined in such a way that no code word is a prefix of any other code word [10, 

11]. Coding scheme, structured in this scheme is as similar as the prefix property 

and unambiguously decodable at any time. In this representation, the size of the set 

of integers (
) should be known in advance. Code size (�′) can be determine as 

�′ = 1 + ⌊���� 
⌋																																																										(1) 
Entropy coding can be used for different media, i.e. video, image, audio or text, as 

it has the property of not to be media specific. Furthermore, the retrieved data are 

of the same size as the original and there are no losses of data occurred during the 

retrieval, so they are called the lossless coding techniques [24]. The process of 

entropy coding can be differentiated into two parts: modeling and coding. The 

Huffman coding and the arithmetic coding techniques are the most relevant 

examples of such entropy coding techniques [20-21]. Other different types of VLC 

techniques that are widely used are Lempel Ziv, Dictionary based coding [19] and 

Deflate [23].  

During the transmission process, compressed code can be erroneous by the various 

types of data errors and noises, whether they are hardware or software. Sometimes 

noises in the channel or environment plays a role to corrupt the transmitted data [21, 

22]. Data errors can be of various types: single bits, multiple bits, discrete or 

continuous errors. Generally, data link layer is responsible for controlling such 

transmission errors. However, most of the time, all data errors cannot be corrected. 

Therefore, when we transmitted a compressed string over the internet, these 

compressed codes should be robust against such data errors and noises [23].   

According to [12], in arithmetic compression techniques, message is encoded as a 

real number in an interval between zero to one. As it works on a single character 

rather than several code words, it produces better compression ratio than others. 

The main disadvantage of such coding is if one bit is corrupted during the 

compression or during transmission of compressed code over the network the whole 
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code will be irretrievable [12-13].  In Huffman coding, compressed codes are 

generated by traversing the Huffman binary tree. Generally, Huffman binary tree is 

designed by depending upon the frequencies of different symbols belonging to the 

input file [14-15]. As the prefix code is generated depending upon the frequencies 

of the different symbols and traversing the binary tree, any minor changes in the 

compressed code due to any error or noise will make the whole compressed code 

irretrievable. Lempel-Ziv compression technique incorporates a principle or 

protocol for parsing of symbols from a finite alphabet into substrings where coding 

scheme maps these substrings accordingly into genuine code words of fixed length 

[16]. This type of coding technique is categorized into a few categories i.e. LZ77, 

LZ78 and etc. LZ77 uses all the features of Lempel Ziv coding with the exception 

that it uses the sliding buffer or window to store the substring [17].  Even in the 

LZ77 and LZ78 compression technique, a sliding window is used to store the 

character table during the creation of compressed code. Similarly, this sliding 

window is used during decompression too. So, if any compressed code gets 

corrupted during transmission, data loss may occur. Therefore, though the variable 

length coding techniques are channel efficient as they produces better compression 

efficiencies, they are not robust against the continuous or discrete data errors, 

channel noise and they are inefficient to protect data losses. 

In [4-5], the proposed lossless based data compression for floating seismic depends 

upon arithmetic coding that can achieve higher compression ratio and low data loss 

rate as compared to other lossless algorithms. It even offers higher SNR which 

shows its potentiality to offer robustness against various noise and errors. However, 

it processes the data quite slowly and its implementation is very expensive.  In [7-

9], the techniques being used generate compressed codes by trimming the redundant 

texture and using space transformation method. These types of compression 

techniques are very useful when the dynamic expansion is not possible. These 

techniques are very slow and the usage of modular arithmetic as well as data 

transformation decreases correlation in every case. 

From the discussion above, we have seen that both fixed length and variable length 

coding based compressions have some disadvantages where the FLCs offer poor 

compression efficiency and VLCs offer poor robustness against various data errors 

and noises. Therefore, existing compression techniques are not suitable for 

compressing large input size file for transmission. Thus, we proposed in this paper 

a new FLC compression algorithm that is has higher efficiency and robust against 

data errors and channel noise for transmitting large files. 

3      Proposed Methodology 

To overcome the limitations of both existing fixed and variable length coding, we 

have proposed a fixed length coding based compression technique for big data 

transmission.  It is useful for squeezing big data file and not fully dependent on 
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prefix code thus offering high robustness against channel noises and errors. To 

elaborate more precisely we have drawn our proposed model in Fig.2. 

 

Fig. 2: Proposed Fixed Length Compression Model 

From Fig.2, we can see that, the proposed compression technique can be divided 

into two major parts: creation of character table and creation of compressed code. 

The different operations related to our proposed compression technique are 

described in the following   subsection. 

3.1      Operations related to proposed compression technique 

In the first half of the proposed compression model, the character table is generated. 

Therefore, to create a character table, take the input file (��) and convert it into a 

binary string as, 

1) Check the �� size is divisible by 8 or not by 

� = ((��	����)	������	8)																																														(2) 
 

Here K is an ordinary variable.  If  � < 8 then concatenate (8 − �) number of bits 

at the Most Significant Bit (MSB) position of the �� string. 

2) Separate #$%&'()* + numbers of substrings from the input file (��) string and 

store them into the sub strings 〈��,-〉 as	0 ≤ 
 ≤ #$%&'()* +. 

3) Construct the symbol table �0�,12, by eliminating redundant data  from 
〈��,-〉 by 
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�0�,12, = #��,-� +																																																				(3) 
     

Here �	is the number of irredundant substring in	#��,-� +, where	0 ≤ � ≤ 256. 

4) Accumulate the frequencies of each #��,-� + in 〈�6�78〉 from the	〈��,-〉. 
5) Sort all the string of 〈�0�,12,8〉 according the frequencies at 〈�6�78〉	in 

decreasing order using any sorting algorithm.    

 

In the second part, we create the code table 〈9���8〉  and separator ��:	using 

Algorithm-1. 

Algorithm-1: Compressed Code Generation    

(b1) 2, ,, <, �, � are ordinary variables where 2 = 0 ; 

(b2) =>6, =>61, =>62 are string variables; 

(b3)  if (� ≥ 0) and (� ≤ 2@) 
(b4)       2 = 2 + 5;        // if � ≤ 40 put 2 = 4 

(b5)       if  (� ≥ 0)	and B� ≤ (2C − 2)D  
(b6)             for , = 0 to 2 

(b7)                  < = �/2F; 

(b8)                  � = <	������	2F; 

(b9)                  Concatenate (=>6, �);                   
(b10)             end for 

(b11)           9���8 = =>6; 
(b12)      end if 

(b13)    if	B� > (2C − 2)D and I� ≤ #2(CJK) − (2 × 2)+M 
(b14)           � = (2C − 4);        
(b15)        for , = 0 to 2 

(b16)                 < = �/2F; 

(b17)                � = <	������	2F; 

(b18)                Concatenate (=>61, �) ;              
(b19)           end for 

(b20)           Repeat step (b6) to (b10); 

(b21)           Concatenate (=>62, =>61, =>6) ; 
(b22)           9���8 = =>62; 

(b23)          end if 

Algorithm-1: Compressed Code Generation (Contd…)                                      

(b24) if	(� > (2(CJK) − (2 × 2))	and	� ≤ ((3 × 2C) − (3 × 2)) 
(b25)               � = (2C − 3);          
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(b26)               Repeat step (b15)  to (b22); 

(b27)          end if 

(b28)      if B� > B(3 × 2C) − (3 × 2)D	D and 	� ≤ (2(CJ�) − (4 × 2)) 
(b29) 										� = (2C − 2); 
(b30)          Repeat step (b15)  to (b22); 

(b31)          end if 

(b32)      if  I� > #2(CJ�) − (4 × 2)+M and B� ≤ 2(CJ�)D 
(b33)           � = (2C − 1);        
(b34)           Repeat step (b15)  to (b22); 

(b35)      end if 

(b36)      � = 2C;             

(b37)      for (, = 0 to 2) 

(b38)            Repeat step (b16) to (b17); 

(b39)            Concatenate (�, ��:);        

(b40)     end for 

(b41)     end if    

(b42)     if (� ≥ 0) and (� ≤ 2*) 
(b43)      			2 = 2 + 6; 

(b44)         Repeat  step (b5)  to (b40); 

(b45)    end if 

Pseudo code lines (b1) and (b2) declare and initialize some ordinary and string 

variables. Lines (b3) to (b41) is for creating code when the value of �	varies	0 ≤
� ≤ 127. Lines (b5) to (b12) creates a code substring when	0 ≤ � ≤ 26. Lines 

(b6) to (b9) convert the value of � into a binary string to create a compressed code 

for each symbol. Line (11) put these binary strings into the code table. Similarly, 

lines (b14) to (b19) are for creating the prefix code of the second level. Lines (b20) 

to (b23) are for creating a code for the second range and this code is concatenated 

with the prefix code. Line (b22) adds this concatenated code into the code table. In, 

fourth and fifth level, the prefix and the compressed codes are generated using 

similar fashion. These compressed codes are then included into the code table with 

the help of lines (b13) to (b41). Similarly, lines (b42) to (b45) generate the code 

and include them into the code table when	128 ≤ � ≤ 256. 

6) Replace all the substrings from the 〈��,-〉  by the corresponding code 

from	〈9���8〉 to form a code string table	〈9����>612,-〉 to create compressed 

string (9��:�>6). 

7) Concatenate all code string from the symbol table 〈�0�,12,-〉 into a single 

string �0�,�>6 as, 

�0�,�>6 = B�0�,�>6 × 10O(&P8FQCFR)D + �0�,12,8																	(4) 
Where, �(�0�,12,8) = BS���KT&P8FQCFRU + 1D 
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8) Concatenate all strings of 〈9����>612,-〉 into a single	�0�,9����>6  using 

Eqn.4. 

9) Create the final compressed string (9��:�>6) by concatenating code string 

(�0�,�>6), separator string (��:) and compressed string (	9��:�>6) using 

Eqn.4. Finally, transmit the compressed string (9��:�>6) to the receiving 

end. 

3.2      Operations related to Decompression 

Decompression is done at the receiving end after receiving the complete 

compressed data. Decompression technique is a reversal process of the proposed 

compression technique. During decompression, the symbol table (�0�,�>6)	is 

separated based on separator	(��:′) from the compressed string	(9��:�>6). The 8 

bits symbols are generated from the	�0�,�>6 by reversing the process and form 

the symbol table. Then construct the code table from the symbol table by using 

Algorithm-1. Similarly, separate each code substring from 	�0�,9����>6  and 

replace each code substring by the corresponding symbol from the symbol table by 

comparing them from the code table. Finally, concatenate all symbols into a single 

string using Eqn.4 and generate the output file. 

4      Assessment Platform  

To analyze the performance of our proposed technique for big data transmission, 

we need to measure its capacity to produce compression efficiency and to offer 

robustness against various errors and data noises. Therefore, this section includes 

definition of required parameters that relate to our experiment and the experimental 

setup. 

4.1     Experimental setup 

We have conducted several experiments to measure the efficiency of the proposed 

algorithm in different aspects. We have used LINUX (Fedora 18) as the operating 

system. However, any operating system can be used for implementing it.  We have 

used a 32 GB of DDR3 RAM and cloud storage at the High Performance 

Computing Center of Universiti Teknologi PETRONAS for our experiment. 

However, the minimum hardware requirement is 2GB of RAM and 1TB of storage 

space. The proposed compression technique is implemented using the Java 

programming language to conduct all experiments in NetBeans Integrated 

Development Environment. The input file sizes vary for conducting our 

experiments from 35 GB to 1TB (considered as big data). Files of different types 

and sizes have been taken as input to measure the efficiency of our proposed 

compression technique. Data transmissions are done via wireless network 

infrastructure during the experiment. 
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4.2     Some Important Definition 

This subsection is included to provide a brief idea about some important parameters 

and describes their different features. These parameters help to justify our claim by 

analyzing the results of different experiments at the result analysis section.  

4.2.1      Compression Ratio (CR) 

In any data compression technique, the Compression Ratio represents the ratio of 

compressed file size and original file size. It is an important parameter to measure 

the efficiency of any compression technique. 

CR = 9�:6�==��	����	����
X6���
2�	����	���� 																																														(5) 

Generally, the compression ratio is inversely proportional to the percentage of 

compression, i.e. if any compression technique produces low compression ratio 

then it will produce high percentage of compression or vice versa.  

4.2.2      Percentage of Compression (CP) 

Percentage of compression (CP) signifies the ability to compress the input data 

(in %) after certain compression process is applied on that input file. The percentage 

of compression (CP) can be formulated as, 

9� = Y<>�2�	���� − 9��:6�==��	����
Y<>�2�		=��� × 100																															(6) 

The percentage of compression signifies the capacity of reducing a file size of any 

compression technique. If any compression technique produces higher CP, it 

signifies that this particular compression technique is efficient to compress the input 

file or vice versa. 

4.2.3      Signal to Noise Ratio (�Z[\]) 

Signal-to-noise ratio is the ratio of the amplitude of a desired analog or digital data 

signal to the amplitude of noise in a transmission channel at a specific point in time. 

SNR is typically expressed logarithmically in decibels (dB). SNR can be formulated 

using the following formula: 

�Z[^_ = 10 × `��KTa∑ cd(-)/∑ ecd(-)fPd(-)ghh i																																					(7) 
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In Eqn.7, j(
) is the original sample length whereas 0(
) is the sample length of 

the output file. Generally, if �Z[^_  of a file is high then it is said to be less noisy 

or less erroneous or vice versa. 

4.2.4      Percentage of Information Loss (IL) 

During data transmission, some portion of the transmitted data can be modified or 

corrupted by channel noises or some unwanted interference. This information 

cannot be retrieved at the receiving end. This facet is known as information loss (IL) 

and it is measured in percentage. The percentage of information loss can be 

formulated as:  

�` = X6���
2�	����	 − [�>6��k�	����	
�6���
2�		���� × 100																									(8) 

Generally percentage of IL, produced by any compression technique is inversely 

proportional to its capacity to produce robustness against various errors, i.e. when 

the IL is high then the robustness is low and vice versa. 

4.2.5      Throughput (TP) 

Throughput or TP is the amount of work being done in a given time. It is measured 

to calculate the processing speed of compression or decompression techniques.  

Generally, TP is inversely proportional to time and can be measured as:  

1�(9��:. ) = I 9��:6�==��		����
9��:6�==��
	1���M																																		(9) 

 

																															1�(n�<��:. ) = [�>6�k�	����	����
n�<��:6�==��
	1���																														(10) 

4.2.5      Peak Signal-to-Noise Ratio (PSNR) 

The peak signal-to-noise ratio (PSNR) is the ratio between a maximum power of a 

particular signal and the power of the incorporated noise into that signal. It is used 

to measure the quality of reconstructed images that have been compressed. Each 

picture element (pixel) has a color value that can change when an image is 

compressed and then uncompressed. Signals can have a wide dynamic range, thus 

PSNR is usually expressed in decibels. 

If the original signal strength of any image file is  =[
] and the signal strength with 

the noise is j[
] then the peak signal to noise ratio (PSNR) can be calculated as: 

 

                                           ��Z[ = qr
qs = qr

|c[-]fu[-]|d 																																													(11) 
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Where, 

                                            �u = ∑ =�[
] = |=[
]|�vfv  																																										(12) 
 

According to this equation, if the PSNR of any image is higher then it is less 

erroneous and is less affected by noise and vise versa.  

5      Result Analysis  

Compression efficiency, robustness and processing speed produce by the proposed 

technique are calculated in terms of their corresponding parameters. We have also 

considered some standard existing VLCs and FLCs to compare our proposed 

algorithm in different aspects to prove our claims.  

5.1     Compression efficiency measurement 

Compression efficiency is calculated by measuring the compression ratio offered 

by various VLCs, FLCs and the proposed compression technique using Eqn. 5. The 

results are tabulated in Table 1 and Table 2. 

Table 1: CR offered by our tech. and other VLCs 
File 

Name 

Arithmetic 

coding 

Huffman 

BWT 

LZSS 

BWT 

Dictionary based Proposed 

Technique 

BIB 0.6819 0.5546 0.5356 0.5085 0.4621 

GEO 0.6888 0.5571 0.5321 0.5023 0.4618 

OBJ1 0.6887 0.5547 0.5399 0.5061 0.4613 

PAPER1 0.6879 0.5551 0.5301 0.5073 0.4604 

PAPER2 0.6851 0.5525 0.5354 0.5045 0.4597 

PAPER3 0.6834 0.5556 0.5347 0.5022 0.4604 

PAPER4 064845 0.5588 0.5342 0.5081 0.4647 

PAPER5 0.6819 0.5501 0.5325 0.5076 0.4661 

PAPER6 0.6827 0.5585 0.5366 0.5079 0.4612 

PROGC 0.6817 0.5527 0.5371 0.5067 0.4609 

PROGL 0.6820 05781 0.5345 0.5081 0.4598 

PROGP 0.6818 0.5533 0.5369 0.5089 0.4586 

 

Table 2: CR offered by our tech. and other FLCs 
File 

Name 

ASCII 

Coding 

EBCDIC 

 

Run Length 

Coding 

Proposed 

Technique 

BIB 0.9546 0.9256 0.9985 0.4621 

GEO 0.9571 0.9221 0.9623 0.4618 

OBJ1 0.9547 0.9299 0.9761 0.4613 

PAPER1 0.9551 0.9301 0.9773 0.4604 

PAPER2 0.9525 0.9354 0.9845 0.4597 

PAPER3 0.9556 0.9247 0.9822 0.4604 
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PAPER4 0.9588 0.9342 0.9881 0.4647 

PAPER5 0.9501 0.9325 0.9776 0.4661 

PAPER6 0.9585 0.9266 0.9879 0.4612 

PROGC 0.9527 0.9271 0.9767 0.4609 

PROGL 0.9578 0.9245 0.9681 0.4598 

PROGP 0.9533 0.9269 0.9789 0.4586 

From Table 1 and Table 2, we can see that our proposed technique produces lower 

compression ratio than other existing standard FLCs and VLCs. Here, the 

compression ratio for various existing compression techniques and the proposed 

technique are calculated by using different standard Calgary Corpuses as input file.  

The efficiencies of the proposed compression technique are further compared with 

other FLCs and VLCs with respect to their ability of producing percentage of 

compression (CP). The percentages of compression produced by these existing 

FLCs and VLCs and our proposed technique with the help of Eqn.6 are shown in 

Table 3 and Table 4. 

Table 3: CP produced by our tech. and other VLCs 
File Size 

(GB) 

Arithmetic 

coding 

Huffman 

BWT 

LZSS 

BWT 

Dictionary 

based 

Proposed 

Technique 

35 21.01 30.2 34.1 41.6 56.7 

56 23.34 30.9 35.2 42.0 57.0 

90 18.39 32.1 33.0 43.5 57.1 

120 24.23 33.7 34.7 43.0 56.9 

200 25.32 31.3 34.0 43.7 58.0 

350 22.12 30.6 35.1 42.9 58.2 

450 23.45 31.5 35.2 44.0 58.8 

600 21.67 32.0 34.3 45.0 55.9 

800 21.45 29.9 36.7 44.1 56.5 

1024 21.21 30.7 35.0 43.9 56.8 

 

Table 4:  CP produced our tech. and other FLCs 
File Size 

(GB) 

ASCII 

Code 

EBCDIC 

Code 

Run Length 

Coding 

Proposed 

Technique 

35 0.0002 0.0001 -1.0055 56.7 

56 0.0003 0.0002 -1.0026 57.0 

90 0.0001 0.0004 0.0001 57.1 

120 0.0001 0.0004 -0.998 56.9 

200 0.0002 0.0001 -0.762 58.0 

350 0.0003 0.0002 -0.985 58.2 

450 0.0001 0.0003 -0.976 58.8 

600 0.0003 0.0002 -1.112 55.9 

800 0.0002 0.0001 -1.007 56.5 
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1024 0.0001 0.0002 0.0001 56.8 

In Table 3 and Table 4, it can be seen that our proposed compression technique 

offers higher percentage of compression (CP) than the various exiting standard 

FLCs and VLCs.  Here, we have used various text files of different size as input. 

From Table 1 to Table 4, we can see that our proposed technique offers low 

compression ratio and higher percentage of compression which reflects that our 

proposed technique is more compatible to reduce data overhead rather than the other 

existing compression techniques. Thus, we have obtain our first objective.  

Apart from that, we can see from Table-2 and Table-4 that, the existing FLCs 

produce unacceptable compression efficiencies which is not applicable for big data 

transmission. Therefore, we have not compared the performance of the proposed 

compression techniques with the existing FLC techniques.  

5.2     Robustness to protect data error and information loss 

We have further tested the ability of our proposed technique to produce robustness 

against various data errors. For this purpose, we have calculated signal to noise ratio 

(�Z[^_) of our proposed technique and various exiting techniques with the help of 

Eqn.7. From our previous subsection we can see that, the existing FLCs produce 

very poor compression efficiencies. So, we have not included or compared this 

FLCs with our proposed technique. Fig.3 shows the  �Z[^_ values generated by 

the proposed techniques and various existing VLCs using different samples as input, 

taken from related text files of different sizes. 

 
Fig.3: �Z[^_ produced by proposed tech. and other VLCs 
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From Fig.3, we can see that our proposed technique can produce �Z[^_ from 58.5 

dB to 62.9 dB which are higher and consistent than other existing techniques. This 

fact indicates that the probability of noises and errors in retrieving the data samples 

is very low while our proposed compression technique is used apart from other 

existing. 

We have also used our compression technique to compress image files and compare 

the PSNR value produced by it with the various existing image compression 

technique using the Eqn.11. Standard image is being used in this experiment and 

the results are shown in Table-5. 

Table 5: PSNR offered by existing image compressions and proposed technique 
Image Name JPEG-LS  JPEG2000  SPIHT  ADCTC  Proposed 

Technique 

House 32.69 33.10 34.78 36.37 45.2 

Milk 32.26 32.53 34.86 35.76 44.8 

Jet 31.95 32.89 34.76 35.73 46.3 

Tiffany 31.32 32.90 34.80 35.49 49.2 

Pepper 32.44 32.57 34.79 35.46 48.9 

Baboon 32.65 32.71 34.78 34.73 47.3 

Random-noise 31.82 31.85 34.81 34.33 47.8 

According to Table-5, we can see that our proposed technique is more efficient and 

produce better PSNR than the other existing image compression technique for every 

standard input image. This fact implies that our proposed compression technique is 

much more efficient to reduce the affect of various data noise during transmission. 

This fact also reflects that the perceptual difference between the original image and 

the decompressed image is very low which can be seen by the following Fig.4. 

Fig.4(a) Original Image Fig.4(b) Decompressed Image 

Fig. 4(a) and Fig. 4(b) show that the decompressed figure is perceptually the same 

as the original figure. Therefore, Table-5 and Fig.4 justifies that our proposed 

technique is efficient to produce higher robustness for the different file formats. 

Another parameter for justifying the capacity of our proposed technique to offer 

robustness against various noises and data errors is percentage of information loss. 

The percentage of information loss (IL) produces by the proposed technique and 

various existing VLCs are calculated with the help of Eqn.8 using various input text 
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files of various sizes. The percentage of information losses offer by our proposed 

fixed length coding based compression technique and various VLC compression 

techniques are compared are shown in Fig.5.  

 

Fig.5: IL produced by propose tech. and other VLCs 

From the Fig.5, we can see that, our proposed technique is producing lower 

percentages of information loss (IL) than other existing VLCs. This fact also 

highlights that the proposed FLC based compression technique offer more 

robustness against the other existing VLC based compression techniques.  

Therefore, from the Fig.3, Fig.4, Figure-5 and Table-5 we can conclude that our 

proposed compression technique produced a better robustness against various 

channel noise, environmental noise, and hardware or software errors during the 

transportation process in wireless environment. These facts justify our second 

claim.   

5.3    Measurement of processing speed  

Another important aspect is increasing the channel efficiency in any transmission 

system. Generally, the channel efficiency can be increased with the increment of 

data processing speed and with good compression efficiency. From Table-1 to 

Table-4, we have already seen that our proposed technique is better than other 

existing in this aspect. Now, we examined how it is efficient to produce the time 

efficiency in terms of processing speed. From the definition sub section, we can see 

that the processing speed produced by any compression or decompression technique 

can be measured by measuring its capacity of offering Throughput. The Throughput 

offers by our proposed technique and various existing variable length coding 
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techniques at the time of their compression and decompression are measured with 

the help of Eqn.9 and Eqn.10 using various input text files of different sizes. The 

following Table 6 includes the comparison of Throughput offered by the proposed 

technique and various existing VLCs. 

Table 6: TP offered by our tech. and other VLCs  

Throughput in MB/Sec 

(Compression (C) / Decompression (D) ) 

Input File 

Size (GB) 

Arithmetic 

Coding 

Huffman 

BWT 

LZSS BWT Dictionary 

Based 

Proposed 

Technique 

(C) (D) (C) (D) (C) (D) (C) (D) (C) (D) 

35 1.56 1.58 0.78 0.79 0.81 0.82 0.93 0.95 3.52 3.51 

56 1.61 1.62 0.82 0.85 0.86 0.84 0.99 0.98 3.56 3.53 

90 1.64 1.63 0.85 0.87 0.89 0.91 0.95 0.96 3.54 3.55 

120 1.65 1.66 0.88 0.89 0.84 0.85 0.96 0.97 3.56 3.54 

200 1.71 1.72 0.85 0.86 0.87 0.86 0.98 0.99 3.57 3.55 

350 1.77 1.76 0.88 0.87 0.91 0.93 0.95 0.97 3.58 3.57 

450 1.76 1.78 0.87 0.86 0.95 0.97 0.97 0.99 3.59 3.57 

600 1.75 1.77 0.86 0.88 0.98 0.99 0.95 0.96 3.57 3.56 

800 1.73 1.79 0.88 0.89 0.96 0.97 0.97 0.98 3.61 3.59 

1024 1.75 1.75 0.91 0.89 0.99 0.98 0.98 0.99 3.62 3.58 

From Table 6, we can see that our proposed technique produces better Throughputs 

in every situation for both compression and decompression. These facts establish 

that our proposed technique is far better to produce higher processing speed than 

the other existing VLCs during both compression and decompression. Thus, we 

have proved that our third claim. 

6    Conclusion  

From the literature review, we have found that channel congestion and transmission 

errors are the prime grounds of such data loss. On the other hand, the big data size 

increases the channel congestion during transmission and transmission delay. So 

we have proposed a fixed length coding based compression technique, which 

reduces the file sizes considerably as well as reduces data loss by offering high 

robustness against various data errors, and minimizing channel congestion and 

transmission delay. Therefore, this paper discusses how our proposed fixed length 

coding based lossless compression technique reduces information overhead during 

the transmission, increases the processing speed and reduces the effects of channel 

noises or errors during transmission. From Table 3 and Table 4 we can see that our 

proposed technique achieved up to 56.8% of compression efficiency during our 

experiment. As our proposed technique includes the fixed length coding technique, 

so channel noise effects very less on data, thus it is reducing the data error. The 
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�Z[^_	of the proposed technique increased up to 61.95 dB meaning that the error 

rates in the retrieve information are very low. Table-5 and Fig.4 show that the 

proposed technique offers high robustness against various noises during image file 

compression. It justifies that our proposed algorithm is robust again channel noises 

and errors for different file formats. As it produces high throughput (up to 3.59 

MB/Sec), therefore, the proposed technique offers high processing speed. It also 

reduces the size of the input files, so it is space efficient too.  

The variable length coding techniques are popular as they produce better 

compression percentage. From the literature review, we found that variable length 

coding techniques are not robust to the channel noise. If some portion of the variable 

length code gets corrupted during the transmission, the whole compressed code will 

be uncompressible. But, though our proposed technique relates to the fixed length 

coding technique, it produces much greater compression efficiency than some well-

known existing techniques in terms of compression ratio and bits per code. In our 

case if some portion is lost or gets corrupted during the transmission, it will not 

affect the decompression operation at all.  In the section 5, we have compared our 

proposed algorithm with some existing compression techniques. We have also 

compared our proposed technique with some existing fixed length coding technique 

with the some well-known existing fixed length coding techniques with respect to 

their ability to produce compression ratios (CR) and percentage of compression 

(CP). From Table 1 to Table 4, we can see that the compression efficiency, 

produced by our proposed technique is far better than other existing fixed length 

coding and variable length coding based compression techniques in terms of CR 

and CP.  

We have shown that we have achieved the three objectives from the results of our 

experiments. The proposed fixed length based compression is efficient for reducing 

channel congestion, reducing errors and reducing transmission delay during big 

data transmission. However, from our discussion it can be also seen that, our 

proposed technique is partially dependable of prefix code to a certain extend. So, if 

we transmit the information over a noisy network and some bits in the prefix code 

are corrupted during the transmission, our proposed technique is not capable to 

avoid information loss.  As we see form Fig. 5 there are some information loss 

occurred during data retrieval, which implies that more research is needed to reduce 

the data loss. The throughputs shown in the Table-6 are good but it can be improved 

further via research to produce better processing speed and reduce the transmission 

delay.  
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