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Abstract 

     The era of Big Data has arrived and an average of about 
quintillions of data is produced daily. Data can be in many forms such 
as image, document or movie. For document file, there are digitalized 
document and handwritten document that often relates to the issue of 
copyright or ownership. This is due to improper authentication that 
leads to unhealthy authorship claimed of that particular handwritten 
document. Authorship identification is a sub-area of Document Image 
Analysis and Identification (DIAR). DIAR aim is to analyze and 
identify document authorship. However, for big scale of documents 
text images, the issue of document processing time becomes crucial 
for better authorship identification. Therefore, in this study, we 
propose an alternative solution to solve the above problems dealing 
with massive amount of document text images by integrating Hadoop 
MapReduce and Spark’s MLlib for authorship identification through 
data processing parallelization. MapReduce processing is used as the 
platform to pre– process these huge document text images in Hadoop 
Distributed File Systems (HDFS), follows by the authorship 
identification through Apache Spark machine learning library.The 
experiments show the integration is successfully implemented for big 
size of document text images. However, further improvement is 
needed for the post-analytics of the reduced document text images for 
better identification.  

Keywords: Big Data, Hadoop MapReduce, Spark’s MLlib, Authorship 

Identification, handwritten text 
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1      Introduction 

The era of Big Data has arrived due to advancement of hardware 

technologies and cheaper devices in the future. There are about 2.5 quintillion bytes 

of data that are created from all around the world and 90 percent of the data in the 

world today mostly were produced within the last four years [1]. According to 

International Data Corporation’s (IDC) annual Digital Universe study, the amount 

of data on our planet is set to be reached about 44 zettabytes (4.4 × 1022 bytes) by 

2020 which would be ten times larger than it was in 2013 [2]. Through observation, 

we can predict that the data will be kept increasing in the future and in various forms. 

Therefore, the traditional data processing approaches are unable to process those 

data with high efficiency and performance. Big data has the characteristics where it 

has a large volume, heterogeneous, autonomous sources with distributed and 

decentralized control, and seeks to explore the complex and evolving relationships 

among data as claimed under Heterogeneous, Autonomous, Complex and Evolving 

(HACE) Theorem [1]. New methods or approaches are required to be implemented 

in the data processing applications to solve different issues in Big Data because the 

traditional approaches are not suitable anymore.  

Data will keep on growing at an exponential rate in the era of 4th Industrial 

Revolution due to gigantic trends of digital documentation in industries and 

government agencies in the future. Nowadays, documents can be classified into 

various types of format such as pdf (Portable Document Format) and .docx 

(Document Extended). The collection of documents and other types of data 

contribute to Big Data as the size of the data keeps on increasing every year and 

hardly to process and analyze. Since then, many types of processing engine and 

model have been innovated and developed to deal with big data such as Hadoop 

MapReduce and Apache Spark. There are many techniques that have been 

developed for document authorship identification using current technologies. 

However, when the document size becomes bigger, the efficiency to identify 

multiple authors’ writing becomes slower. Thus an improvement must be developed 

for the pre – processing and post – processing of big document text images to 

increase the efficiency of identifying multiple authors’s writing style. 

Hadoop MapReduce is one of the alternative solutions in solving authorship 

identification. It is a new computer architecture for real – time data intensive 

processing which can be executed on high – performance cluster [1]. It has rapid 

growth and has been becoming a standard in both industry and academia [3]. It is 

also an open source implementation framework that is proposed by Google [3]. The 

main reason that has contributed to the popularity of using Hadoop MapReduce is 

due to its ease of use, failover, and scalability properties. The processed data will 
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be copied and stored in different nodes for backup to prevent any incident that might 

happen in the cluster such as crashing. In Hadoop ecosystem, four modules are 

involved: a)Hadoop Distributed File System (HDFS), b)MapReduce, c)YARN and 

d)Common. HDFS is a file system that can store a large amount of data with a 

master – slave architecture. It provides the feature of fault tolerance by making a 

few copies of data in the data block to prevent fault such as disk failure. While, 

MapReduce is a parallel programming model which is also the data processing 

engine which consists of map phase and reduces phase for processing data [2]. 

There is also another Big Data processing model which is Apache Spark. Spark is 

one of the Apache top level projects where it supports the iterative computation and 

utilizes in – memory computation to improve on speed and resource issues [2]. 

Spark is an open source platform for large – scale data processing that is suited for 

iterative machine learning tasks [4]. It’s processing speed is proven when it won 

the Daytona GraySort Benchmark Contest by sorting 100 TB of data on 206 nodes 

in 23 minutes [2]. Spark has the advantage of faster processing speed although it 

does not provide the data storage feature as in Hadoop. Spark offers Spark 

Streaming (micro – batching) for real – time data processing in sequences through 

the batch processing [2].  

Authorship identification can be defined as a process of identifying the most 

presumably author or writer of a disputed or anonymous document, based on a 

collection of known documents [5]. In this research, we focus on the big scale of 

handwriting text images for pre–processing and post – processing using Hadoop 

and Apache Spark to perform authorship identification. 

The paper as follow: Section 2 gives the related works to Hadoop MapReduce, 

Apache Spark and authorship identification. Section 3 provides the proposed 

integration of Map Reduce for Authorship Identification. Section 4 explains the 

results, analysis and discussions based on the output and finally, Section 6 

concludes our work together with future work.    

2      Related Work 

Hadoop MapReduce framework not just a parallel programming model but has been 

received significant attention due to its uniqueness and functionalities [6][7]. 

MapReduce framework enables the user to write functional codes for map and 

reduce phases and the execution will be handled by the framework. The input files 

will be split into many chunks where the size can be defined by the user and 

distributed to the worker nodes in the cluster for processing [6]. If there are any 

failures occur in the worker node, the task will be re – scheduled with the dynamic 

scheduling mechanism in MapReduce framework [8]. Automatic load balance 

between the worker nodes also will be provided with this approach. Finally, the data 

is replicated and stored in different worker nodes for the backup purpose [8]. 

Therefore, we can be ensured that the processed data will not be lost directly when 

a failure occurs and those operations are executed automatically. There is one 
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component in the architecture of Hadoop which is called as Hadoop Distributed 

File System (HDFS) [9]. The components in HDFS are Name Node, Secondary 

Name Node and Data Node [9]. Name Node is responsible for controlling all the 

Data Nodes, store and manages all the metadata of the file system which is named 

as fsimage [9].   

To perform writer identification or authorship identification, proper neural 

architecture and machine learning schemes must be selected to deal with the 

representation of the data for pre – processing document text images. In Document 

Image Analysis and Identification (DIAR), the pre-processing tasks include 

character thinning, noise reduction, binarization, and skew detection [10]. The 

purpose of the pre – processing is to extract more information from the handwritten 

text and increase the accuracy of authorship identification. Artificial neural network 

(ANN) is one of the good machine learning algorithms that can be used for 

authorship identification due to its learning ability in adapting different kinds of 

noise [10].  

There are two types of categories to perform writer identification which is text – 

independent method and text – dependent method [11]. Text – independent method 

is where any text also can be used to identify the writer while text – dependent 

method requires the writer to write the same text to perform writer identification 

[11]. The size of the input is standardized in terms of width and height for 

binarization using the global threshold [11]. Then, feature extraction algorithms are 

implemented to extract the texture features from the input data. This is because 

different writers have a different visual appearance for their writing [11]. However, 

as the number of writers is increasing, the classification rate will be lower because 

of higher possibility to classify wrongly [11].  

There are many methods to perform authorship identification such as using 

stylometry to analyze author’s style of writing. Four main methods are commonly 

used to analyze the writing: lexical, syntactic, and semantic and the content specific 

method. The lexical method is analyzing the document word distribution and word 

count in the text while the syntactic method is where the features such as frequency 

of words and punctuation are extracted for analysis. However, there is a limitation 

on those methods. The limitation is where the minimum of the data size must at 

least 10 times than the word count of the anonymous text file [5]. 

While discussing the methods to perform writer identification, some issues need to 

be addressed: 1) to find the mean of main features from different handwriting styles 

or similar handwriting styles to identify the real writer [12]; 2) to find out the 

significant features when comparing the handwriting [12]. By using the traditional 

framework, the handwriting dataset will go through feature extraction processes. In 

the new framework, there is a new process after feature extraction which is called 
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as feature discretization which extracts the similar feature into the standard 

representation [12]. From the analysis, it is proven that the accuracy of 

classification is higher when compared with the non – discretized data [12]. 

The final process of authorship identification is the classification stage using some 

artificial intelligence (AI) methods such as Artificial Neural Network (ANN). In 

ANN, the input image must be transformed into a sequence of feature vectors and 

then the image is applied with sliding window of square cell [13]. The output is 

passed to optical model and follows by tree lexicon process. This identification 

model is the combination of HMM (Hidden Markov Model) and ANN (Artificial 

Neural Network) [13]. The identification system is modified with a token passing 

algorithm to record the n – best work endings at each of the sliding window position. 

Although there are many algorithms that can be used to perform authorship 

identification, for large – scale authorship documentation, the efficiency becomes 

an issue since the extracted data is not processed in parallel form. However, this 

issue has been partially solved since many AI algorithms and tools have been 

developed and improved to support the parallel processing mechanism. Spark is one 

of the AI tools which is Apache top level projects that supports the iterative 

computation and in – memory computation to improve the speed and resource 

issues [2]. Spark is an open source platform for large – scale data processing that is 

suited for iterative machine learning tasks [4]. The machine learning algorithms are 

grouped under Spark’s MLlib (Machine Learning Library). This module offers 

functionality such as collaborative filtering, optimization, feature extraction, 

regression, statistics, Frequent Pattern Mining, classification, Dimensionality 

Reduction and Clustering [2]. In general, MLlib has the goal to make the machine 

learning to be easy and scalable by providing common learning algorithms and 

utilities for performing different functionalities.  

Spark has the advantage of ten times faster for the on – disk operation and hundred 

times faster for in – memory operation when comparing with Hadoop [4]. The 

integration of Hadoop and Spark can take advantage of Hadoop Distributed File 

System (HDFS) for storage purpose and utilize the high – speed processing power 

of Spark on processing [4]. The result has proven that the integration of Hadoop 

and Spark technologies have a higher efficiency when compared with the system 

that Hadoop – based only [4].       
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3      The Proposed Hadoop-Spark MLib Framework for  

Authorship Identification 

The main goal of this study is to determine the availability of Hadoop Map 

Reducing processing on authorship identification. The study is carried out on 

Hadoop MapReduce framework and authorship identification. Our proposed 

integration of Map Reducing processing approach and Spark’s MLlib for 

authorship identification will be a new approach to performing large – scale 

authorship identification which is related to Big Data. Hadoop MapReduce 

framework will be used to handle the pre – processing part on the input data before 

the authorship identification is performed with Spark. OpenCV is integrated with 

MapReduce framework to process the input image data. Fig. 1 illustrates the 

process involves in developing the proposed integration 

 

Fig. 1: Hadoop-Spark Framework for Authorship Identification 

 

For the integration of Hadoop MapReduce framework with Spark’s MLlib, the built 

in neural network in Spark’s MLlib will be used to perform authorship 

identification. The comparison between the performance of Map Reducing 

processing and without Map Reducing processing on authorship identification is 
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carried out to investigate the efficiency of the integration. The time taken to 

complete authorship identification will be taken as well. 

3.2      Writer Document Text Images for Hadoop Map Reduce  

Hadoop MapReduce framework can accept multiple files as input with each map 

will assign to each input data. If there are 1000 of inputs data, then 1000 map tasks 

will be created to process the input data. Due to the hardware limitation for most 

users, not every machine can execute all map tasks concurrently. Therefore, the 

proper method to parse the input to MapReduce framework is vital to overcoming 

the problem mentioned. Sequence Files Formats is one of the methods to parse the 

input where all the inputs are converted to flat files that consist of binary key / value 

pairs and pass as input to map phase one by one.  

In this study, we use total input data of 115, 320 handwriting image files. Each of 

the handwriting image files contains one English word. Those image files are the 

sample handwriting that is extracted from different documents. Those sample 

handwriting image files are belonging to 15 writers and all the image files are 

categorized well in different folders. Each writer is identified through his styles of 

writing. However, there exist corrupted files in the folders that must be pre-process, 

which lead to a new total of 115, 318 handwriting image files. The corrupted image 

files are detected when all the image files are converted to HipiImageBundle (HIB). 

HIB is a collection of images represented as a single file on HDFS [14]. 

In our study, Hadoop Image Processing Interface (HIPI) is implemented to parse 

the input data. HIPI is an image processing library that is designed with Apache 

Hadoop MapReduce to facilitate efficient and high–throughput image processing 

with MapReduce – style parallel programs executed on a cluster environment [14]. 

HIPI also supports Open Source Computer Vision Library (OpenCV) integration 

with hadoop mapping at the pre – processing process.  

 

4      The Proposed Integration of Hadoop-Spark MLib   

Big Data can be in two forms which are unstructured form and structured form. In 

this study, the data format for authorship documentation is in the unstructured form. 

Even, the data is in the structured form, the processing will be very long since the 

process doesn’t involve parallel processing or distributed processing. Therefore, 

Hadoop MapReduce framework can be used for the pre – processing dealing with 

the massive amount of input data due to its parallelism.  

In our proposed design, map and reduce functions are integrated with OpenCV to 

pre – process the handwriting image files such as cleansing of data and dirty data 

handling. The processed handwriting image files are stored in the HDFS for 

authorship identification. The handwriting image files are separated into 7 folders 

to implement k – fold validation during the authorship identification phase. One 
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folder is used as testing data and six folders are used as training data and this process 

is repeated 7 times. 

The feedforward artificial neural network in the Spark’s MLlib which is also called 

as multilayer perceptron (MLP) classifier is used for classification purpose. We 

define four variables to implement MLP classifier which is for input layer, two 

intermediate layers and output layer. The number of nodes for the output layer 

represents the number of classes for identification purpose [15]. The MLP classifier 

can be written in matrix form with K + 1 layers where w is node’s weight and b is 

a bias term represents as follows [15]: 

 .   (1) 

 

The nodes in the intermediate layers use the sigmoid (logistic) function:  

.    (2) 

While the nodes in the output layer implement the softmax function: 

.    (3) 

 

MLP classifier uses the backpropagation approach for learning model, L – BFGS 

(Limited – memory Broyden – Fletcher – Goldfarb – Shanno) algorithm as the 

optimization routine and logistic loss function for the optimization purpose [15]. 

Multi – core processing is carried out throughout the whole process in a single 

machine with standalone cluster.   

Fig. 2 illustrates the integration process starting from data collection of 115, 320 

image files downloaded from IAM Handwriting Database. These datasets are stored 

in the same folder with many subfolders. The data consists of different handwriting 

styles from 15 different writers.   
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Fig. 2: The Proposed Integration of Hadoop-Spark MLib 

 

The input data is processed with MapReduce framework by passing through two 

phases: a mapping phase and reducing phase. Both phases are integrated with 

OpenCV for image processing process. However, due to certain issue occurred 

which will be explained in the next section, the map and reduce phase are integrated 

to perform pre – processing. The handwriting image files are de-noised for data 

cleansing using OpenCV. Noise is generally can consider as a random variable with 

zero mean in an image and must be removed to avoid inefficiency during 

identification process [16]. 

De-noise images are converted to the PGM (Portable Gray Map) image file format 

to obtain the lowest denominator grayscale file format and easier for reverse 

engineering process. Hence, we can ensure the handwriting image file is “clean” 

grayscale form. Next, the handwriting image files are binarized and rescaled to a 

fix width and height. 

The output from the MapReduce framework is stored in the HDFS and separated 

into 7 folders to prepare for k – fold validation process for authorship identification. 

Files separation is implemented by using the python script to distribute the 

handwriting image files. Each folder has approximately 14,225 to 14,229 of 

handwriting image files. The pixel data in each of the image is extracted and saved 

as a single text file. The numbers will be kept as the input for the identification 

process.  

The feedforward artificial neural network with backpropagation learning model in 

the Spark’s MLlib is used to perform authorship identification which is also called 

as Multilayer Perceptron Classifier (MLPC). The formatted handwritten image file 
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collection will be the input of this classifier for authorship identification. The 

training data set is fed to the MLPC to identify the writer’s handwriting. There are 

6 directories in the training set and 1 directory in the testing set. The process is 

executed for 7 times where each of the directories in the training set is put into the 

testing set to perform k – fold validation in authorship identification phase. The 

overall workflow for this phase is described in Fig. 3. 

 

 

Fig 3: Authorship Identification Process in Hadoop-Spark MLib Framework 

 

The main focus of this research is on the integration of MapReduce framework and 

Spark’s MLlib to perform authorship identification. However, the whole process of 

the proposed framework as in Figure 1 must be executed accordingly since it 

involves two main stages which are MapReduce and Spark processing. The first 

experiment is tested on the performance with Map Reduce on large scale authorship 

identification. While the second experiment is performed without MapReduce 

processing in which the mapping and reducing processing is integrated into map 

process only. The performance of the two experiments will be computed and the 

results are recorded for analytic purpose.   
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5      Experimental Results and Analysis  

Fig. 4 shows the original image (left) with noise and image on the right side is the 

image after denoising. There are 4 techniques that can be used for denoising using 

Non-Local Means Denoising algorithm which produce better results despites their 

slower processing [16]. 

 

      

Fig. 4: Left (original) and Right (pre – process) 

The image is converted to the PGM image file format after denoising process, and 

follows by the binarization procedure. If the pixel value in the handwriting image 

file exceeds the specified threshold value, the pixel will be assigned to white or 

black. Figure 5 shows denoised image (left) and the binarization image (right).  

      

   (a)      (b) 

Fig. 5: Image after denoised and binarization process 

Adaptive thresholding is implemented in this study since the image might have 

different lighting condition in different areas. The algorithm is adaptive in 

computing the threshold for a small region and different threshold for a different 

region of the image [16]. In the documents, all the handwriting image files are 

different in size. Thus, these files are required to be rescaled to a fix width and 

height for standardization and to preserve the quality of the handwriting image file. 

5.1      Map Reduce for Handwriting Image Files 

The handwriting images are tested ranging from small size to larger datasets. The 

main problem arises during the experiments is due to the broken pipe exception in 

which the MapReduce streaming is terminated prematurely after the mapping phase. 

In this scenario, the small dataset is successfully streaming without error but it 

doesn’t work for large dataset. After multiple testing times, the threshold for 

processing image files is less than 16,381 documents (See Fig. 6). 
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Fig. 6: 16,381 of handwriting image file 

 

 

 

We provide the screenshot of the broken pipe exception error after the mapping 

process as in Fig. 7 when the number of image files is more than 16,381. In this 
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context, the reduce phase cannot be carried out and the streaming process is stop. 

Hence, all the handwriting image files cannot be pre – processed accordingly.  

 

 

Fig. 7: Broken pipe exception issue 

 

The causes for the failure are due to: 1) MapReduce framework initially is designed 

to process key value pair of data instead of image processing; 2) MapReduce 

framework is trying to feed the output from mapper through STDIN (command – 

line arguments) to reducer script. However, in this research, our mapper does not 

return any output in command–line arguments to the reducer phase. Therefore, the 

process is unsuccessfully because the input from mapper is null. Finally, the timeout 

for the reducer to wait for mapper output which is by default is 600 seconds in 

MapReduce framework. This possibility is eliminated after repeated testing by 

overwrite the timeout variables and delay variables for map and reduce phases, 

however the problem still exists. Due to these problems, we propose an improved 

in dealing the process of mapping writer documents for authorship identification in 

the next section. 

 

5.2    The Proposed Integration of Mapper and Reducer Script for  

Writer Documents  

 

Due to the above issue, we propose an integration of mapper and reducer into 

mapper script only. This is done as follows: 1) the image processing functions in 

the reducer script is moved to mapper script; 2) rewrites the mapper script by 

implementing the multiprocessing module and set the number of reducer task to 0 
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because without the reducer, the map phase output will be directly stored in the 

specified directory. This is where the sorting, shuffling and aggregation of output 

from mapping phase will not be performed by MapReduce framework. By default, 

those processes will be executed automatically by MapReduce framework during 

reducing phase. In this research, those operations are not needed for image 

processing. Therefore, the time taken to complete the whole process will be 

shortened and the streaming process can be successfully completed without error. 

In this experiment, we set up MapReduce framework environment in the virtual 

machine. Quad cores are assigned to the virtual machine and the utilization of each 

core are shown in Fig. 8 and Fig. 9, respectively. The utilization of each core is 

more than 80% during the streaming process. The number of the final output is 

stored in the directory with total handwriting image files in PGM format of 99,589. 

These files will be used for the next phase and the other 15, 731 handwriting image 

files are removed. These files are corrupted image files and some of the image files 

are too small that cannot be used for the authorship identification purpose. Both 

methods are tested with 115, 318 handwriting image files as input to the proposed 

integration. 

 

 

Fig. 8: CPU utilization by virtual machine 
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Fig. 9: CPU utilization of each core by virtual machine 

 

 

The time taken to complete the processing is approximately 3 hours 15 minutes to 

3 hours 20 minutes depending on the machine’s processing speed. This analysis is 

obtained after repeatedly testing with full dataset in tandem with changing of the 

scripting. Various measurements are done to capture the performance of the 

proposed integration and these include the process of increasing the number of map 

tasks, implementing the multiprocessing module and increasing the number of 

memory allocation for the MapReduce framework during processing. These actions 

can be achieved by overwriting the default configuration of the framework. 

Some of the variables in the MapReduce framework default configuration are 

changing accordingly. For example, the variable “mapred.child.java.opts” is set 

originally to 200MB and has been changed to 1024MB. This variable is referred to 

the java heap memory for processing MapReduce framework. The reason for 

changing this variable is due to frequent error message of Java heap space out of 

memory when dealing with large dataset; thus by changing the variable setting 

helps resolve the above issue. 

 

5.3      Analysis of the Proposed Integrated Mapper and Reducer  

Script for Writer Documents  

 

The handwriting image files with 76 directories are separated into 7 directories to 

perform k – fold validation during authorship identification phase after the proposed 

integration. For each of the testing process, the identification rate and duration are 

displayed as shown in Fig. 10. The image processing method that is used for 

identification purpose is based on pixel based, where all the pixel data of an image 

is extracted and converted to binary form. However, Spark does not offer the image 

processing library that can be integrated with Spark’s MLlib to perform authorship 

identification. Due to different word length of each image, pixel data based 
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approach is not convincing in recognizing the word that shares the same uniqueness 

during learning process for identification purpose. More layers of image processing 

methods need to be implemented to increase the identification rate. The user can 

adjust the configuration of the multilayer perceptron classifier to increase the 

identification rate of the input data based on the specification of the machine that is 

used to perform the authorship identification. 

 

 

 

 

 

 

Fig. 10: Identification rate and execution time 

 

Fig. 11 shows the Spark’s job execution from the web UI. In our study, the 

scheduling mode is changed to FAIR to ensure equal jobs distribution to all Spark’s 

workers. The number of tasks and the duration to complete all the tasks on each 

stage is displayed to the user for tracking purposes. From the event timeline, the 

user can observe the running task with the status: succeeded, failed or running.   
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Fig. 11: Spark’s jobs 

 

The details of the Spark’s executors or can be called as Spark’s workers can be 

viewed in Fig. 12. Each core is assigned to each Spark’s worker, thus 4 Spark’s 

workers are implemented all the jobs accordingly. The number of completed task, 

the total number of task and size of the input also is shown. The CPU, memory and 

disk utilization by Spark’s jobs are illustrated in Fig. 13. 

 

 

Fig 12: Spark’s executors 
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Fig. 13:  Spark’s CPU, Memory, and Disk utilization 

 

5.4      Comparison between Map Reducing Processing and the  

Proposed Integration of Mapper and Reducer Script for 

Writer Documents 

 

MapReduce framework is used in processing parallel the image files. First, the 

image processing processes are separated into the map and reduce phase. 

MapReduce framework can perform exceptionally well on data mining with <key, 

value> pair data but not for image processing. This is because for image processing, 

the aggregation and shuffle operations that are carried out during the reduce phase 

automatically are not required and only will affect the efficiency, i.e., longer time 

for job completion. However, this problem is overcome after integration with 

Hadoop Image Processing Interface (HIPI). HIPI is the image processing library 

that is designed to integrate with Hadoop MapReduce framework to perform image 

processing task. In our study, one of interesting findings is on the MapReduce 

framework streaming task that has failed for the numbers over the pre-defined 

threshold which causes broken pipe exception. Therefore, we propose the mapping 

processing in the MapReduce framework in solving writer identification problems. 

With the integration of mapping module and reducing module into a single script, 

the output can be stored directly in a temporary directory without passing through 

the reduce phase. All the processes of sorting, shuffling and aggregating will be 

executed during reducing phase automatically provided by the MapReduce 

framework. Thus, the duration to complete all the jobs is reduced. Python is 

implemented to achieve multi–core processing for better performance. Mapping 

task is increased to separate the input data into smaller chunks to perform parallel 

processing. The result is good where the time taken to complete the whole process 

is lessening comparing to pre-optimizations. 
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5.4a      Integration Analysis of MapReduce and Writer  

       Documents 

 

The integration of the proposed method is executed in the terminal after the HDFS 

server is started. The output directory, mapper file and extra commands are required 

to be specified. All outputs are stored in HDFS for further action. The user can 

ensure the job is running by accessing the Hadoop web UI to supervise and the 

terminal will display the MapReduce program is getting the input from HDFS. The 

percentages as shown in Fig. 14 show the jobs done in the mapping and reducing 

phases separately. When the jobs are completed, the percentage will give 100%. 

 

 

Fig. 14: MapReduce program execution 

 

When executing Spark MLib, the program must be able to create web UI and 

retrieve the data from HDFS as shown in Fig. 15. For this research, the input is split 

into 4 tasks because 1 core is assigned to each of the Spark’s worker on the server. 

The user is able to keep track the running progress through the Spark web UI by 

accessing the URL that is displayed in the terminal instead of keeps tracking the 

progress displayed in the terminal. The final output from Spark is the identification 

rate and the total duration taken to complete the identification process. This 

represents that Spark has successfully completed the computation processes of all 

input data that are retrieved from HDFS. The integration is   successful because of 

MapReduce program able to perform MapReduce jobs and stored the output in 

HDFS. Next, Spark program is able to retrieve the output data from MapReduce 
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program through HDFS to execute computation operation on the input data, and 

finally the output data from Spark program is displayed. 

 

 

Fig. 15: Spark’s execution 

6      Conclusion and Discussions  

In this study, we found that Hadoop MapReduce is a promising framework for 

processing Big Data due to its friendliness in configuring the parameters. It is also 

user – friendly since the user needs to write two functions: mapping function and 

reducing function from a large amount of data extraction which is performed in 
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parallel. Fault tolerance will be provided by the framework where the user does not 

need to worry about the loss of data if the error occurs.  

All the data will be separated into many chunks before passing to the processing 

node, and data replication will be executed to back up all data. Spark is proven for 

high processing speed due to RAM computation, but insufficient storage for post-

processing. However, this problem is solved by integrating with Hadoop. The 

integration of Hadoop and Spark can utilize the advantage of these two technologies 

which is the processing speed of Spark and the storage that is provided by Hadoop 

(HDFS).  

In this paper, we implement Authorship identification using multilayer perceptron 

classifier in Spark’s MLlib for classification purpose. However, further 

improvements are required to obtain better identification rate by converting all the 

data into the data format that is accepted by Spark application without losing 

writers’ information. Furthermore, image processing library is required to achieve 

better identification which is currently not available in Spark MLib.  
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