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Abstract 

     In the past, many dimensional reduction methods such as Local 
Linear Embedding (LLE) and Laplacian Eigenmaps (LE) have been 
successfully developed. However, in many real world applications, 
representing the dataset as un-directed graph, used in Laplacian 
Eigenmaps and Local Linear Embedding methods, is not complete. 
Approximating complex relationship as pairwise will lead to the loss 
of information. The natural way overcoming the information loss is 
to represent the dataset as the hypergraph. However, representing 
the dataset as the hypergraph will not lead to the perfection. The 
number of hyper-edges may be large; hence this will lead to high 
time complexity of the clustering methods or the classification 
methods when we try to apply the clustering/classification methods to 
this hypergraph dataset. Thus, in this paper, we develop the un-
normalized hypergraph Laplacian Eigenmaps. Moreover, in the 
developed un-normalized hypergraph Laplacian Eigenmaps 
algorithm, we assume that the weights of all hyper-edges are equal to 
1. This is not true at all in practical applications. Thus, in this paper, 
we will also develop the weighted un-normalized hypergraph 
Laplacian Eigenmaps and the weighted hypergraph semi-supervised 
learning method. Experimental results show that the weighted hyper-
graph semi-supervised learning method achieves the highest 
accuracy performance measures. 

     Keywords: hypergraph, Laplacian, Eigenmaps, weighted, semi-supervised, 
learning. 
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1      Introduction 

Recently, our capability to collect and store data has far exceeded our capability to 

analyze it. In problems such as face recognition and biological network inference 

problem using gene expression data, we are given a large dataset in which each 

observation contains a large number of variables. This number of variables is 

called the dimension of each observation. In this given setting, the data lies in a 

high-dimensional space. For example, the  image has  dimensions if 

we treat each pixel as one variable. It’s hard for human beings to visualize and 

understand these high dimensional data because of limited computing resources. 

Moreover, it turns out that not all variables are needed for understanding the 

primary phenomenon. In the other words, there is a high degree of redundancy in 

the data they represent. Hence, the structure and the content of the data may be 

captured by a lesser set of variables. There are also may be too much noise in the 

data. Hence there is a need to reduce the dimensionality of the data (i.e. reduce the 

noise of the data) before we apply the clustering (i.e. un-supervised learning) 

methods and classification (semi-supervised learning and supervised learning) 

methods to the dataset. In the other words, we can build the more effective data 

analysis tools. Those are why we need to develop the dimensional reduction 

methods. 

In our literature review, many dimensional reduction methods have been 

successfully developed and applied to various applications such as speech 

recognition, face recognition, and biological network inference problem using 

gene expression data, to name a few. There are two classes of dimensional 

reduction methods which are the linear and the non-linear techniques [1]. Linear 

dimensional reduction methods assume that the data lies on or close to linear 

subspace of the high-dimensional ambient space. Linear dimensional reduction 

methods have been developed and used for a long time. For example, Principle 

Component Analysis (i.e. PCA) was developed in 1901 and is still the most 

widely used dimensional reduction methods nowadays. For instance, the PCA 
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technique is employed in and successfully applied to speech recognition research 

field [2], face recognition research field [3], and biological network inference 

research field [4]. In the other hand, non-linear dimensional reduction methods 

make no assumption about the linearity and are designed to recognize complex 

non-linear manifolds as well as linear ones. Recently, many researchers have 

focused on developing various non-linear dimensional reduction methods such as 

Kernel PCA [5], Isomap [6], Local Linear Embedding [7], and Laplacian 

Eigenmaps [8].  

However, in many real world applications, representing the dataset as un-directed 

graph, used in Laplacian Eigenmaps and Local Linear Embedding methods, is not 

complete. Approximating complex relationship as pairwise will lead to the loss of 

information. Let us consider classifying a set of genes into different gene 

functions. From [9], we may construct an un-directed graph in which the vertices 

represent the genes and two genes are connected by an edge if these two genes 

show a similar pattern of expression (i.e. the gene expression data is used as the 

datasets in [9]). Any two genes connected by an edge tend to have similar 

functions. However, assuming the pairwise relationship between genes is not 

complete, the information a group of genes that show very similar patterns of 

expression and tend to have similar functions [10] (i.e. the functional modules) is 

missed. The natural way overcoming the information loss is to represent the gene 

expression data as the hypergraph [10]. A hypergraph is a graph in which an edge 

(i.e. a hyper-edge) can connect more than two vertices. However, representing the 

dataset as the hypergraph will not lead to the perfection. The number of hyper-

edges may be large; hence this will lead to high time complexity of the clustering 

methods or the classification methods when we try to apply the 

clustering/classification methods to this hypergraph dataset. Thus, there exists a 

need to develop the dimensional reduction methods for the hypergraph datasets. In 

[11,12], the symmetric normalized hypergraph Laplacian Eigenmaps has been 

developed and successfully applied to zoo dataset. However, the random walk and 

un-normalized hypergraph Laplacian Eigenmaps have not yet been developed and 
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applied to any practical applications. In this paper, we will develop the un-

normalized hypergraph Laplacian Eigenmaps and apply this method combined 

with kernel ridge regression method to the zoo dataset available from UCI 

repository and the tiny version of the 20 newsgroups dataset. 

Moreover, in the developed un-normalized hypergraph Laplacian Eigenmaps 

algorithm, we assume that the weights of all hyper-edges are equal to 1. This is 

not true at all in practical applications. In the other words, some hyper-edges may 

be more important than other hyper-edges and thus will have the weights that are 

larger than the weights of other hyper-edges. Thus, in this paper, we will also 

develop the weighted un-normalized hypergraph Laplacian Eigenmaps and apply 

this method combined with kernel ridge regression method to the zoo dataset 

available from UCI repository and the tiny version of the 20 newsgroups dataset. 

We will organize the paper as follows: Section 2 will introduce the definitions of 

the three hypergraph Laplacians. Section 3 will present the un-normalized 

hypergraph Laplacian Eigenmaps algorithm in detail. Section 4 will present the 

weighted un-normalized hypergraph Laplacian Eigenmaps algorithm in detail. 

Section 5 will show the experimental results of the un-normalized hypergraph 

Laplacian Eigenmaps algorithm and the weighted un-normalized hypergraph 

Laplacian Eigenmaps algorithm combined with the kernel ridge regression 

method applied to the zoo dataset available from UCI repository and the tiny 

version of the 20 newsgroups dataset. Section 6 will conclude this paper and the 

future direction of researches will be discussed. 

 

2      Preliminary notations and definitions 

Given a hypergraph G=(V,E), where V is the set of vertices and E is the set of 

hyper-edges. Each hyper-edge  is the subset of V. Please note that the 

cardinality of e is greater than or equal two. In the other words, , for every 

. Let w(e) be the weight of the hyper-edge e. Then W will be the  

diagonal matrix containing the weights of all hyper-edges in its diagonal entries.    
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The incidence matrix H of G is a  matrix that can be defined as follows 

 (1) 

From the above definition, we can define the degree of vertex v and the degree of 

hyper-edge e as follows 

 (2) 

 (3) 

Let  be two diagonal matrices containing the degrees of vertices and the 

degrees of hyper-edges in their diagonal entries respectively. Please note that  is 

the  matrix and  is the  matrix.   

Please note that, we assume that the weight of each hyper-edge is 1. 

The un-normalized hypergraph Laplacian [10, 11, 12] is defined as follows 

 (4) 

The symmetric normalized hypergraph Laplacian [11, 12] is defined as follows      

 (5) 

The random walk hypergraph Laplacian [10, 11, 12] is defined as follows  

 (6) 

 

3      Un-normalized hypergraph Laplacian Eigenmaps 
algorithm 

Suppose that we are given the hypergraph. In the other words, we know the 

topology of the hypergraph. What we want to do is to transform each node of the 

hypergraph to a numerical vector utilizing the topology of the hypergraph. The 

un-normalized hypergraph Laplacian Eigenmaps algorithm will exactly map each 

node of the hypergraph to numerical vector.  

Un-normalized hypergraph Laplacian Eigenmaps algorithm 

In this part, we will give the brief overview of the un-normalized hypergraph 

Laplacian Eigenmaps algorithm. The outline of this algorithm is as follows 

1. Construct  from the incidence matrix H of G 
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2. Compute the un-normalized hypergraph Laplacian       

3. Compute all eigenvalues and eigenvectors of L and sort all eigenvalues 

and their corresponding eigenvector in ascending order. Pick the first  

eigenvectors  of L in the sorted list. k can be determined in 

the following two ways: 

a. k is the number such that  is largest for all  

b. k is the number such that  is largest for all 

         

4. Let  be the matrix containing the vectors  as 

columns and U is the final result 

 

4      Weighted un-normalized hypergraph Laplacian 
Eigenmaps algorithm 

In the above un-normalized hypergraph Laplacian Eigenmaps algorithm, we 

assume that the weights of all hyper-edges are equal to 1. This is not true at all in 

practical applications. In the other words, some hyper-edges may be more 

important than other hyper-edges and thus will have the weights that are larger 

than the weights of other hyper-edges.  

Hence in order to assign weights to hyper-edges of the hypergraph, to transform 

the nodes of the hypergraph to numerical vectors, and to improve the accuracy of 

the classification algorithms of hypergraphs, we would like to solve the following 

minimization problems 

 (7) 

Please note that w is the vector containing the weights of all the hyper-edges of 

the hypergraph,  is the final ranking vector (i.e. the output vector) that is 

used for the classification of the nodes of the hypergraph with some threshold 

value.   



 

 

 

 

 

 

 

Loc Tran et al.                                                                                                     196 

Moreover, we know that  (8) 

The proof of (8) can be found in [10].  

Thus, we need to solve the following optimization problem 

 (9) 

With a fixed w, we can optimize f like the following 

 

In the other words, we need to solve    

 

This will lead to  

          

 

Hence the solution  of the above equations is 

      

With a fixed f, we can optimize w like the following 

 

The Lagrangian function of the above optimization problem is 

 

 

The partial derivative of  with respect to  is given by  

 

 

Next, we need to solve  

 

This will lead to  

 

Moreover, we know that  
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In the other words, we have  

 

 

 

 

In general, we have   

 

 

Now, we need to compute . 

We have 

 

 

Thus, finally, we have that 

 (10) 

 (11) 

 

Weighted un-normalized hypergraph Laplacian Eigenmap algorithm 

In this part, we will give the brief overview of the weighted un-normalized 

hypergraph Laplacian Eigenmaps algorithm. The outline of this algorithm is as 

follows 

1. Construct  from the incidence matrix H and matrix W of G 

(initially, W is the identity matrix) 

2. Compute the un-normalized hypergraph Laplacian       
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3. Compute  

4. Compute the weight matrix W 

 

 

5. Update the matrix  and W 

6. Repeat step 2-step 5 until convergence and get the final ranking vector 

f.  

7. Compute all eigenvalues and eigenvectors of the “updated” L and sort 

all eigenvalues and their corresponding eigenvector in ascending order. 

Pick the first  eigenvectors  of L in the sorted list. k can 

be determined in the following two ways: 

a. k is the number such that  is largest for all  

b. k is the number such that  is largest for all 

         

8. Let  be the matrix containing the vectors  as 

columns and U is the final result 

Clearly, from the above algorithm, we recognize that the weighted un-normalized 

hyper-graph Laplacian Eigenmaps algorithm contains the weighted hyper-graph 

based semi-supervised learning method starting from step 1 to step 6. 

 

5      Experiments and Results  

5.1      Description of datasets 

In this paper, we used the zoo data set and the tiny version of 20 newsgroups 

dataset which can be obtained from UCI repository and from 

http://www.cs.nyu.edu/~roweis/data.html respectively. The zoo data set contains 

101 animals with 17 attributes. The attributes include hair, feathers, eggs, milk, 

http://www.cs.nyu.edu/~roweis/data.html
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etc. The animals have been classified into 7 different classes. In this dataset, each 

attribute is the hyper-edge. The tiny version of the 20 newsgroups dataset contains 

the binary occurrence data for 100 words across 16242 postings. However, we just 

choose small subset of this tiny dataset containing 4000 postings in order to test 

our algorithms. In this dataset, each word is the hyper-edge. Thus, these two 

datasets are themselves the hypergraphs and we don’t need to preprocess these 

two datasets. 

 

5.2      Experiments and Results 

In this section, we experiment with the above proposed un-normalized hypergraph 

Laplacian Eigenmaps and the weighted un-normalized hypergraph Laplacian 

Eigenmaps combined with the kernel ridge regression method [13], the hyper-

graph based semi-supervised learning method [10,11,12], and the weighted hyper-

graph based semi-supervised learning method applied directly to the zoo dataset 

and the tiny version of 20 newsgroups dataset in terms of accuracy performance 

measure. The accuracy performance measure Q is given as follows 

 

 

 

All experiments were implemented in Matlab 6.5 on virtual machine. The 

accuracy performance measures of the four above proposed methods are given in 

the following table 1 and table 2. 

 

Table 1: Accuracies of the four proposed methods which are the un-normalized 

hypergraph Laplacian Eigenmaps and the weighted un-normalized hypergraph 

Laplacian Eigenmaps combined with the kernel ridge regression method, the 

hyper-graph based semi-supervised learning method, and the weighted hyper-

graph based semi-supervised learning method for the zoo dataset 
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Accuracy (%) 

Un-normalized 

hypergraph 

Laplacian 

Eigenmaps + 

Kernel ridge 

regression method 

Weighted un-

normalized 

hypergraph 

Laplacian 

Eigenmaps + 

Kernel ridge 

regression method 

Hyper-graph 

based semi-

supervised 

learning method 

Weighted hyper-

graph based semi-

supervised 

learning method 

95.77 95.77 90.48 98.64 

 

The following figure 1 shows the accuracies of the four proposed methods which 

are the un-normalized hypergraph Laplacian Eigenmaps and the weighted un-

normalized hypergraph Laplacian Eigenmaps combined with the kernel ridge 

regression method, the hyper-graph based semi-supervised learning method, and 

the weighted hyper-graph based semi-supervised learning method for the zoo 

dataset: 
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Table 2: Accuracies of the four proposed methods which are the un-normalized 

hypergraph Laplacian Eigenmaps and the weighted un-normalized hypergraph 

Laplacian Eigenmaps combined with the kernel ridge regression method, the 

hyper-graph based semi-supervised learning method, and the weighted hyper-

graph based semi-supervised learning method for the 20 newsgroups dataset 

 

Accuracy (%) 

Un-normalized 

hypergraph 

Laplacian 

Eigenmaps + 

Kernel ridge 

regression method 

Weighted un-

normalized 

hypergraph 

Laplacian 

Eigenmaps + 

Kernel ridge 

regression method 

Hyper-graph 

based semi-

supervised 

learning method 

Weighted hyper-

graph based semi-

supervised 

learning method 

86.92 85.50 86.05 87.18 

 

The following figure 2 shows the accuracies of the four proposed methods which 

are the un-normalized hypergraph Laplacian Eigenmaps and the weighted un-

normalized hypergraph Laplacian Eigenmaps combined with the kernel ridge 

regression method, the hyper-graph based semi-supervised learning method, and 

the weighted hyper-graph based semi-supervised learning method for the 20 

newsgroups dataset: 
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5.3      Discussions 

From the above figures, we easily recognized that the weighted hyper-graph semi-

supervised learning method achieves the highest accuracy performance measures 

since the solution vector of the weighted hyper-graph semi-supervised learning 

method is directly obtained from the optimization problem (7) which is used to 

maximize the accuracy of the hypergraph semi-supervised learning method. In the 

other hands, the weighted un-normalized hypergraph Laplacian Eigenmaps do not 

always perform better the un-normalized hypergraph Laplacian Eigenmaps 

algorithm since these two algorithms are combined with the kernel ridge 

regression algorithm, which is not the best supervised classification algorithm 

(especially for the feature vectors which are results of the weighted un-normalized 

hypergraph Laplacian Eigenmaps and un-normalized hypergraph Laplacian 

Eigenmaps) for the scope of this paper.   
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6      Conclusion  

In this paper, we have proposed the detailed algorithms the un-normalized 

hypergraph Laplacian Eigenmaps, the weighted un-normalized hypergraph 

Laplacian Eigenmaps applying to the zoo dataset and the tiny version of 20 

newsgroups dataset. Interestingly, experiments show that the weighted un-

normalized hypergraph Laplacian Eigenmaps algorithm do not always perform 

better the un-normalized hypergraph Laplacian Eigenmaps algorithm. However, 

the weighted hypergraph semi-supervised learning method do always perform 

better than the un-normalized hypergraph Laplacian Eigenmaps combined with 

the kernel ridge regression method, the weighted un-normalized hypergraph 

Laplacian Eigenmaps combined with the kernel ridge regression method, and the 

hypergraph semi-supervised learning method.  

In the future, the un-normalized hypergraph Laplacian Eigenmaps, the weighted 

un-normalized hypergraph Laplacian Eigenmaps, and the weighted hypergraph 

semi-supervised learning method will be applied to larger hypergraphs such as 

web hypergraph (to detect spam or not) and will be implemented in Python and 

MapReduce.  

To the best of our knowledge, the un-normalized hypergraph p-Laplacian 

Eigenmaps has not yet been developed. This method is worth investigated because 

of its difficult nature and its close connection to partial differential equation on 

hypergraph field. 
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