
Int. J. Advance Soft Compu. Appl, Vol. 9, No. 3, Nov 2017

ISSN 2074-8523

Big Data Processing Model for

 Authorship Identification

Toh Chin Eng1,2, Shafaatunnur Hasan1,2, Siti Mariyam Shamsuddin1,2, Nur

Eiliyah Wong2 and Intan Ermahani A Jalil3

1UTM Big Data Centre

Universiti Teknologi Malaysia Skudai 81310 Johor
2Faculty of Computing, Universiti Teknologi Malaysia, 81310 Skudai Johor

Email: shafaatunnur@utm.my, mariyam@utm.my, nureiliyah@utm.my

3Faculty of Information and Communication Technology,

Universiti Teknikal Malaysia Melaka, 76100 Melaka

ermahani@utem.edu.my

Abstract

 The era of Big Data has arrived and an average of about
quintillions of data is produced daily. Data can be in many forms such
as image, document or movie. For document file, there are digitalized
document and handwritten document that often relates to the issue of
copyright or ownership. This is due to improper authentication that
leads to unhealthy authorship claimed of that particular handwritten
document. Authorship identification is a sub-area of Document Image
Analysis and Identification (DIAR). DIAR aim is to analyze and
identify document authorship. However, for big scale of documents
text images, the issue of document processing time becomes crucial
for better authorship identification. Therefore, in this study, we
propose an alternative solution to solve the above problems dealing
with massive amount of document text images by integrating Hadoop
MapReduce and Spark’s MLlib for authorship identification through
data processing parallelization. MapReduce processing is used as the
platform to pre– process these huge document text images in Hadoop
Distributed File Systems (HDFS), follows by the authorship
identification through Apache Spark machine learning library.The
experiments show the integration is successfully implemented for big
size of document text images. However, further improvement is
needed for the post-analytics of the reduced document text images for
better identification.

Keywords: Big Data, Hadoop MapReduce, Spark’s MLlib, Authorship

Identification, handwritten text

Toh Chin Eng et al 2

1 Introduction

The era of Big Data has arrived due to advancement of hardware

technologies and cheaper devices in the future. There are about 2.5 quintillion bytes

of data that are created from all around the world and 90 percent of the data in the

world today mostly were produced within the last four years [1]. According to

International Data Corporation’s (IDC) annual Digital Universe study, the amount

of data on our planet is set to be reached about 44 zettabytes (4.4 × 1022 bytes) by

2020 which would be ten times larger than it was in 2013 [2]. Through observation,

we can predict that the data will be kept increasing in the future and in various forms.

Therefore, the traditional data processing approaches are unable to process those

data with high efficiency and performance. Big data has the characteristics where it

has a large volume, heterogeneous, autonomous sources with distributed and

decentralized control, and seeks to explore the complex and evolving relationships

among data as claimed under Heterogeneous, Autonomous, Complex and Evolving

(HACE) Theorem [1]. New methods or approaches are required to be implemented

in the data processing applications to solve different issues in Big Data because the

traditional approaches are not suitable anymore.

Data will keep on growing at an exponential rate in the era of 4th Industrial

Revolution due to gigantic trends of digital documentation in industries and

government agencies in the future. Nowadays, documents can be classified into

various types of format such as pdf (Portable Document Format) and .docx

(Document Extended). The collection of documents and other types of data

contribute to Big Data as the size of the data keeps on increasing every year and

hardly to process and analyze. Since then, many types of processing engine and

model have been innovated and developed to deal with big data such as Hadoop

MapReduce and Apache Spark. There are many techniques that have been

developed for document authorship identification using current technologies.

However, when the document size becomes bigger, the efficiency to identify

multiple authors’ writing becomes slower. Thus an improvement must be developed

for the pre – processing and post – processing of big document text images to

increase the efficiency of identifying multiple authors’s writing style.

Hadoop MapReduce is one of the alternative solutions in solving authorship

identification. It is a new computer architecture for real – time data intensive

processing which can be executed on high – performance cluster [1]. It has rapid

growth and has been becoming a standard in both industry and academia [3]. It is

also an open source implementation framework that is proposed by Google [3]. The

main reason that has contributed to the popularity of using Hadoop MapReduce is

due to its ease of use, failover, and scalability properties. The processed data will

3 Big Data Processing Model for

be copied and stored in different nodes for backup to prevent any incident that might

happen in the cluster such as crashing. In Hadoop ecosystem, four modules are

involved: a)Hadoop Distributed File System (HDFS), b)MapReduce, c)YARN and

d)Common. HDFS is a file system that can store a large amount of data with a

master – slave architecture. It provides the feature of fault tolerance by making a

few copies of data in the data block to prevent fault such as disk failure. While,

MapReduce is a parallel programming model which is also the data processing

engine which consists of map phase and reduces phase for processing data [2].

There is also another Big Data processing model which is Apache Spark. Spark is

one of the Apache top level projects where it supports the iterative computation and

utilizes in – memory computation to improve on speed and resource issues [2].

Spark is an open source platform for large – scale data processing that is suited for

iterative machine learning tasks [4]. It’s processing speed is proven when it won

the Daytona GraySort Benchmark Contest by sorting 100 TB of data on 206 nodes

in 23 minutes [2]. Spark has the advantage of faster processing speed although it

does not provide the data storage feature as in Hadoop. Spark offers Spark

Streaming (micro – batching) for real – time data processing in sequences through

the batch processing [2].

Authorship identification can be defined as a process of identifying the most

presumably author or writer of a disputed or anonymous document, based on a

collection of known documents [5]. In this research, we focus on the big scale of

handwriting text images for pre–processing and post – processing using Hadoop

and Apache Spark to perform authorship identification.

The paper as follow: Section 2 gives the related works to Hadoop MapReduce,

Apache Spark and authorship identification. Section 3 provides the proposed

integration of Map Reduce for Authorship Identification. Section 4 explains the

results, analysis and discussions based on the output and finally, Section 6

concludes our work together with future work.

2 Related Work

Hadoop MapReduce framework not just a parallel programming model but has been

received significant attention due to its uniqueness and functionalities [6][7].

MapReduce framework enables the user to write functional codes for map and

reduce phases and the execution will be handled by the framework. The input files

will be split into many chunks where the size can be defined by the user and

distributed to the worker nodes in the cluster for processing [6]. If there are any

failures occur in the worker node, the task will be re – scheduled with the dynamic

scheduling mechanism in MapReduce framework [8]. Automatic load balance

between the worker nodes also will be provided with this approach. Finally, the data

is replicated and stored in different worker nodes for the backup purpose [8].

Therefore, we can be ensured that the processed data will not be lost directly when

a failure occurs and those operations are executed automatically. There is one

Toh Chin Eng et al 4

component in the architecture of Hadoop which is called as Hadoop Distributed

File System (HDFS) [9]. The components in HDFS are Name Node, Secondary

Name Node and Data Node [9]. Name Node is responsible for controlling all the

Data Nodes, store and manages all the metadata of the file system which is named

as fsimage [9].

To perform writer identification or authorship identification, proper neural

architecture and machine learning schemes must be selected to deal with the

representation of the data for pre – processing document text images. In Document

Image Analysis and Identification (DIAR), the pre-processing tasks include

character thinning, noise reduction, binarization, and skew detection [10]. The

purpose of the pre – processing is to extract more information from the handwritten

text and increase the accuracy of authorship identification. Artificial neural network

(ANN) is one of the good machine learning algorithms that can be used for

authorship identification due to its learning ability in adapting different kinds of

noise [10].

There are two types of categories to perform writer identification which is text –

independent method and text – dependent method [11]. Text – independent method

is where any text also can be used to identify the writer while text – dependent

method requires the writer to write the same text to perform writer identification

[11]. The size of the input is standardized in terms of width and height for

binarization using the global threshold [11]. Then, feature extraction algorithms are

implemented to extract the texture features from the input data. This is because

different writers have a different visual appearance for their writing [11]. However,

as the number of writers is increasing, the classification rate will be lower because

of higher possibility to classify wrongly [11].

There are many methods to perform authorship identification such as using

stylometry to analyze author’s style of writing. Four main methods are commonly

used to analyze the writing: lexical, syntactic, and semantic and the content specific

method. The lexical method is analyzing the document word distribution and word

count in the text while the syntactic method is where the features such as frequency

of words and punctuation are extracted for analysis. However, there is a limitation

on those methods. The limitation is where the minimum of the data size must at

least 10 times than the word count of the anonymous text file [5].

While discussing the methods to perform writer identification, some issues need to

be addressed: 1) to find the mean of main features from different handwriting styles

or similar handwriting styles to identify the real writer [12]; 2) to find out the

significant features when comparing the handwriting [12]. By using the traditional

framework, the handwriting dataset will go through feature extraction processes. In

the new framework, there is a new process after feature extraction which is called

5 Big Data Processing Model for

as feature discretization which extracts the similar feature into the standard

representation [12]. From the analysis, it is proven that the accuracy of

classification is higher when compared with the non – discretized data [12].

The final process of authorship identification is the classification stage using some

artificial intelligence (AI) methods such as Artificial Neural Network (ANN). In

ANN, the input image must be transformed into a sequence of feature vectors and

then the image is applied with sliding window of square cell [13]. The output is

passed to optical model and follows by tree lexicon process. This identification

model is the combination of HMM (Hidden Markov Model) and ANN (Artificial

Neural Network) [13]. The identification system is modified with a token passing

algorithm to record the n – best work endings at each of the sliding window position.

Although there are many algorithms that can be used to perform authorship

identification, for large – scale authorship documentation, the efficiency becomes

an issue since the extracted data is not processed in parallel form. However, this

issue has been partially solved since many AI algorithms and tools have been

developed and improved to support the parallel processing mechanism. Spark is one

of the AI tools which is Apache top level projects that supports the iterative

computation and in – memory computation to improve the speed and resource

issues [2]. Spark is an open source platform for large – scale data processing that is

suited for iterative machine learning tasks [4]. The machine learning algorithms are

grouped under Spark’s MLlib (Machine Learning Library). This module offers

functionality such as collaborative filtering, optimization, feature extraction,

regression, statistics, Frequent Pattern Mining, classification, Dimensionality

Reduction and Clustering [2]. In general, MLlib has the goal to make the machine

learning to be easy and scalable by providing common learning algorithms and

utilities for performing different functionalities.

Spark has the advantage of ten times faster for the on – disk operation and hundred

times faster for in – memory operation when comparing with Hadoop [4]. The

integration of Hadoop and Spark can take advantage of Hadoop Distributed File

System (HDFS) for storage purpose and utilize the high – speed processing power

of Spark on processing [4]. The result has proven that the integration of Hadoop

and Spark technologies have a higher efficiency when compared with the system

that Hadoop – based only [4].

Toh Chin Eng et al 6

3 The Proposed Hadoop-Spark MLib Framework for

Authorship Identification

The main goal of this study is to determine the availability of Hadoop Map

Reducing processing on authorship identification. The study is carried out on

Hadoop MapReduce framework and authorship identification. Our proposed

integration of Map Reducing processing approach and Spark’s MLlib for

authorship identification will be a new approach to performing large – scale

authorship identification which is related to Big Data. Hadoop MapReduce

framework will be used to handle the pre – processing part on the input data before

the authorship identification is performed with Spark. OpenCV is integrated with

MapReduce framework to process the input image data. Fig. 1 illustrates the

process involves in developing the proposed integration

Fig. 1: Hadoop-Spark Framework for Authorship Identification

For the integration of Hadoop MapReduce framework with Spark’s MLlib, the built

in neural network in Spark’s MLlib will be used to perform authorship

identification. The comparison between the performance of Map Reducing

processing and without Map Reducing processing on authorship identification is

7 Big Data Processing Model for

carried out to investigate the efficiency of the integration. The time taken to

complete authorship identification will be taken as well.

3.2 Writer Document Text Images for Hadoop Map Reduce

Hadoop MapReduce framework can accept multiple files as input with each map

will assign to each input data. If there are 1000 of inputs data, then 1000 map tasks

will be created to process the input data. Due to the hardware limitation for most

users, not every machine can execute all map tasks concurrently. Therefore, the

proper method to parse the input to MapReduce framework is vital to overcoming

the problem mentioned. Sequence Files Formats is one of the methods to parse the

input where all the inputs are converted to flat files that consist of binary key / value

pairs and pass as input to map phase one by one.

In this study, we use total input data of 115, 320 handwriting image files. Each of

the handwriting image files contains one English word. Those image files are the

sample handwriting that is extracted from different documents. Those sample

handwriting image files are belonging to 15 writers and all the image files are

categorized well in different folders. Each writer is identified through his styles of

writing. However, there exist corrupted files in the folders that must be pre-process,

which lead to a new total of 115, 318 handwriting image files. The corrupted image

files are detected when all the image files are converted to HipiImageBundle (HIB).

HIB is a collection of images represented as a single file on HDFS [14].

In our study, Hadoop Image Processing Interface (HIPI) is implemented to parse

the input data. HIPI is an image processing library that is designed with Apache

Hadoop MapReduce to facilitate efficient and high–throughput image processing

with MapReduce – style parallel programs executed on a cluster environment [14].

HIPI also supports Open Source Computer Vision Library (OpenCV) integration

with hadoop mapping at the pre – processing process.

4 The Proposed Integration of Hadoop-Spark MLib

Big Data can be in two forms which are unstructured form and structured form. In

this study, the data format for authorship documentation is in the unstructured form.

Even, the data is in the structured form, the processing will be very long since the

process doesn’t involve parallel processing or distributed processing. Therefore,

Hadoop MapReduce framework can be used for the pre – processing dealing with

the massive amount of input data due to its parallelism.

In our proposed design, map and reduce functions are integrated with OpenCV to

pre – process the handwriting image files such as cleansing of data and dirty data

handling. The processed handwriting image files are stored in the HDFS for

authorship identification. The handwriting image files are separated into 7 folders

to implement k – fold validation during the authorship identification phase. One

Toh Chin Eng et al 8

folder is used as testing data and six folders are used as training data and this process

is repeated 7 times.

The feedforward artificial neural network in the Spark’s MLlib which is also called

as multilayer perceptron (MLP) classifier is used for classification purpose. We

define four variables to implement MLP classifier which is for input layer, two

intermediate layers and output layer. The number of nodes for the output layer

represents the number of classes for identification purpose [15]. The MLP classifier

can be written in matrix form with K + 1 layers where w is node’s weight and b is

a bias term represents as follows [15]:

 . (1)

The nodes in the intermediate layers use the sigmoid (logistic) function:

. (2)

While the nodes in the output layer implement the softmax function:

. (3)

MLP classifier uses the backpropagation approach for learning model, L – BFGS

(Limited – memory Broyden – Fletcher – Goldfarb – Shanno) algorithm as the

optimization routine and logistic loss function for the optimization purpose [15].

Multi – core processing is carried out throughout the whole process in a single

machine with standalone cluster.

Fig. 2 illustrates the integration process starting from data collection of 115, 320

image files downloaded from IAM Handwriting Database. These datasets are stored

in the same folder with many subfolders. The data consists of different handwriting

styles from 15 different writers.

9 Big Data Processing Model for

Fig. 2: The Proposed Integration of Hadoop-Spark MLib

The input data is processed with MapReduce framework by passing through two

phases: a mapping phase and reducing phase. Both phases are integrated with

OpenCV for image processing process. However, due to certain issue occurred

which will be explained in the next section, the map and reduce phase are integrated

to perform pre – processing. The handwriting image files are de-noised for data

cleansing using OpenCV. Noise is generally can consider as a random variable with

zero mean in an image and must be removed to avoid inefficiency during

identification process [16].

De-noise images are converted to the PGM (Portable Gray Map) image file format

to obtain the lowest denominator grayscale file format and easier for reverse

engineering process. Hence, we can ensure the handwriting image file is “clean”

grayscale form. Next, the handwriting image files are binarized and rescaled to a

fix width and height.

The output from the MapReduce framework is stored in the HDFS and separated

into 7 folders to prepare for k – fold validation process for authorship identification.

Files separation is implemented by using the python script to distribute the

handwriting image files. Each folder has approximately 14,225 to 14,229 of

handwriting image files. The pixel data in each of the image is extracted and saved

as a single text file. The numbers will be kept as the input for the identification

process.

The feedforward artificial neural network with backpropagation learning model in

the Spark’s MLlib is used to perform authorship identification which is also called

as Multilayer Perceptron Classifier (MLPC). The formatted handwritten image file

Toh Chin Eng et al 10

collection will be the input of this classifier for authorship identification. The

training data set is fed to the MLPC to identify the writer’s handwriting. There are

6 directories in the training set and 1 directory in the testing set. The process is

executed for 7 times where each of the directories in the training set is put into the

testing set to perform k – fold validation in authorship identification phase. The

overall workflow for this phase is described in Fig. 3.

Fig 3: Authorship Identification Process in Hadoop-Spark MLib Framework

The main focus of this research is on the integration of MapReduce framework and

Spark’s MLlib to perform authorship identification. However, the whole process of

the proposed framework as in Figure 1 must be executed accordingly since it

involves two main stages which are MapReduce and Spark processing. The first

experiment is tested on the performance with Map Reduce on large scale authorship

identification. While the second experiment is performed without MapReduce

processing in which the mapping and reducing processing is integrated into map

process only. The performance of the two experiments will be computed and the

results are recorded for analytic purpose.

11 Big Data Processing Model for

5 Experimental Results and Analysis

Fig. 4 shows the original image (left) with noise and image on the right side is the

image after denoising. There are 4 techniques that can be used for denoising using

Non-Local Means Denoising algorithm which produce better results despites their

slower processing [16].

Fig. 4: Left (original) and Right (pre – process)

The image is converted to the PGM image file format after denoising process, and

follows by the binarization procedure. If the pixel value in the handwriting image

file exceeds the specified threshold value, the pixel will be assigned to white or

black. Figure 5 shows denoised image (left) and the binarization image (right).

 (a) (b)

Fig. 5: Image after denoised and binarization process

Adaptive thresholding is implemented in this study since the image might have

different lighting condition in different areas. The algorithm is adaptive in

computing the threshold for a small region and different threshold for a different

region of the image [16]. In the documents, all the handwriting image files are

different in size. Thus, these files are required to be rescaled to a fix width and

height for standardization and to preserve the quality of the handwriting image file.

5.1 Map Reduce for Handwriting Image Files

The handwriting images are tested ranging from small size to larger datasets. The

main problem arises during the experiments is due to the broken pipe exception in

which the MapReduce streaming is terminated prematurely after the mapping phase.

In this scenario, the small dataset is successfully streaming without error but it

doesn’t work for large dataset. After multiple testing times, the threshold for

processing image files is less than 16,381 documents (See Fig. 6).

Toh Chin Eng et al 12

Fig. 6: 16,381 of handwriting image file

We provide the screenshot of the broken pipe exception error after the mapping

process as in Fig. 7 when the number of image files is more than 16,381. In this

13 Big Data Processing Model for

context, the reduce phase cannot be carried out and the streaming process is stop.

Hence, all the handwriting image files cannot be pre – processed accordingly.

Fig. 7: Broken pipe exception issue

The causes for the failure are due to: 1) MapReduce framework initially is designed

to process key value pair of data instead of image processing; 2) MapReduce

framework is trying to feed the output from mapper through STDIN (command –

line arguments) to reducer script. However, in this research, our mapper does not

return any output in command–line arguments to the reducer phase. Therefore, the

process is unsuccessfully because the input from mapper is null. Finally, the timeout

for the reducer to wait for mapper output which is by default is 600 seconds in

MapReduce framework. This possibility is eliminated after repeated testing by

overwrite the timeout variables and delay variables for map and reduce phases,

however the problem still exists. Due to these problems, we propose an improved

in dealing the process of mapping writer documents for authorship identification in

the next section.

5.2 The Proposed Integration of Mapper and Reducer Script for

Writer Documents

Due to the above issue, we propose an integration of mapper and reducer into

mapper script only. This is done as follows: 1) the image processing functions in

the reducer script is moved to mapper script; 2) rewrites the mapper script by

implementing the multiprocessing module and set the number of reducer task to 0

Toh Chin Eng et al 14

because without the reducer, the map phase output will be directly stored in the

specified directory. This is where the sorting, shuffling and aggregation of output

from mapping phase will not be performed by MapReduce framework. By default,

those processes will be executed automatically by MapReduce framework during

reducing phase. In this research, those operations are not needed for image

processing. Therefore, the time taken to complete the whole process will be

shortened and the streaming process can be successfully completed without error.

In this experiment, we set up MapReduce framework environment in the virtual

machine. Quad cores are assigned to the virtual machine and the utilization of each

core are shown in Fig. 8 and Fig. 9, respectively. The utilization of each core is

more than 80% during the streaming process. The number of the final output is

stored in the directory with total handwriting image files in PGM format of 99,589.

These files will be used for the next phase and the other 15, 731 handwriting image

files are removed. These files are corrupted image files and some of the image files

are too small that cannot be used for the authorship identification purpose. Both

methods are tested with 115, 318 handwriting image files as input to the proposed

integration.

Fig. 8: CPU utilization by virtual machine

15 Big Data Processing Model for

Fig. 9: CPU utilization of each core by virtual machine

The time taken to complete the processing is approximately 3 hours 15 minutes to

3 hours 20 minutes depending on the machine’s processing speed. This analysis is

obtained after repeatedly testing with full dataset in tandem with changing of the

scripting. Various measurements are done to capture the performance of the

proposed integration and these include the process of increasing the number of map

tasks, implementing the multiprocessing module and increasing the number of

memory allocation for the MapReduce framework during processing. These actions

can be achieved by overwriting the default configuration of the framework.

Some of the variables in the MapReduce framework default configuration are

changing accordingly. For example, the variable “mapred.child.java.opts” is set

originally to 200MB and has been changed to 1024MB. This variable is referred to

the java heap memory for processing MapReduce framework. The reason for

changing this variable is due to frequent error message of Java heap space out of

memory when dealing with large dataset; thus by changing the variable setting

helps resolve the above issue.

5.3 Analysis of the Proposed Integrated Mapper and Reducer

Script for Writer Documents

The handwriting image files with 76 directories are separated into 7 directories to

perform k – fold validation during authorship identification phase after the proposed

integration. For each of the testing process, the identification rate and duration are

displayed as shown in Fig. 10. The image processing method that is used for

identification purpose is based on pixel based, where all the pixel data of an image

is extracted and converted to binary form. However, Spark does not offer the image

processing library that can be integrated with Spark’s MLlib to perform authorship

identification. Due to different word length of each image, pixel data based

Toh Chin Eng et al 16

approach is not convincing in recognizing the word that shares the same uniqueness

during learning process for identification purpose. More layers of image processing

methods need to be implemented to increase the identification rate. The user can

adjust the configuration of the multilayer perceptron classifier to increase the

identification rate of the input data based on the specification of the machine that is

used to perform the authorship identification.

Fig. 10: Identification rate and execution time

Fig. 11 shows the Spark’s job execution from the web UI. In our study, the

scheduling mode is changed to FAIR to ensure equal jobs distribution to all Spark’s

workers. The number of tasks and the duration to complete all the tasks on each

stage is displayed to the user for tracking purposes. From the event timeline, the

user can observe the running task with the status: succeeded, failed or running.

17 Big Data Processing Model for

Fig. 11: Spark’s jobs

The details of the Spark’s executors or can be called as Spark’s workers can be

viewed in Fig. 12. Each core is assigned to each Spark’s worker, thus 4 Spark’s

workers are implemented all the jobs accordingly. The number of completed task,

the total number of task and size of the input also is shown. The CPU, memory and

disk utilization by Spark’s jobs are illustrated in Fig. 13.

Fig 12: Spark’s executors

Toh Chin Eng et al 18

Fig. 13: Spark’s CPU, Memory, and Disk utilization

5.4 Comparison between Map Reducing Processing and the

Proposed Integration of Mapper and Reducer Script for

Writer Documents

MapReduce framework is used in processing parallel the image files. First, the

image processing processes are separated into the map and reduce phase.

MapReduce framework can perform exceptionally well on data mining with <key,

value> pair data but not for image processing. This is because for image processing,

the aggregation and shuffle operations that are carried out during the reduce phase

automatically are not required and only will affect the efficiency, i.e., longer time

for job completion. However, this problem is overcome after integration with

Hadoop Image Processing Interface (HIPI). HIPI is the image processing library

that is designed to integrate with Hadoop MapReduce framework to perform image

processing task. In our study, one of interesting findings is on the MapReduce

framework streaming task that has failed for the numbers over the pre-defined

threshold which causes broken pipe exception. Therefore, we propose the mapping

processing in the MapReduce framework in solving writer identification problems.

With the integration of mapping module and reducing module into a single script,

the output can be stored directly in a temporary directory without passing through

the reduce phase. All the processes of sorting, shuffling and aggregating will be

executed during reducing phase automatically provided by the MapReduce

framework. Thus, the duration to complete all the jobs is reduced. Python is

implemented to achieve multi–core processing for better performance. Mapping

task is increased to separate the input data into smaller chunks to perform parallel

processing. The result is good where the time taken to complete the whole process

is lessening comparing to pre-optimizations.

19 Big Data Processing Model for

5.4a Integration Analysis of MapReduce and Writer

 Documents

The integration of the proposed method is executed in the terminal after the HDFS

server is started. The output directory, mapper file and extra commands are required

to be specified. All outputs are stored in HDFS for further action. The user can

ensure the job is running by accessing the Hadoop web UI to supervise and the

terminal will display the MapReduce program is getting the input from HDFS. The

percentages as shown in Fig. 14 show the jobs done in the mapping and reducing

phases separately. When the jobs are completed, the percentage will give 100%.

Fig. 14: MapReduce program execution

When executing Spark MLib, the program must be able to create web UI and

retrieve the data from HDFS as shown in Fig. 15. For this research, the input is split

into 4 tasks because 1 core is assigned to each of the Spark’s worker on the server.

The user is able to keep track the running progress through the Spark web UI by

accessing the URL that is displayed in the terminal instead of keeps tracking the

progress displayed in the terminal. The final output from Spark is the identification

rate and the total duration taken to complete the identification process. This

represents that Spark has successfully completed the computation processes of all

input data that are retrieved from HDFS. The integration is successful because of

MapReduce program able to perform MapReduce jobs and stored the output in

HDFS. Next, Spark program is able to retrieve the output data from MapReduce

Toh Chin Eng et al 20

program through HDFS to execute computation operation on the input data, and

finally the output data from Spark program is displayed.

Fig. 15: Spark’s execution

6 Conclusion and Discussions

In this study, we found that Hadoop MapReduce is a promising framework for

processing Big Data due to its friendliness in configuring the parameters. It is also

user – friendly since the user needs to write two functions: mapping function and

reducing function from a large amount of data extraction which is performed in

21 Big Data Processing Model for

parallel. Fault tolerance will be provided by the framework where the user does not

need to worry about the loss of data if the error occurs.

All the data will be separated into many chunks before passing to the processing

node, and data replication will be executed to back up all data. Spark is proven for

high processing speed due to RAM computation, but insufficient storage for post-

processing. However, this problem is solved by integrating with Hadoop. The

integration of Hadoop and Spark can utilize the advantage of these two technologies

which is the processing speed of Spark and the storage that is provided by Hadoop

(HDFS).

In this paper, we implement Authorship identification using multilayer perceptron

classifier in Spark’s MLlib for classification purpose. However, further

improvements are required to obtain better identification rate by converting all the

data into the data format that is accepted by Spark application without losing

writers’ information. Furthermore, image processing library is required to achieve

better identification which is currently not available in Spark MLib.

ACKNOWLEDGEMENTS

The authors would like to thank Ministry of Higher Education (MOHE) and

Universiti Teknologi Malaysia (UTM) for their support in Research and

Development. This work is partially supported by the UTM Research University

Grant Scheme FRGS (4F786 & 4F802) and RUG (17H62).

References

[1] Wu, X., Zhu, X., Wu, G. Q., & Ding, W. (2014). Data mining with big data.

IEEE transactions on knowledge and data engineering, 26(1), 97-107.

[2] Narayanan, A., Paskov, H., Gong, N. Z., Bethencourt, J., Stefanov, E., Shin, E.

C. R., & Song, D. (2012, May). On the feasibility of internet-scale author

identification. In Security and Privacy (SP), 2012 IEEE Symposium on (pp.

300-314). IEEE.

[3] Landset, S., Khoshgoftaar, T. M., Richter, A. N., & Hasanin, T. (2015). A

survey of open source tools for machine learning with big data in the Hadoop

ecosystem. Journal of Big Data, 2(1), 24.

[4] Costantini, L., & Nicolussi, R. (2015). Performances evaluation of a novel

Hadoop and Spark based system of image retrieval for huge

collections. Advances in Multimedia, 2015, 11.

Toh Chin Eng et al 22

[5] Tan, R. H. R., & Tsai, F. S. (2010, October). Authorship identification for

online text. In Cyberworlds (CW), 2010 International Conference on (pp. 155-

162). IEEE.

[6] Dean, J., & Ghemawat, S. (2008). MapReduce: simplified data processing on

large clusters. Communications of the ACM, 51(1), 107-113.

[7] Jiang, W., Ravi, V. T., & Agrawal, G. (2010, May). A map-reduce system

with an alternate api for multi-core environments. In Proceedings of the 2010

10th IEEE/ACM International Conference on Cluster, Cloud and Grid

Computing (pp. 84-93). IEEE Computer Society.

[8] Ekanayake, J., Li, H., Zhang, B., Gunarathne, T., Bae, S. H., Qiu, J., & Fox,

G. (2010, June). Twister: a runtime for iterative mapreduce. In Proceedings of

the 19th ACM international symposium on high performance distributed

computing (pp. 810-818). ACM.

[9] Ghazi, M. R., & Gangodkar, D. (2015). Hadoop, MapReduce and HDFS: a

developers perspective. Procedia Computer Science, 48, 45-50.

[10] Marinai, S., Gori, M., & Soda, G. (2005). Artificial neural networks for

document analysis and identification. IEEE Transactions on pattern analysis

and machine intelligence, 27(1), 23-35.

[11] Hiremath, P. S., Shivashankar, S., Pujari, J. D., & Kartik, R. K. (2010,

December). Writer identification in a handwritten document image using

texture features. In Signal and Image Processing (ICSIP), 2010 International

Conference on (pp. 139-142). IEEE.

[12] Mohammed, B. O., & Shamsuddin, S. M. (2011). Feature discretization for

individuality representation in twins handwritten identification. Journal of

Computer Science, 7(7), 1080.

[13] Zamora-Martinez, F., Frinken, V., España-Boquera, S., Castro-Bleda, M. J.,

Fischer, A., & Bunke, H. (2014). Neural network language models for off-

line handwriting identification. Pattern Identification, 47(4), 1642-1652.

[14] HIPI - Hadoop Image Processing Interface :: Introduction. (2017).

Hipi.cs.virginia.edu. Retrieved 29 June 2017, from http://hipi.cs.virginia.edu/

[15] Overview - Spark 2.0.0 Documentation. (2017). Spark.apache.org. Retrieved

29 June 2017, from https://spark.apache.org/docs/preview/

[16] Welcome to opencv documentation! — OpenCV 2.4.13.2 documentation.

(2017). Docs.opencv.org. Retrieved 29 June 2017, from

http://docs.opencv.org/2.4.13.2/

http://hipi.cs.virginia.edu/
https://spark.apache.org/docs/preview/

