
Int. J. Advance Soft Compu. Appl, Vol. 10, No. 2, July 2018

ISSN 2074-8523

An Enhanced Accelerator Frequent Pattern

Growth for Association Rules Mining

Mokhtar Al-Hamadi1*, Mossab Ghillan2 , Faisal Saeed3,4

1Faculty of Computer and Information Technology, Yemen Academy for

Graduate Studies, Yemen

e-mail: moktaralhamadi@gmail.com
2Faculty of Computer and Information Technology, Sana’a University, Yemen

e-mail: mghilan@gmail.com
3College of Computer Science and Engineering, Taibah University, Medina, Saudi

Arabia
4Information Systems Department, Faculty of Computing, Universiti Teknologi

Malaysia, Johor, Malaysia

e-mail: fsaeed@taibahu.edu.sa

Abstract

The Association Rule Mining (ARM) a data mining technique that
plays an important rule in the Knowledge Discovery Databases
(KDD). In the literature, a noticeable number of algorithms have
attempted to discover the knowledge from the database, such as
Frequent Pattern Growth (FP-growth). However, many
experimental results have shown that the efficiency of building
conditional FP-trees during mining big datasets is very high in terms
of computational time and space. Although some researchers have
tried to mitigate these issues, the issues still exist and need to be
resolved. Therefore, the aim of this work is to introduce an efficient
mining frequent patterns algorithm based on FP-growth algorithm,
which is called an Accelerator Frequent Pattern Growth (AFP-
growth) algorithm. The main idea of the AFP-growth is to avoid
building the conditional FP-trees, which in turns, will increase the
efficiency of AFP-growth. The experimental results showed that the
proposed algorithm reduces the time and space during mining
frequent itemsets from database.

 Keywords: Association rules mining, FP-Growth Algorithm, Itemset, Frequent
pattern, Frequent Itemsets Table (FIT).

193 An Enhanced Accelerator Frequent Pattern

1 Introduction

Association rules mining (ARM) is an important technique of data mining that

focuses on the process of finding the interesting associations or correlation

relationships between itemsets in big data [1],[2]. Association rules mining are

also aiming at finding strong association rules. The process of ARM includes two

steps, finding frequent itemsets and generating association rules based on the

discovered itemsets. The first step requires extensive computation time and

storage and thus becomes a challenging problem in ARM [3]. There are a large

number of algorithms to extract frequent patterns. Despite the success surrounding

these algorithms, three main and well-known algorithms that are considered in

this study, namely Apriori, FP-Growth, and Eclat[4]. Apriori algorithm [5],[6]

was proposed by Agarwal in 1994, it is based on superficial search. This

algorithm suffers from some weaknesses such as: scanning the whole database

that includes many transactions repeatedly and thus it consumes a lot of memory

and CPU time; also it generates huge candidate sets [3],[7]. On the other hand,

Frequent Pattern growth (FP-Growth) [8],[9] provide a better solution to these

weaknesses and limitations.

A new divide and conquer strategy was adopted by FP-growth algorithm so that it

only require two database scans and does not generate any candidates [3],[10, 11].

However, in the FP-Growth algorithm a lot of time is required to build FP-tree

and conditional FP-tree[12]. In this paper, a new algorithm, which is called an

Accelerator Frequent Pattern Growth (AFP-growth) algorithm, was introduced to

improve the efficiency of the mining process by avoiding building the conditional

FP-trees, which helped to The paper is organized as follows: Section 2 discusses

the related work, the methods are described in Section 3. The experimental results

and discussion are included in Section 4, while Section 5 concludes the findings

of this paper.

2 Related Work

As discussed earlier, FP-Growth algorithm has some limitations, such as it is not

scalable in mining big databases. To solve this problem, there are many structures

that have been proposed [13]. For instance, a new method was proposed in [14],

which is known as memory-based hyper structure, H-struct or Hyperlinked

structure for mining purpose. In this method, conditional FP-tree is not generated

by H-mine in order to improve the efficiency of mining process by saving more

time and space. In [15] , FPmax algorithm was presented to mine Maximal

Frequent Itemsets based on the FP-tree structure. This algorithm is a depth-first

and it requires only two database scans. The experimental results in [15] showed

that FPmax performance is better than GenMax and MAFIA. In addition,

Al-Hamadi et al. 194

Ascending Frequency Order Prefix Tree (AFOPT) also uses the FP-tree structure

[16],[17]. In AFOPT, the conditional database is represented by the proposed

compressed data structure and the top-down strategy was adopted, which can

minimize the total number of conditional databases. The efficiency of AFOPT

was bette than FP-growth, as shown in the experimental results. Furthermore, in

[18] two data structures were proposed which are CFP-Array and CFP-Tree that

use compression method and the order of magnitude for reducing the memory

consumption of FP-tree based method. The CFP-Tree takes the advantage of

combining the structural changes to bitmap and FP-Tree methods. According to

[1], Painting-Growth algorithm and N (not) Painting-Growth algorithm build two-

item permutation sets to get the association sets for all frequent items. Both

methods require only one scan for the database to obtain the results of mining

process. In addition, Sohrabi and Marzooni [19] proposed FP-Linked List

Algorithm that used bit matrix and linked list structure based on FP-Growth

algorithm.

3 Problem Formulations or Methodology

3.1 Frequent patterns

Frequent patterns are patterns that appear frequently in a dataset. Let I= {i1, i2,

...,in} as a collection of the whole different items in the database, each transaction

T is a subset of I, that is, T ⊆I , and database D is a collection of transactions. An

itemsets X ⊆ I is a subset of items. A transaction T = (tid; X) is a tuple; X is an

itemsets and tid is the transaction-id. The sup(X), which refers to the support of an

itemsets X in transaction database TDB, can be calculated as the number of

transactions in TDB that contain X, i.e., sup(X) =count(X)/N. The number of

items in an itemsets is considered the dimension or length of this itemset; if the

length of the itemsets is k, the itemsets is called k-itemsets.

For the support threshold minsup, which is a user-specific, X is considered as a

frequent itemset if sup(X) ≥ minsup. The problem here is finding the all frequent

patterns in TDB using specific minsup. Therefore, The Frequent Itemsets Mining

(FIM) requires more computational time than the rules generation. So majority of

the literatures concentrate on designing fast and scalable algorithms for mining

frequent itemsets [14] ,[20],[21].

3.2 Motivation scenario

The transaction database in Table 1 shows the TDB, which is used in this paper as

input of frequent pattern mining problem and minsup set as 3.

195 An Enhanced Accelerator Frequent Pattern

Table1: A transaction database

3.2.1 FP-growth algorithm
In this algorithm, two scans only are required on the dataset. We can obtain a set

of frequent items with their support count when the database is scanned for the

first time. The collection of frequent items is ordered by decreasing sequence of

support count; then the header table is generated. In in each transaction, for

sorting the frequent items, the dataset is re-scanned as shown in Table 1 (thir

column).

For instance, if the transaction database (DB) is represented in Table 1, with

minsup = 3. As shown in Table 1, there are five transctions, and each transaction

contains some alphabets. The list of frequent items are computed and generated

by FP-growth algorithm, and then the infrequent items are removed and the

transaction are sorted in descending order. The remaining iterms in this example

are: f, c, a, b, m, and p. For the transaction with ID 100 (TID 100), the items sets

were pruned and reordered from {f,a,c,d,g,i,m,p} to{c,f,a,m,p}. Using these

transactions, the FP-tree was bulit, and its root is NULL, while the tree nodes

refer to the items. The transactions that have similar prefix are represented in one

path of the FP-tree. Each node has a count number which refer to the number of

transactions represented by the portion of the path reaching this node. The

frequent items are stored in the The Header Table in descending order, and the

nodes are linked to other nodes that have the same lable in the FP-tree. The FP-

tree of Table1 is shown in Fig 1.

Item frequent

c 4

f 4

a 3

b 3

m 3

p 3

null

c:4

f:3

a:3

m:2

p:2

b:1

m:1

b:1

p:1

f:1

b:1

Al-Hamadi et al. 196

Fig.1 The FP-tree of Transaction Dataset in Table 1

After building the FP-tree, it will be mined by the FP-growth for each item

included in the Header Table, starting from the end to the beginning of this table.

For instanced, “p” item will be mined first as shown in Fig 1 and Table 2. After

that, the prefixed path of each item is picked out in order to find its conditional

pattern base. The conditional FP-tree are built using conditional pattern base and

the frequent patterns are mined by pattern fragment growth. The conditional FP-

tree is bulit using the same method of building FP-tree.

Table2: Dig FP-tree through creating conditional sub-pattern base.

4 The Proposed Method

It is known that FP-Growth algorithm requires scanning database twice, which

improves the efficiency of mining the frequent patterns. This paper proposed a

new algorithm which is called Accelerator Frequent Pattern Growth (AFP

growth), which scans the database only once to obtain the mining results. AFP

algorithm uses binary matrix and Frequent Itemsets Table (FIT) in order to get all

frequent itemsets.The new proposed algorithm work as follows:

1- The algorithm (AFP-growth) scans the database once to create a binary matrix,

as follows: if Ij ∈ Di, we represent that in the binary matrix by sitting matrix(i,j)

to 1. Unless 0.

2- In the second step, the items with frequency number less than minsup are

deleted from binary matrix. At this stage, the pruning is done.

3- In the third step, a combination algorithm is used to generate patterns as

following:

a. Add the first column in the binary matrix to Frequent Itemsets Table (FIT).

b. Apply a logical AND between second column (b) in the binary matrix with all

columns (a) that are existing in Frequent Itemsets Table (FIT) if frequency >=

minsup, then add new column(ab) to Frequent Itemsets Table (FIT). After that

add this column (b) to Frequent Itemsets Table (FIT).

item Conditional pattern

base

Conditional FP-tree Frequent pattern

p {(c,f,a,m:2),(c,b:1)} {c:3} pc:3

m {(c,f,a:2),(c,f,a,b:1)} {c:3,f:3,a:3,cf:3,ca:3,fa:3

,cfa:3}

cm:3,fm:3,am:3,cfm:3,

cam:3,fam:3, cfam:3

b {(c,f,a:1),(c:1),(f:1)} ------------- -----------

a {(c,f:3)} {c:3,f:3,cf:3} ca:3,fa:3,cfa:3

f {(c:3)} {c:3} Cf:3

197 An Enhanced Accelerator Frequent Pattern

c. Go to next column (c) in binary matrix and apply a logical AND between them

and all existing columns in (FIT). If the frequency >= minsup, then add new

column to Frequent Itemsets Table (FIT) and also add this column to frequent

itemsets table.

d. Repeat the previous steps for all columns in binary matrix.

e. The Frequent Itemsets Table (FIT) will finally contain all frequent itemsets.

Using the transaction database in Table 1 as an example, the AFP algorithm scans

the database once, and generate binary-TDB, if the number of column for one

item such as x is equal to i, and this item is seen in the transaction j, then the TDB

(i , j) is equal to one, otherwise its value is zero. The items with frequency number

less than minsup should be removed from the TDB. In fact, at this step, the first

pruning is done.

Table 3 shows the binary-

TDB Matrix.

The second step of the proposal algorithm is to create Frequent Itemsets Table

(FIT). The first column a in binary matrix is considered a frequent and added

column to (FIT).

a

1

1

0

0

1

Fig. 2 Frequent Itemsets Table (FIT) in first step.

For the second column b in the binary matrix, a logical AND operation is applied

between this column (item) and all previous columns in FIT, for example, for all

previous columns in FIT (a), the AND logic is done with b. According to Fig. 3: ∑

(ab) = 1 ≱ minsup, then set ab as not frequent itemsets and therefore it will not be

add to FIT.

TID a b c f m p

100 1 0 1 1 1 1

200 1 1 1 1 1 0

300 0 1 0 1 0 0

400 0 1 1 0 0 1

500 1 0 1 1 1 1

frequency 3 3 4 4 3 3

a

1

1

0

0

1

b

0

1

1

1

0

AND =

ab

0

1

0

0

0

Al-Hamadi et al. 198

Fig. 3 Checking (ab) pattern with minsup=3

According to Fig. 3, the Frequent Itemsets Table becomes:

A b

 1 0

1 1

0 1

0 1

1 0

Fig. 4 Frequent Itemsets Table (FIT) in second step

For the third column c in the binary matrix, the logical AND operation is applied

again between this column (item), and all previous columns in FIT, which are a

and b. The AND logic operation between a AND c is shown in Fig. 5. The ∑

(ac) = 3 ≥ minsup, then, new column (ac) is added to (FIT).

Fig. 5 Checking (ac) pattern with minsup=3

But ∑ (bc) = 2 ≱ minsup, in this instance the FIT becomes:

a B ac c

 1 0 1 1

1 1 1 1

0 1 0 0

0 1 0 1

1 0 1 1

Fig. 6 Frequent Itemsets Table (FIT) in third step

Similarity, for the fourth column f in the binary matrix, the logical AND

operation is applied between this column (item), and all previous columns in FIT.

In this case, the previous columns in FIT are a, b, ac and c. So AND is applied

between f and (a, b, ac, c).

According to Fig. 7, the ∑ (af) =3 ≥ minsup, then, a new column (af) is added to

the Frequent Itemsets Table (FIT).

a

 1

1

0

0

1

c

1

1

0

1

1

AND =

ac

1

1

0

0

1

199 An Enhanced Accelerator Frequent Pattern

Fig. 7 Checking (af) pattern with minsup=3

but ∑ (bf) = 2 ≱ minsup, and according to Fig. 8, ∑ (acf) = 3 ≥ minsup and ∑ (cf)

= 3 ≥ minsup. Then, new columns (acf) and (cf) are added to (FIT).

Fig. 8 Checking (acf) pattern with minsup=3

in this instance the Frequent Itemsets Table FIT become.

a b ac C af acf Cf f

 1 0 1 1 1 1 1 1

1 1 1 1 1 1 1 1

0 1 0 0 0 0 0 1

0 1 0 1 0 0 0 0

1 0 1 1 1 1 1 1

Fig. 9 Frequent Itemsets Table (FIT) in firth step

For the fifth column m in the binary matrix, the logical AND operation is applied

between this column (item), and all previous columns in FIT, which are a, b, ac,

c, af, acf, cf and f.

After applying AND operation, the FIT is generated and shown in Fig. 10.

ac

1

1

0

0

1

f

1

1

1

0

1

AND =

acf

1

1

0

0

1

a

 1

1

0

0

1

f

1

1

1

0

1

AND =

af

1

1

0

0

1

Al-Hamadi et al. 200

Fig. 10 Frequent Itemsets Table (FIT) in fifth step

Finally, for column p in the binary matrix, the logical AND operation is applied

between this column (item), and all previous columns in FIT, which are a, b, ac,

c, af, acf, cf, f, am, acm, cm, afm, acfm, cfm, fm and m. After applied and logical

the FIT becomes.

a b A

c

c af ac

f

cf F a

m

ac

m

C

m

af

m

ac

fm

cf

m

fm M cp

1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1

1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Fig. 11 Frequent Itemsets Table (FIT) in finally step

According to Fig. 11, the frequent itemsets mining (FIM) are:

1. Tow frequent itemsets are: ac:3, af:3, cf:3, am:3, cm:3, fm:3, cp:3

2. Three frequent itemsets are: acf:3, acm:3, afm:3, cfm:3,

3. Four frequent itemsets are: acfm:3

5 Results, Analysis and Discussions

In this section, we evaluate the performance of the proposed algorithm. We

compared the performances of the proposed algorithm with FP-Growth algorithm.

The experiments were performed on a 2.53 GHz Intel Processor with 4 GB

memory, and run with the Windows 7, 32-bit operating system. The Java

language, in NetBeans IDE 8.0 development environment was used to implement

the proposed algorithm. Standard datasets (Mushroom, Retail, Pumsb, Census,

T10I4D100K) were used, which were taken from FIMI(http://fimi.cs.helsinki.fi/).

a b ac C af ac

f

cf F a

m

ac

m

C

m

af

m

ac

fm

cf

m

fm m

1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0

1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1

http://fimi.cs.helsinki.fi/

201 An Enhanced Accelerator Frequent Pattern

Table 5 Characteristics of test datasets

datasets size Transactions Items

Census 11 M 691,3 63

Mushroom M65.3 4118 11,

Retail M65,6 44131 1383,

T10I4D100K 3.93M 100000 870

pumsb 16.30M 49046 2113

Fig. 11-15 show that the performance of the proposed algorithm outperformed the

standard mining method (FP-Growth) in terms of the computational time using all

datasets for different minimum support thresholds.

Fig. 11 census dataset

Al-Hamadi et al. 202

Fig. 12 Mushroom dataset

Fig. 13 Retail dataset

Fig. 14 T10I4D100Kdataset

203 An Enhanced Accelerator Frequent Pattern

Fig. 15 Pumbs dataset

For each dataset, the experiment was conducted 30 times, and the average of the

execution time was reported in Figures 11-15. Each data set used different values

of minimum support.

As shown in Figures 13 and 15, when the transactions length is long, the data is

considered as massive and the number of items is large. Therefore, FP-growth

generates many tree branches which requires more memory and increases the time

computation. This makes the performance of FP-Growth is not efficient when

massive data are used. The results showed that the proposed method, AFP, has a

better scalability.

As shown in the experimental results of T10I4D100K dataset and Pumbs dataset

in Fig. 14-15, when the minimum support degree increases, the AFP-Growth

algorithm runs much faster than the FP-Growth algorithm.

6 Conclusion

FP-Growth algorithm requires scanning database twice, which improved the

efficiency of mining the frequent patterns comparing to Apriori algorithm and

other methods. However, it still consuming more computational time due to

building the conditional FP-trees. This paper proposed a new algorithm which is

called Accelerator Frequent Pattern Growth (AFP Growth), which scans the

database only once to obtain the mining results. AFP algorithm uses binary matrix

and Frequent itemsets Table (FIT) in order to get all frequent itemsets. The

experimental results showed that the performance of the enhanced algorithm

outperformed the standard FP-growth algorithm.

Al-Hamadi et al. 204

Acknowledgement

This work is supported by the Ministry of Higher Education (MOHE) and the

Research Management Centre (RMC) at the Universiti Teknologi Malaysia

(UTM) under the Research University Grant Category (VOT

Q.J130000.2528.16H74).

References

[1]. Zeng, Y., et al., Research of improved FP-Growth algorithm in

association rules mining. Scientific Programming, 2015. 2015: p. 6.

[2]. Gole, S. and B. Tidke. Frequent Itemset Mining for Big Data in social

media using ClustBigFIM algorithm. in Pervasive Computing (ICPC),

2015 International Conference on. 2015. IEEE.

[3]. Zhou, L. and X. Wang, Research of the FP-growth algorithm based on

cloud environments. Journal of Software, 2014. 9(3): p. 676-683.

[4]. Dhinakaran, D. and J.P. PM, A Study on Data Mining: Frequent Itemset

Mining Methods Apriori, FP growth, Eclat. 2017.

[5]. Agrawal, R. and R. Srikant. Fast algorithms for mining association rules.

in Proc. 20th int. conf. very large data bases, VLDB. 1994.

[6]. Agrawal, R., T. Imieliński, and A. Swami. Mining association rules

between sets of items in large databases. in Acm sigmod record. 1993.

ACM.

[7]. Badhe, V. and P. Richharia, A Survey on Association Rule Mining for

Finding Frequent Item Pattern. 2016.

[8]. Addi, A.-M., A. Tarik, and G. Fatima. Comparative survey of association

rule mining algorithms based on multiple-criteria decision analysis

approach. in Control, Engineering & Information Technology (CEIT),

2015 3rd International Conference on. 2015. IEEE.

[9]. Bala, A., et al., Performance Analysis of Apriori and FP-Growth

Algorithms (Association Rule Mining). International Journal of Computer

Technology and Applications, 2016. 7(2): p. 279-293.

[10]. Alghyaline, S., J.-W. Hsieh, and J.Z. Lai, EFFICIENTLY MINING

FREQUENT ITEMSETS IN TRANSACTIONAL DATABASES. Journal of

Marine Science and Technology, 2016. 24(2): p. 184-191.

[11]. Nigam, B., A. Nigam, and P. Dalal, Comparative Study of Top 10

Algorithms for Association Rule Mining. 2017.

[12]. Shukla, V.S. and M.S. Itkar, Improving Association Rule Mining By

Defining A Novel Data Structure. 2017.

[13]. Liu, Y., Research on Association Rules Mining Algorithm Based on Large

Data. Revista de la Facultad de Ingeniería, 2017. 32(8).

[14]. Pei, J., Pattern-growth methods for frequent pattern mining. 2002,

Citeseer.

205 An Enhanced Accelerator Frequent Pattern

[15]. Grahne, G. and J. Zhu. High performance mining of maximal frequent

itemsets. in 6th International Workshop on High Performance Data

Mining. 2003.

[16]. Liu, G., et al. AFOPT: An Efficient Implementation of Pattern Growth

Approach. in FIMI. 2003.

[17]. Krupali, R. and D. Garg, Survey on the Techniques of FP-Growth Tree for

Efficient Frequent Item-set Mining. International Journal of Computer,

2017.

[18]. Schlegel, B., R. Gemulla, and W. Lehner. Memory-efficient frequent-

itemset mining. in Proceedings of the 14th International Conference on

Extending Database Technology. 2011. ACM.

[19]. Sohrabi, M.K. and H. Hasannejad Marzooni, Association rule mining

using new FP-Linked list algorithm. Journal of Advances in Computer

Research, 2016. 7(1): p. 23-34.

[20]. Leung, C.K.-S., R.K. MacKinnon, and F. Jiang. Reducing the search space

for big data mining for interesting patterns from uncertain data. in 2014

IEEE International Congress on Big Data. 2014. IEEE.

[21]. Nguyen, T.-N., L.T. Nguyen, and N.-T. Nguyen. An improved algorithm

for mining frequent Inter-transaction patterns. in INnovations in

Intelligent SysTems and Applications (INISTA), 2017 IEEE International

Conference on. 2017. IEEE.

