
Int. J. Advance Soft Compu. Appl, Vol. 10, No. 2, July 2018 

ISSN 2074-8523 

 

An Enhanced Accelerator Frequent Pattern 

Growth for Association Rules Mining 

 

Mokhtar Al-Hamadi1*, Mossab Ghillan2 , Faisal Saeed3,4    

 
1Faculty of Computer and Information Technology, Yemen Academy for 

Graduate Studies, Yemen 

e-mail: moktaralhamadi@gmail.com 
2Faculty of Computer and Information Technology, Sana’a University, Yemen   

e-mail: mghilan@gmail.com 
3College of Computer Science and Engineering, Taibah University, Medina, Saudi  

Arabia  
4Information Systems Department, Faculty of Computing, Universiti Teknologi 

Malaysia, Johor, Malaysia  

e-mail: fsaeed@taibahu.edu.sa 

 
Abstract 

The Association Rule Mining (ARM) a data mining technique that 
plays an important rule in the Knowledge Discovery Databases 
(KDD). In the literature, a noticeable number of algorithms have 
attempted to discover the knowledge from the database, such as 
Frequent Pattern Growth (FP-growth). However, many 
experimental results have shown that the efficiency of building 
conditional FP-trees during mining big datasets is very high in terms 
of computational time and space. Although some researchers have 
tried to mitigate these issues, the issues still exist and need to be 
resolved. Therefore, the aim of this work is to introduce an efficient 
mining frequent patterns algorithm based on FP-growth algorithm, 
which is called an Accelerator Frequent Pattern Growth (AFP-
growth) algorithm. The main idea of the AFP-growth is to avoid 
building the conditional FP-trees, which in turns, will increase the 
efficiency of AFP-growth. The experimental results showed that the 
proposed algorithm reduces the time and space during mining 
frequent itemsets from database. 

     Keywords: Association rules mining, FP-Growth Algorithm, Itemset, Frequent 
pattern, Frequent Itemsets Table (FIT). 
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1      Introduction 

Association rules mining (ARM) is an important technique of data mining that 

focuses on the process of finding the interesting associations or correlation 

relationships between itemsets in big data [1],[2]. Association rules mining are 

also aiming at finding strong association rules. The process of ARM includes two 

steps, finding frequent itemsets and generating association rules based on the 

discovered itemsets. The first step requires extensive computation time and 

storage and thus becomes a challenging problem in ARM [3]. There are a large 

number of algorithms to extract frequent patterns. Despite the success surrounding 

these algorithms, three main and well-known algorithms that are considered in 

this study, namely Apriori, FP-Growth, and Eclat[4]. Apriori algorithm [5],[6] 

was proposed by Agarwal in 1994, it is based on superficial search. This 

algorithm suffers from some weaknesses such as: scanning the whole database 

that includes many transactions repeatedly and thus it consumes a lot of memory 

and CPU time; also it generates huge candidate sets [3],[7]. On the other hand, 

Frequent Pattern growth (FP-Growth)  [8],[9] provide a better solution to these 

weaknesses  and limitations. 

 

A new divide and conquer strategy was adopted by FP-growth algorithm so that it 

only require two database scans and does not generate any candidates [3],[10, 11]. 

However, in the FP-Growth algorithm a lot of time is required to build FP-tree 

and conditional FP-tree[12]. In this paper, a new algorithm, which is called an 

Accelerator Frequent Pattern Growth (AFP-growth) algorithm, was introduced to 

improve the efficiency of the mining process by avoiding building the conditional 

FP-trees, which helped to The paper is organized as follows: Section 2 discusses 

the related work, the methods are described in Section 3. The experimental results 

and discussion are included in Section 4, while Section 5 concludes the findings 

of this paper. 

 

2      Related Work 

As discussed earlier, FP-Growth algorithm has some limitations, such as it is not 

scalable in mining big databases. To solve this problem, there are many structures 

that have been proposed [13]. For instance, a new method was proposed in [14], 

which is known as memory-based hyper structure, H-struct or Hyperlinked 

structure for mining purpose. In this method, conditional FP-tree is not generated 

by H-mine in order to improve the efficiency of mining process by saving more 

time and space. In [15] , FPmax algorithm was presented to mine Maximal 

Frequent Itemsets based on the FP-tree structure. This algorithm is a depth-first 

and it requires only two database scans. The experimental results in [15] showed 

that FPmax performance is better than GenMax and MAFIA. In addition, 
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Ascending Frequency Order Prefix Tree ( AFOPT) also uses the FP-tree structure 

[16],[17]. In AFOPT, the conditional database is represented by the proposed 

compressed data structure and the top-down strategy was adopted, which can 

minimize the total number of conditional databases. The efficiency of AFOPT 

was bette than FP-growth, as shown in the experimental results. Furthermore, in  

[18] two data structures were proposed which are CFP-Array and CFP-Tree that 

use compression method and the order of magnitude for reducing the memory 

consumption of FP-tree based method. The CFP-Tree takes the advantage of 

combining the structural changes to bitmap and FP-Tree methods. According to 

[1], Painting-Growth algorithm and N (not) Painting-Growth algorithm build two-

item permutation sets to get the association sets for all frequent items. Both 

methods require only one scan for the database to obtain the results of mining 

process. In addition, Sohrabi  and Marzooni [19] proposed FP-Linked List 

Algorithm that used bit matrix and linked list structure based on FP-Growth 

algorithm. 

3      Problem Formulations or Methodology 

3.1 Frequent patterns 

Frequent patterns are patterns that appear frequently in a dataset. Let I= {i1, i2, 

...,in} as a collection of the whole different items in the database, each transaction 

T is a subset of I,  that is, T ⊆I  , and database D is a collection of transactions. An 

itemsets X ⊆ I is a subset of items. A transaction T = (tid; X) is a tuple; X is an 

itemsets and tid is the transaction-id. The sup(X), which refers to the support of an 

itemsets X in transaction database TDB, can be calculated as the number of 

transactions in TDB that contain X, i.e., sup(X) =count(X)/N. The number of 

items in an itemsets is considered the dimension or length of this itemset; if the 

length of the itemsets is k, the itemsets is called k-itemsets. 

 

For the support threshold minsup, which is a user-specific,  X is considered as a 

frequent itemset if sup(X) ≥ minsup. The problem here is finding the all frequent 

patterns in TDB using specific minsup. Therefore, The Frequent Itemsets Mining 

(FIM) requires more computational time than the rules generation. So majority of 

the literatures concentrate on designing fast and scalable algorithms for mining 

frequent itemsets [14] ,[20],[21]. 

3.2 Motivation scenario  

The transaction database in Table 1 shows the TDB, which is used in this paper as 

input of frequent pattern mining problem and minsup set as 3.  
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Table1: A transaction database  

 
3.2.1 FP-growth algorithm 
In this algorithm, two scans only are required on the dataset. We can obtain a set 

of frequent items with their support count when the database is scanned for the 

first time. The collection of frequent items is ordered by decreasing sequence of 

support count; then the header table is generated. In in each transaction, for 

sorting the frequent items, the dataset is re-scanned as shown in Table 1 (thir 

column).  

For instance, if the transaction database (DB) is represented in Table 1, with 

minsup = 3. As shown in Table 1, there are five transctions, and each transaction 

contains some alphabets. The list of frequent items are computed and generated 

by FP-growth algorithm, and then the infrequent items are removed and the 

transaction are sorted in descending order. The remaining iterms in this example 

are: f, c, a, b, m, and p. For the transaction with ID 100 (TID 100),  the items sets 

were pruned and reordered from {f,a,c,d,g,i,m,p} to{c,f,a,m,p}. Using these 

transactions, the FP-tree was bulit, and its root is NULL, while the tree nodes 

refer to the items. The transactions that have similar prefix are represented in one 

path of the FP-tree. Each node has a count number which refer to the number of 

transactions represented by the portion of the path reaching this node. The 

frequent items are stored in the The Header Table in descending order, and the 

nodes are linked to other nodes that have the same lable in the FP-tree. The FP-

tree of Table1 is shown in Fig 1.  
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Fig.1 The FP-tree of Transaction Dataset in Table 1 

After building the FP-tree, it will be mined by the FP-growth for each item 

included in the Header Table, starting from the end to the beginning of this table. 

For instanced, “p” item will be mined first as shown in Fig 1 and Table 2. After 

that, the prefixed path of each item is picked out in order to find its conditional 

pattern base. The conditional FP-tree are built using conditional pattern base and 

the frequent patterns are mined by pattern fragment growth. The conditional FP-

tree is bulit using the same method of building FP-tree. 

 

Table2: Dig FP-tree through creating conditional sub-pattern base. 

 

 

4      The Proposed Method 

It is known that FP-Growth algorithm requires scanning database twice, which 

improves the efficiency of mining the frequent patterns. This paper proposed a 

new algorithm which is called Accelerator Frequent Pattern Growth (AFP 

growth), which scans the database only once to obtain the mining results. AFP 

algorithm uses binary matrix and Frequent Itemsets Table (FIT) in order to get all 

frequent itemsets.The new proposed algorithm work as follows: 

 

1- The algorithm (AFP-growth) scans the database once to create a binary matrix, 

as follows: if Ij ∈ Di, we represent that in the binary matrix by sitting matrix(i,j) 

to 1. Unless 0. 

2- In the second step, the items with frequency number less than minsup are 

deleted from binary matrix. At this stage, the pruning is done. 

3- In the third step, a combination algorithm is used to generate patterns as 

following: 

a.  Add the first column in the binary matrix to Frequent Itemsets Table (FIT). 

b. Apply a logical AND between second column (b) in the binary matrix with all 

columns (a) that are existing in Frequent Itemsets Table (FIT) if frequency >= 

minsup, then add new column(ab) to Frequent Itemsets Table (FIT). After that 

add this column (b) to Frequent Itemsets Table (FIT).   

item Conditional pattern 

base 

Conditional FP-tree Frequent   pattern 

p {(c,f,a,m:2),(c,b:1)} {c:3} pc:3 

m {(c,f,a:2),(c,f,a,b:1)} {c:3,f:3,a:3,cf:3,ca:3,fa:3

,cfa:3} 

cm:3,fm:3,am:3,cfm:3, 

cam:3,fam:3, cfam:3 

b {(c,f,a:1),(c:1),(f:1)} ------------- ----------- 

a {(c,f:3)} {c:3,f:3,cf:3} ca:3,fa:3,cfa:3 

f {(c:3)} {c:3} Cf:3 
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c. Go to next column (c) in binary matrix and apply a logical AND between them 

and all existing columns in (FIT). If the frequency >= minsup, then add new 

column to Frequent Itemsets Table (FIT) and also add this column to frequent 

itemsets table. 

d. Repeat the previous steps for all columns in binary matrix. 

e. The Frequent Itemsets Table (FIT) will finally contain all frequent itemsets. 

 

Using the transaction database in Table 1 as an example, the AFP algorithm scans 

the database once, and generate binary-TDB, if the number of column for one 

item such as x is equal to i, and this item is seen in the transaction j, then the TDB 

(i , j) is equal to one, otherwise its value is zero. The items with frequency number  

less than minsup should be removed from the TDB. In fact, at this step, the first 

pruning is done. 

Table 3 shows the binary-

TDB Matrix. 

 

 

 
 

 

 

 

 

The second step of the proposal algorithm is to create Frequent Itemsets Table 

(FIT). The first column a in binary matrix is considered a frequent and added 

column to (FIT).   

a 
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1 

Fig. 2 Frequent Itemsets Table (FIT) in first step. 

For the second column b in the binary matrix, a logical AND operation is applied 

between this column (item) and all previous columns in FIT, for example, for all 

previous columns in FIT (a), the AND logic is done with b. According to Fig. 3: ∑ 

(ab) = 1 ≱ minsup, then set ab as not frequent itemsets and therefore it will not be 

add to FIT. 
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Fig. 3 Checking (ab) pattern with minsup=3 

 

According to Fig. 3, the Frequent Itemsets Table becomes: 

A b 

 1 0 

1 1 

0 1 

0 1 

1 0 

Fig. 4 Frequent Itemsets Table (FIT) in second step 

For the third column c in the binary matrix, the logical AND operation is applied 

again between this column (item), and all previous columns in FIT, which are a 

and b. The AND logic operation between a AND c is shown in Fig. 5.  The ∑ 

(ac) = 3 ≥ minsup, then, new column (ac) is added to (FIT). 

 

 

 

 

 

 

 

Fig. 5 Checking (ac) pattern with minsup=3 

 

But ∑ (bc) = 2 ≱ minsup, in this instance the FIT becomes: 

a B ac c 

 1 0 1 1 

1 1 1 1 

0 1 0 0 

0 1 0 1 

1 0 1 1 

Fig. 6 Frequent Itemsets Table (FIT) in third step 

 

Similarity, for the fourth column f in the binary matrix, the logical AND 

operation is applied between this column (item), and all previous columns in FIT. 

In this case, the  previous columns in FIT are a, b, ac and c. So AND is applied 

between f and (a, b, ac, c). 

According to Fig. 7, the ∑ (af) =3 ≥ minsup, then, a new column (af) is added to 

the Frequent Itemsets Table (FIT). 
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Fig. 7 Checking (af) pattern with minsup=3 

 

but ∑ (bf) = 2 ≱ minsup, and according to Fig. 8, ∑ (acf) = 3 ≥ minsup and ∑ (cf) 

= 3 ≥ minsup. Then, new columns (acf) and (cf) are added to (FIT). 

 

 

 

 

 

 

 

 

Fig. 8 Checking (acf) pattern with minsup=3 

 

in this instance the Frequent Itemsets Table FIT become.  

a b ac C af acf Cf f 

 1 0 1 1 1 1 1 1 

1 1 1 1 1 1 1 1 

0 1 0 0 0 0 0 1 

0 1 0 1 0 0 0 0 

1 0 1 1 1 1 1 1 

 

Fig. 9 Frequent Itemsets Table (FIT) in firth step 

 

For the fifth column m in the binary matrix, the logical AND operation is applied 

between this column (item), and all previous columns in FIT, which are a, b, ac, 

c, af, acf, cf and f.  

After applying AND operation, the FIT is generated and shown in Fig. 10. 
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Fig. 10 Frequent Itemsets Table (FIT) in fifth step 

 

Finally, for column p in the binary matrix, the logical AND operation is applied 

between this column (item), and all previous columns in FIT, which are a, b, ac, 

c, af, acf, cf, f, am, acm, cm, afm, acfm, cfm, fm and m. After applied and logical 

the FIT becomes.  

 

a b A

c 

c af ac

f 

cf F a

m 

ac

m 

C

m 

af

m 

ac

fm 

cf

m 

fm M cp 

1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 

0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 

1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

 

Fig. 11 Frequent Itemsets Table (FIT) in finally step 

 

According to Fig. 11, the frequent itemsets mining (FIM) are: 

1. Tow frequent itemsets are: ac:3, af:3, cf:3, am:3, cm:3, fm:3, cp:3   

2. Three frequent itemsets are: acf:3, acm:3, afm:3, cfm:3,  

3. Four frequent itemsets are: acfm:3 

 

5      Results, Analysis and Discussions 

 
In this section, we evaluate the performance of the proposed algorithm. We 

compared the performances of the proposed algorithm with FP-Growth algorithm. 

The experiments were performed on a 2.53 GHz Intel Processor with 4 GB 

memory, and run with the Windows 7, 32-bit operating system. The Java 

language, in NetBeans IDE 8.0 development environment was used to implement 

the proposed algorithm. Standard datasets (Mushroom, Retail, Pumsb, Census, 

T10I4D100K) were used, which were taken from FIMI( http://fimi.cs.helsinki.fi/ ). 

 

 

a b ac C af ac

f 

cf F a

m 

ac

m 

C

m 

af

m 

ac

fm 

cf

m 

fm m 

1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 

0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 

1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

http://fimi.cs.helsinki.fi/


  

 

 

201                              An Enhanced Accelerator Frequent Pattern 

                                                                                                        

Table 5 Characteristics of test datasets 

datasets size Transactions Items 

Census 11 M 691,3 63 

Mushroom  M65.3   4118 11, 

Retail  M65,6 44131 1383, 

T10I4D100K 3.93M 100000 870 

pumsb 16.30M 49046 2113 

 

Fig. 11-15 show that the performance of the proposed algorithm outperformed the 

standard mining method (FP-Growth) in terms of the computational time using all 

datasets for different minimum support thresholds. 

 

 

 
Fig. 11 census dataset 
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Fig. 12 Mushroom dataset 

 

 
Fig. 13 Retail dataset 

 

 

 
Fig. 14 T10I4D100Kdataset 
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Fig. 15 Pumbs dataset 

 

For each dataset, the experiment was conducted 30 times, and the average of the 

execution time was reported in Figures 11-15. Each data set used different values 

of minimum support. 

 

As shown in Figures 13 and 15, when the transactions length is long, the data is 

considered as massive and the number of items is large. Therefore, FP-growth 

generates many tree branches which requires more memory and increases the time 

computation. This makes the performance of FP-Growth is not efficient when 

massive data are used. The results showed that the proposed method, AFP, has a 

better scalability. 

 

As shown in the experimental results of T10I4D100K dataset and Pumbs dataset 

in Fig. 14-15, when the minimum support degree increases, the AFP-Growth 

algorithm runs much faster than the FP-Growth algorithm. 

 

6      Conclusion  

FP-Growth algorithm requires scanning database twice, which improved the 

efficiency of mining the frequent patterns comparing to Apriori algorithm and 

other methods. However, it still consuming more computational time due to 

building the conditional FP-trees.   This paper proposed a new algorithm which is 

called Accelerator Frequent Pattern Growth (AFP Growth), which scans the 

database only once to obtain the mining results. AFP algorithm uses binary matrix 

and Frequent itemsets Table (FIT) in order to get all frequent itemsets. The 

experimental results showed that the performance of the enhanced algorithm 

outperformed the standard FP-growth algorithm. 
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