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Abstract 

     Nanocarriers' usage turned out to be a transforming factor in the 
field of medical diagnosis and therapies. The drug delivery system is 
one of these therapies, where nanocarriers are used for controlled and 
targeted drug delivery to the diseased sites. During this process, the 
critical issue of toxicity can arise, which needs to be addressed well 
before. Computational modeling would be a beneficial asset for 
nanomaterials researchers because it can foresee the toxicity, rest on 
previous experimental data. This paper focuses on identifying the 
toxic nature of nanocarriers by computing the microscopic images 
and determining the dead cells count present on it. The current 
research work faces the problem of inadequacy of proper datasets, 
hence solving this problem by generating new images using 
Generative adversarial network (GAN), which further utilized to build 
a Convolutional neural network (CNN) based toxicity classifier. 

     Keywords: Computational Modelling, Nanotoxicity, Drug Delivery System, 
Microscopic Images, GAN, CNN 

 

1      Introduction 

Nanotechnology has prominently advanced in biomedical applications such as 

gene/drug delivery systems, probing of DNA structure, tissue engineering, etc. with 

the utilization of nanomaterials (NM). One of the prime factors that makes them 

accessible for use in therapeutic applications is their small size and surface features 

[1], [2]. The size and surface can be consumed in a controlled manner to make them 

eligible for designing synthetic NM using different chemical compositions. All 

these headways have brought about a very fast increase in the requisite of NMs in 
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biological applications. One of these popular applications is drug delivery process, 

which makes use of nanomaterials as nanocarriers. 

 

Drug Delivery Process 

Drug delivery is a therapeutic process that utilizes nanomaterials to transfer 

pharmaceutical compounds or drug inside the body and in a suitable amount to have 

the physiological effect [3]. The primary objective of the drug delivery process is 

to successfully incorporate the drug into nanocarriers and deliver it to the diseased 

site [3], [6], [8], [9]. Chemotherapy is one of the therapeutic processes, which 

follows the same procedure for the treatment of cancer or tumor [4], [5]. Inclusive 

of various compelling properties and features, the use of nanomaterials also gives 

rise to different harmful effects not only for humans but also for the environment 

[6]. The small size of NM exposes their large surface area to cellular units that can 

lead to some toxic effects. Another crucial situation that generally arises during the 

stabilization of NM for the drug delivery process is the use of reducing agents that 

may also contribute significantly to overall toxicity. Thus, for designing a drug 

delivery system, the toxicity is one of the critical issues to be addressed seriously, 

as the clinical trials are not much successful due to undetected toxic effects of 

employed nanomaterials [8]. 

 

Toxicity During Drug Delivery Process 

The chemical compounds and drugs for the therapeutic process cannot be utilized 

directly due to their solubility and toxicity issues. If an excess dose of drugs is used, 

it can lead to severe physiological discomforts. To address this issue, a wide variety 

of biopolymers, superparamagnetic NPs are used as carriers in drug delivery 

process [7]. These biopolymers are completely non-toxic, readily available, and 

economically feasible, but they are soluble in water. Hence to make them water-

insoluble, crosslinking is done. Among various preparation methods of biopolymer 

nanoparticles, emulsion crosslinking is one of the efficient techniques that make 

use of certain crosslinking agents for biopolymers to make them insoluble in water 

[10], [11]. In fact, biopolymers are not toxic in nature, but the use of chemical 

crosslinking agents may cause toxicity in the prepared nanoparticle. The 

crosslinking agents combine with biopolymers and make them insoluble, which can 

also result in toxicity generation. This toxic nature needs to address well before its 

actual utilization.  

 

Computational Modelling  

Computational assessment of biological images has pulled in great interest of 

analysts worldwide with the introduction of machine learning techniques [12], [13]. 

For an effective prediction, it is highly required to identify the significant features 

or patterns, which correctly characterize the biological images used. Thus being 
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motivated by the prediction potential of cytotoxicity pertaining to nanocarriers, the 

objectives of the present work include identifying the toxic nature of some gelatin-

based nanocarriers that have been previously investigated as drug delivery 

nanocarriers. The toxicity prediction was performed on microscopic images 

collected from Govt. Autonomous Science College, Jabalpur. The dataset contained 

15 images, which were generated during the drug delivery process. Performing 

accurate toxicity prediction and classification on small and imbalanced image 

dataset is quite challenging. To solve this problem, this paper proposed a semi-

supervised learning along with GAN (Generative Adversarial Networks). 

2      Related Work 

Automated detection of cells is nowadays a quite studied field, for which an 

enormous number of methods have been defined [14] - [17]. In 2016, Atteya et al. 

[18] have aimed to describe an advanced vision-based system to automatically 

detect, classify, and track the organic cells using a recently developed SOPAT-

System (Smart On-line Particle Analysis Technology), a photo-optical image 

acquisition device combined with innovative image analysis software. The 

proposed method includes image de-noising, binarization and Enhancement, as well 

as object recognition, localization and classification based on the analysis of 

particles’ size and texture. Watershed transformation is used to extract manually 

connected objects, and it produced best accuracy. However, it can easily fall into 

the local optima.  

In 2020, Huang et al. [19] have proposed a novel blood cell classification 

framework based on medical hyperspectral imaging, which combined a Modulated 

Gabor Wavelet (MGW) and deep Convolutional neural network (CNN) kernels, 

named as MGCNN. For each Convolutional layer, multi-scale and orientation 

Gabor operators were taken dot product with initial CNN kernels. The essence was 

to transform the Convolutional kernels into the frequency domain to learn features. 

MGCNN is having the better classification performance than traditional CNNs and 

widely used support vector machine approaches. Yet, it is computationally 

expensive.  

Moreover, SVM [20], [21] is utilized to handle the classification problem of 

leukocyte, it attains good accuracy when compared over other conventional 

algorithms, it has high recognition and classification accuracy, and it categorizes 

the texture features into distinct classes of hardwood species. However, there are 

few conflicts with SVM such as performance will not be good for huge datasets, 

and for noisy data, also it will not perform well. Random Forest [22] was used to 

analyze the texture of mineral surfaces, and it has good classification accuracy. 

However, it is more complex to implement. 

The proposed work focuses on the area, where cell detection and estimation plays 

an essential role in toxicity prediction of drug delivery nanocarriers. 
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3      Problem Formulations or Methodology Materials 

The gelatin used as a biopolymer for the preparation of nanocarriers was supplied 

by Loba Chemie, India. Glutaraldehyde was used as a crosslinking agent for gelatin 

and purchased from Loba Chemie, India, and used without further purification. 

Other chemicals such as toluene (for preparing oil phase) and acetone were of 

analytical purity grade. 

 

Methods 
 
Preparation of Gelatin Nanocarriers:  

The gelatin nanocarriers were prepared by the emulsion crosslinking method, as 

described elsewhere [10]. In a typical experiment, 2 g of gelatin was dissolved in 

20 mL hot water under mild stirring for one hr till the complete dissolution of 

gelatin. Now to this aqueous solution of gelatin, a definite volume of toluene was 

added with vigorous stirring so that a stable emulsion of gelatin was obtained. Now 

a 1:1 (v/v) mixture of toluene and glutaraldehyde was prepared with constant 

stirring and added to the gelatin emulsion with a pre-determined rate. The 

crosslinking of gelatin with glutaraldehyde was allowed to take place for 6 h till the 

color of gelatin starts changing from slightly yellow to dark brown, which was an 

indication of crosslinking of gelatin by glutaraldehyde. After completion of the 

crosslinking reaction, the gelatin nanoparticles were filtered, washed thoroughly 

with acetone and water, and dried. The dried gelatin nanoparticles were stored in 

air-tight containers for further study. 

 
In Vitro Toxicity of Gelatin Nanoparticles 

In in-vitro methods, toxicity is judged based on the fastening of cells. If a chemical 

compound is capable of modifying the morphology of cells, then it unfavorably 

influences the cell growth and causes the cell death. To examine in-vitro 

cytotoxicity of the as-prepared glutaraldehyde cross-linked gelatin nanoparticle, the 

extract method   (ISO – 1099 33-5) on L 929 fibroblast cells has been widely used 

[23]. In this method, the powdered material is immersed in culture medium with 

serum, and then the extract is build up by incubating the pre penetrated test material 

with serum for 24 h. After the incubation process, the extract is filtered and diluted 

with culture medium to get the required concentration. Later on, after dilution of 

test sample extract, positive control, and negative control are investigated 

microscopically for the cellular reaction. The microscopic images indicate toxicity 

behavior. The toxicity levels, such as mild, moderate, and severe, are determined 

using the counts of live and dead cells shown in the microscopic images. The 

manual count of these cells can lead to error. Therefore, the tool of image processing 

can be successfully and precisely used for accurately calculating the drug potency 

and toxicity of chemical compounds, which act as a promising drug candidate. 

 



 

 

 

 

5                                                                  Deep CNN Model for Nanotoxicity … 

4      The Proposed Method 

The proposed work has been divided into three phases, which are as follows: 

1.  Initially, a set of image processing techniques were applied to process the images 

and to identify the number of dead cells present in the images. Based on dead cells 

count, the images were labeled as toxic or non-toxic.  

2. GAN was configured to generate artificial labeled data having similar 

distribution as that of original data. These newly created images would considerably 

improve classification accuracy. 

3. Further DCNN (Deep Convolutional Neural Network) was implemented to 

classify the unlabeled images as toxic or non-toxic, based on the original images 

and GAN generated images together.  

4.1      Identification of Dead Cells using Image Processing 
Techniques 

The automatic cell detection system is a quite studied field, where several methods 

had been defined, and still, the study of new techniques is going on [24] – [27]. The 

work done in the past mostly focuses on cell detection using various methods like 

FCNN, FCRN, UCNN [28] – [30], but nowhere toxicity is related to cell detection. 

This paper focuses on a relatively new or undiscovered area, where toxicity 

prediction of nanocarriers is made based on cell detection and evaluation. 

For this, first, the Vitro cytotoxicity test is performed on L-929 fibroblast cells. The 

reactivity of the test is evaluated using microscopic images generated through three 

different control samples, which are: positive control, negative control, and test 

sample. The grade value associated with each sample helps to determine the toxic 

nature. The highest value, i.e., 4 tends to toxic nature while the lowest one, i.e., 0 is 

non-toxic. These grade values are decided based on dead cells generated in each 

sample during the cytotoxicity test. This paper focuses on positive control on 

positive control images, as shown in Figure 1. The next section discusses the 

algorithm applied. 
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Fig 1: Positive Control Image 

4.1.1      Positive Control images (Class PoC) 

 

Initially, the discontinuity in intensity value of images is identified, which depends 

upon the direction of maximum intensity variation, base image position, and the 

change in contrast to the local image along normal. The gradient magnitude was 

identified at each pixel by a convolving image with vertical and horizontal 

derivative filters as mentioned in Equation 1-3. 
 

Gradient Vector 

∇𝐼 =  [
𝜕𝐼

𝜕𝑥
 ,

𝜕𝐼

𝜕𝑦
]

𝑇

, 

where 𝑇 = Threshold Value using sobel kernel, 
∂x = 𝑓(𝑥 + 𝑎, 𝑦) − 𝑓(𝑥 − 𝑎, y) and ∂y = 𝑓(𝑥, 𝑦 + 𝑎) − 𝑓(𝑥, 𝑦 + 𝑎), 

where a = small integer value. 
 

(1) 

Magnitude  
 
 

|∇𝐼| =  √(
𝜕𝐼

𝜕𝑥
)

2

+ (
𝜕𝐼

𝜕𝑦
)

2

 

 

(2) 

 

Orientation 
 
 

θ =  α tan (
∂I

∂x
 ,

∂I

∂y
),where α = arc.  

(3) 

Fig 2(a) shows an example of results in accurate gradient results. 
 

                 
 

Figure 2: (a) Result after applying gradient vector on the image and (b) the 

resultant image after hole filling process. 
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Generating Structuring Element  

 

A structuring element  𝑆𝐿  is required to dilate the images; hence, a structuring 

element was generated evenly to adjacent centers. The dilation process widen out 

the foreground objects which help in easy cell detection as shown in Equation 4-5. 

 

 

 (𝐼 ⊕ 𝑆𝐿)(𝑥, 𝑦) = 𝑚𝑎𝑥{𝐴(𝑥 − 𝑥′ , 𝑦 − 𝑦′) + 𝑆𝐿(𝑥′, 𝑦′)|(𝑥′, 𝑦′)  ∈ 𝐷}  
(4) 

 
As we are using a flat structuring element, hence  

 

 𝑆𝐿(𝑥′, 𝑦′) = 0 and 

(𝐼 ⊕ 𝑆𝐿)(𝑥, 𝑦) = 𝑚𝑎𝑥{𝐴(𝑥 − 𝑥′ , 𝑦 − 𝑦′) + (𝑥′, 𝑦′)  ∈ 𝐷} 
 

(5) 

 

To make the cell appearance more clear [31], hole filling is done using Equation 6 

 
 

             

𝐹(𝑥, 𝑦) = {
1 − 𝐼(𝑥, 𝑦),   If (𝑥, 𝑦) is on the border of 𝐼 

𝑥,  Otherwise
 

                                                    

 

 (6) 

 

 

After dilation process, hole filling is done which makes the cells more visible as 

shown in Fig 2(b). The resultant image is enhanced now, but to remove noise and 

make it clearer filtering is done. 

 

Top-hat Filtering  

 

The filtering method includes a morphological opening that is performed using the 

structuring element. It extracts the small details or components from the given 

image using Equation 7. It is implemented as a difference between input image I 

and the structuring element. 

  
𝐼𝑤(𝑓) = 𝑓 −  𝑆𝐿 

 

 
(7) 

 

Fig 3 shows the outcome of the above function.  

 

 

                                                                                                 

 

 

 

 

 

 

Figure 3: Results after morphological operation 
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Most of the cells in the image were identified, but still, the count of dead cells was 

incorrect. The variance in the count was due to closely connected cells, which were 

considered as one object, as shown in Fig 4. To separate these connected cells, 

segmentation methods are used. 

 

 
Figure 4: Clustered Cells 

 

Watershed Algorithm is one of the classical segmentation method used in the past 

[32], [33]. Various improvements and variations of this method were generated and 

utilized due to its simplicity, speed, and easily adjustable distance map factor [34], 

[35], [36]. 

 

 

 

Watershed Algorithm 

 

Initially, a global thresholding was applied, which was further followed by the 

watershed algorithm to separate the overlapped cells and to determine the correct 

cell count. To find out the optimum threshold, which isolated the background and 

foreground pixels, Otsu's method was used [37]. It is a nonparametric and 

unsupervised method that analyses for the threshold that mitigates the intraclass 

variance. The weighted within-class variance is calculated as mentioned below in 

Equation 8. 

 

 𝜎𝑤
2 =  p(𝑡)𝜎1

2(𝑡) + 𝑝2(𝑡)𝜎2
2(𝑡) 

Where p is the class probability of different grey level pixels 

 
 

 
 
(8) 

 
And value of p is given by applying Equation 9:                          

 

 
𝑝1(𝑡) = ∑ 𝑃(𝑖)

𝑡

𝑖=0

 

 

𝑝2(𝑡) = ∑ 𝑃(𝑖)

255

𝑖=0

 

 

 
 
(9) 
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 Total variance is calculated as mentioned in Equation 10 

 

  

σ2 =  σw
2 (t) +  σb

2(t) 

Where σw
2 (t) = within class variance 

σb
2(t) = between class variance 

 

 
 
(10) 

Distance transform method of watershed was used for cell segmentation. Initially 

the distance has been calculated from each pixel to its nearest neighbor pixel having 

non zero values.  

Let P be the set of points in space Z. For every point p of P, the distance d (p) of p 

to the corresponding set Pc is defined as in Equation 11 

  

∀p ∈ P, d(p) = dist(p, Pc) 

Where dist(p, Pc) is the distance of p to the nearest point  Pc 

 
 

 
(11) 

 

A section of distance d at level is defined in Equation 12 

 

  

Yi(d) = {p: d(p) ≥ i} = P ⊖ Di 

Where Di is a disk of radius i 

 

 
 
(12) 

 

The resultant image after distance based watershed segmentation algorithm is 

shown in Fig 5.  

 
Figure 5: Image after segmentation 

 

The distance segmentation method resulted in suitable partition of the connected 

cells. Fig 6 illustrated the outcome with an example.  
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Figure 6: Cells after segmentation 

 

The algorithm was tested on total 15 positive control images and it works with 

approx. 97% accuracy. Table 1 illustrates the result of all images.  

 

 

Table 1: Positive Control Images Class Result 

 

4.2 Generation of New Images using GAN  

 

The author named Goodfellow et al. [38], proposed Generative Adversarial 

Network (GAN), which is based on the unsupervised model. It follows a sequential 

approach, where at every step, a set of techniques are applied. Every step feeds 

forwards the other until the resultant images occur. GAN consists of a generator 

neural network and an adversarial neural network. A generator is a de-convolutional 

neural network, which expands the images instead of shrinking. The filters are 

move over input images, and new images having higher spatial dimensions are 

Image ID Total 

Cells 

Correctly 

Identified 

Undetected 

Cells 

Intruded 

Cells 

Precision Recall 

1 68 67 1 0 1.00 0.98 

2 64 64 0 0 1 1 

3 67 65 1 1 0.98 1 

4 47 47 0 0 1 1 

5 38 37 1 0 0.97 1 

6 35 34 1 0 1 0.97 

7 37 35 0 2 0.95 1 

8 46 43 3 0 0.93 1 

9 64 59 3 2 0.96 0.95 

10 68 67 1 0 1 0.98 

11 64 62 2 0 1 0.96 

12 60 58 0 2 0.96 1 

13 71 69 0 2 0.97 1 

14 45 45 0 0 1 1 

15 65 62 1 2 0.96 0.98 
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generated. The generator automatically discovers the uniformity or patterns present 

in input images and learns by itself. This learning further helps to generate new 

images from original images. These newly generated images are as alike as the 

original one, which makes it difficult to distinguish between the two [39], [40]. 

In the past GAN, techniques had been used in various biomedical researches for 

improving the classification of images [41], [42]. Yang J. et al. [43] implemented 

GAN for data augmentation of X-ray prohibited item images. Other than, these 

various authors had used this technique to generate new images [44], [45].  

The discriminator learns the features of original images and finds out what all 

features have a major role in making it real. Finding out the same, it gives feedback 

to the generator based on which it generates new similar images. The discriminator 

is a standard convolution network, which distinguish between real and fake images. 

Here the focus is only on the generator part, as the goal is to generate more images 

to increase the dataset size. Figure 7 shows the basic steps followed in GAN to 

generate more microscopic images. 

 

 
 

Figure 7:  Step of GAN to generate new images 

 

The section below explains each step. 
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Noise Vector 

 

Initially, a noise vector has been added to the input images. With the addition of a 

random noise vector, the class of resultant image becomes different from that of 

original images. A small noise addition to the image does not affect its appearance 

much but modifies its configuration. An example of the same is shown in the figure 

8 below. 

 

Adding such a small value vector does not make any changes in the appearance of 

the original image. 

 

 

 

 

 

 

 

 

 

 

 

Figure 8:  Addition of noise vector to input image 

 

Dense Layer 

 

The generator network works as a black box, which takes normally generated 

number vectors as input and generate new images. To generate such a required 

architecture, a dense layer is required. This dense layer creates a dense vector which 

is further converted to image as shown in figure 9. 

 

 
Figure 9:  Dense Layer 

 

 

 Batch Normalization 

 

Batch Normalization is one of the key phases of GAN. It allows each network layer 

to learn by itself. Here, each layer learns a bit more independently of other layers. 
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It checks for normalization of activation function and makes sure it does not go too 

high or low. This allows the network to train on new features, which could not get 

trained earlier. Batch normalization also solves the problem of overfitting. 

 

Convolution Layer 

 

As explained in the above section, it is a kind of mathematical function, where 

combining two variables generates a new third variable. Here, the first input refers 

to the original image, while the second one is a small filter or kernel. The kernel 

slides along the original image and works on the small blocks at a time. This sliding 

process obtains a new image. 

 

 
 

Figure 10:  Convolutional Layer 

 

 

 

 LeakyReLU 

 

LeakyRelU refers to Leaky version of a Rectified Linear Unit and is one of the most 

popular activation functions. The ReLU function can be defined as max(0,Z). It 

means the range of this function lies between 0 and Z. Here, every activation value 

which occurs in region < 0, becomes zero automatically. This problem is known as 

dying ReLU and can be overcome by applying LeakyReLU. LeakyReLU solves the 

problem by using a constant and small non-zero gradient value. 

 

 

 
 

Figure 11:  ReLU and LeakyReLU functions 



 

 

 

 

Bhavna Saini et al.                                                                                                  14 

 

The above mentioned multi-layer step processing of GAN is applied in the work to 

increase the dataset size of microscopic images. The next section discusses the 

algorithm used for training as well as generating new images. 

 

 

 Results after GAN Implementation 

 

Development of nanotoxicity prediction models is becoming increasingly important 

in the risk assessment of engineered nanomaterials. However, it has significant 

obstacles caused by the wide heterogeneities of published literature in terms of data 

completeness and quality. Over the last decade, substantial advances have been 

made in various computer vision technologies and many of them are based on 

Convolutional Neural Network (CNN) architecture. Typically, slow convergence 

and the need for extensive parameter tuning adversely affect a stochastic gradient 

descent algorithm using Back-Propagation (BP) trains CNN, but the training 

process. This work is focused on the nanotoxicity prediction using the microscopic 

images. As the manually collected images are in small count, it will be improved 

by Generative Adversarial Networks (GAN), which increases the dataset size based 

on the configuration of original images. 

GAN is implemented to increase the dataset size by generating more microscopic 

images. Initially, 35 microscopic images were taken as input. As mentioned in 

algorithm 1, these input images IL are defined as labeled images. Here labeled 

images refer to the images which are already classified as toxic based on dead cells 

count. The generator phase of GAN automatically learns the feature of input images 

and generates 150 more images. These newly generated images are named as 

fabricated images IF in the algorithm. 

 

 

 

Algorithm 1: Image Generation using GAN 

 

𝐈𝐧𝐩𝐮𝐭:  𝐈𝐥𝐚𝐛𝐞𝐥𝐥𝐞𝐝  ∪  𝐈𝐔𝐧𝐥𝐚𝐛𝐞𝐥𝐥𝐞𝐝, 𝐓𝐨𝐱𝐥𝐞𝐚𝐫𝐧𝐞𝐫𝟏  and 𝐓𝐨𝐱𝐥𝐞𝐚𝐫𝐧𝐞𝐫𝟐, 𝐆𝐀𝐍 

          (Where 𝐈𝐥𝐚𝐛𝐞𝐥𝐥𝐞𝐝 = dataset images labelled as Toxic, 𝐈𝐔𝐧𝐥𝐚𝐛𝐞𝐥𝐥𝐞𝐝 = 

unlabeled dataset images) 

 

Output: Toxic Image Classifier TC 

 

Initialize:  𝐈𝐋 =  𝐈𝐥𝐚𝐛𝐞𝐥𝐥𝐞𝐝, 𝐈𝐔 =  𝐈𝐔𝐧𝐥𝐚𝐛𝐞𝐥𝐥𝐞𝐝, 𝐈𝐅 = ∅      (where 𝐈𝐅 = fabricated labeled 

dataset) 

 

1. while 𝐈𝐅 is transformed 

2. 𝐈𝐆 = GAN( 𝐈𝐋)     (where 𝐈𝐆 =
GAN generated images using original labeled images) 

3. Train 𝐓𝐨𝐱𝐥𝐞𝐚𝐫𝐧𝐞𝐫𝟏 & 𝐓𝐨𝐱𝐥𝐞𝐚𝐫𝐧𝐞𝐫𝟐 using  𝐈𝐋 +  𝐈𝐆 as dataset 
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4. Apply Toxlearner1 and predict labels for  𝐈𝐔 as 𝐈𝐥𝐚𝐛𝐞𝐥−𝟏 

5. Apply Toxlearner1 and predict labels for  𝐈𝐔 as 𝐈𝐥𝐚𝐛𝐞𝐥−𝟐 

6. for each sample of  𝐈𝐔  check 

7.         if  𝐈𝐥𝐚𝐛𝐞𝐥−𝟏(𝐢) = = 𝐈𝐥𝐚𝐛𝐞𝐥−𝟐(𝐢) 

8.              Add unlabeled instance i to fabricated class 

9.   Add  𝐈𝐔(𝐢) = IF 

10.         end if  

11.   end for 

12.  𝐈𝐋 =  𝐈𝐋 +   𝐈𝐅   (Final labeled dataset having fabricated data included) 

13.  𝐈𝐔 =  𝐈𝐔 −   𝐈𝐅 
14.  end while 

15.  𝐈𝐆 = GAN( 𝐈𝐋),  𝐈𝐋 =  𝐈𝐋 +   𝐈𝐆   

16.  Apply Classifier  𝐓𝐂 on  𝐈𝐋 

 

During training, a GAN framework has two loss functions one is for generator, and 

another one is for the discriminator. The authors have applied 1500 epochs in the 

model. The accuracy and loss functions vary with the increase in the number of 

epochs. As can be seen in the Figures 12-14, on 300 epochs, the pixels are scattered, 

and the authors could not figure anything out from it. After 900 epochs, the pixels 

seem more organized and the loss functions for both discriminator and generator 

are getting decreased. With the increase in epochs i.e. on 1500 epochs the images 

get more clear and are quite similar to that of original images. The variation in the 

loss has decreased gradually and becomes almost constant at the end of training. 

There exist a minor change in the loss value of both generator and discriminator, 

which indicates equilibrium. Here, a total of 150 images are generated, which are 

used in developing a CNN model for toxicity classification. 

 

 
Figure 12:  Results after 300 epochs 
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Figure 13:  Results after 900 epoch 

 

 
Figure 14:  Results after 1500 epoch 

 

 

4.3 Classification using CNN Model 
 

The dataset having both the original and fabricated images is transferred to the CNN 

model for classification. The dataset is split into 80% training data and rest 20% for 

validation to have a generalized model. The layers of the CNN models are shown 

in Table 2. 

 

 

 Input Layer: 

In the input layer, the image size is 28*28*1, which corresponds to height, width, 

and channel size. Here, value 1 represents the gray-scale image. 

 

Convolution Layer:  

The CNN model has a total of 3 convolution layers. The first layer applied 32 filters 

with filter size as 3*3, the second layer has 64 filters, and the third layer has 128 

filters. All these filters are of size 3*3. Along with these convolution layers, three 

max-pooling layers are also added with filter size as 2*2. 
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Table 2: CNN Layers 

Layer (type) Output Shape Parameters 

 

Conv2d_1 (Conv2D) (None, 28, 28, 32) 320 

LeakyRelu_1 (None, 28, 28, 32) 0 

Max_pooling2d_1 (None, 14, 14, 32) 0 

Conv2d_2 (Conv2D) (None, 14, 14, 64) 18496 

LeakyRelu_2 (None, 14, 14, 64) 0 

Max_pooling2d_2 (None, 7, 7, 64) 0 

Conv2d_3 (Conv2D) (None, 7, 7, 128) 73856 

LeakyRelu_3 (None, 7, 7, 128) 0 

Max_pooling2d_3 (None, 4, 4, 128) 0 

Flatten_1 (None, 2048) 0 

Dense_1 (None, 128) 262272 

LeakyRelu_4 (None, 128) 0 

Dense_2 (None, 2) 258 

 

Total params: 355,202 

Trainable params: 355,202 

Non-trainable params: 0 

 

In the last dense layer, classification is done that works well and achieves an 

accuracy of 92% and validation loss as 0.43. 

The acceptance of deep learning methods in the area of nanoscience could be 

increased due to its success in other areas. But the major challenge faced by deep 

CNN models in the biomedical field is the limited amount of data. The limited 

amount of training data cannot generalize the features accurately and results in 

overfitting. Another issue associated with the training of deep CNN models from 

scratch is its high computational power, memory, and time. In this case, transfer 

learning and fine-tuning can prove helpful. Hence, in future work, transfer learning 

can be used for nanotoxicity classification. 

 

Conclusion                                   
 

The present study has developed an image analysis framework which works on the 

microscopic images generated during drug delivery process, to identify the toxic 

nature of the nanocarriers used. There are numerous approaches defined in the past 

for automatic cell detection, but to the best of authors knowledge there is no work 

exist for toxicity prediction during drug delivery process based on cell detection.  

This work presents an unsupervised approach to enhance the dataset size. In drug 
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delivery process there is a need to evaluate the toxic nature of nanocarriers. This 

toxicity can be identified by counting the dead cells present in microscopic images 

which are generated during drug delivery testing. For this, an image processing 

framework was designed. To bring in more reliability and accuracy in the model, 

Convolutional Neural Network (CNN) had been implemented preceded by 

Generative adversarial networks. Generative Adversarial Networks (GAN) was 

found to solve the problem of small dataset by generating additional images based 

on the configuration of original images. All these images collectively formed a 

dataset to further classify the test images using CNN. 
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