
Int. J. Advance Soft Compu. Appl, Vol. 12, No. 3, November 2020

ISSN 2074-8523; Copyright © ICSRS Publication, 2020

www.i-csrs.org

Efficient Study on Evaluating Processor’s

Affinity in Multi-Core Architecture and

Multi-Processor Systems

Saleh Ali Alomari

Software Engineering Department, Faculty of Science and Information

Technology, Jadara University, Jordan

e-mail:omari08@jadara.edu.jo

Abstract

 Processor’s technologies are advancing at a fast pace, introducing
higher computational power. However, this requires the presence of data
closer to the processing unit in order to utilize the introduced
computational power. Allowing processes to execute in any processor,
results in exploiting the potential of the computational power of the
processors, However, this diminishes the locality factor 1, in other words,
every time a process is scheduled to execute, it is required to migrate its
data to the new processor. This has two consequences: Firstly, the data
should reside in the main memory all the time. Second, when the process
finishes execution, it is required to update the copy of the data in the cache
to the main memory, and to load the data in the next execution period.
The significance of this paper comes from the fact that new systems are
equipped with more processors and more cores per processor. In the near
future, processors with many cores are going to be available
commercially, hence, it is important to provide an insight on how to
execute the processes on such processors. In this paper the processor
Affinity helps in achieving better performance, as the process’s data is
expected to reside in the processors cache rather than the main memory.
However, this might affect the performance, as limiting the number of
processors that processes allowed to execute in, which might degrade the
performance of the application. This paper evaluates the processor
affinity (or core affinity) in order to measure the factors of locality and
computational power on the processes execution.

 Keywords: Chip Multiprocessors, processor affinity, Multi-Processor Systems,
SMPs

mailto:omari08@jadara.edu.jo

Saleh Ali Alomari 66

1 Introduction

Currently, it is clear that Chip Multiprocessors (CMPs) or Multi-core processors

are inevitable [1]. Processors manufacturers are providing Dual- and Quad-core

processors over the past decade, and the plans are to provide processors that are

equipped with 80 cores in the near future. In 2013, Intel announced the release of

Knights Landing CPU, which is equipped with 72 cores and 16GB of DRAM

stacked on the same chip, with the ability to process 500GB/s of data [2-3] In CMPs

there are different cache hierarchies that enable the cores to store, process and share

data. Generally, each core is associated with its own cache, named L1, and the cores

are sharing the Last Level Cache (LLC). CMPs architecture is becoming more

coherent with Shared Memory Processors (SMPs) architecture. Hence, CMPs and

SMPs are used interchangeably in this paper. This also can be applied to the cores

and processors, different cores in the same processor can be understood as different

processors in the same system. For modern operating systems with multiprocessors,

schedulers influence high store partiality by booking a procedure on a recently

utilized processor at whatever point possible [4]. If the main process runs on a high

affinity processor, it can already get the majority of its state in the cache and

therefore run more efficiently [5]. Although exploitation of the cache affinity on

Unicore multiprocessors are known to improve performance, their impact has not

been studied on multicore processors. Understanding this effect is key to the

development of efficient algorithms for multicore scheduling. There are a lot of

these related algorithms (aimed at improving efficiency [6-9], reducing energy

consumption [10] or improving thermal control [11-12]) operate by regular process

migration between the cores CPU. Frequent migrations prevent the scheduler from

exploiting affinity with the cache and can hurt performance. The affinity to the

processor is a propensity for an application to run on a specific processor and to

avoid migration. The soft affinity is known as, if the scheduler does not want to

migrate a process to another Processor unless necessary. With hard affinity

allocations in source code this can be overridden. Hard affinity APIs allow the

developer to make specific allocations to a processor or processor party. We should

determine where our code runs and on which processor our code runs that is not

user-decidable which can be achieved by setting a CPU bit mask for each thread

using sched_set affinity) (and sched_get affinity) (calling functions in LINUX[13].

Accordingly, application’s architecture should be reviewed such that it utilizes

the computational power that is introduced by CMPs. Cores computational power

is relatively lower than single core processors, hence, applications that are not

developed with concurrency in mind is expected to run at slower speed [14].

Threads, within the same application, are executed concurrently; generally, these

threads share the data among each other. The location of the data at run time is

determined based on the execution units that are used to execute these threads and

the current status at runtime. Threads might be executed at the same processor at

different cores, or at different processors [14]. Processors technology are advancing

at high pace, hence, it is essential to introduce techniques that help in utilizing its

67 Efficient Study on Evaluating Processor’s Affinity in Multi-Core

power. Processor affinity is one of these techniques. The significance of this paper

comes from the fact that new systems are equipped with more processors and more

cores per processor. In the near future, processors with many cores are going to be

available commercially, hence, it is important to provide an insight on how to

execute the processes on such processors. The paper written by “James Donald and

Margaret Martonosi” entitled "An efficient Practical Parallelization Methodology

for Multi-Core Architecture Simulation" presented a programming methodology

that converts the uniprocessor simulators into multi-core simulators. The approach

they use requires less development effort compared to other techniques in

programming. [15].

2 Related Work

Processor affinity or CPU sticking, empowers official a prepare or a string to a

processor or a run of processors, such that the method or string is executed as it

were on the assigned processor(s) instead of on any accessible processor on the

framework. This is a modification of the standard central queue scheduling

algorithm in a multiprocessing system. Processor affinity has the advantage that a

process that was run on a given set of processors is expected to have its details (or

data) remain in that processor, process’s data in the cache memory. Scheduling a

process to execute on the same processor improves its performance by reducing the

possibility of cache misses, and the amount of time required to make the data

available for that process; in other words, minimize the cost of data migration.

Torrellas et al. proposed the impact of affinity-conscious scheduling on traditional

(Unicore) multiprocessors [16][18]. According to their report, affinity-conscious

scheduling decreased cache miss rates between 7 % to 36 % percent and improved

efficiency by 10 percent. We followed the same goal but targeted multicore

processors. We replied to a slightly different question, too. Unlike the Torrellas

study which calculated the performance impact of a particular affinity-aware

scheduling algorithm, we evaluated the upper limit on performance gains that could

be achieved by exploiting affinity to the cache. Constantine et al. considered the

effects of migrating a cycle between cores on a multicore processor [17] on output.

Before migrating the process to that core (as opposed to leaving the caches cold),

they studied performance effects of warming up instruction L1 and data caches on

the new core. Warming up the caches builds synergy between the core and the

mechanism being migrated.

2.1 Cache Memory

In CMPs, cores share data using the cache that resides inside the processor,

accordingly, it is expected that a multi-threaded application in which threads share

data among each other might not suffer delays, as the transfer of data within the

same processor is significantly faster compared to sharing data using the main

memory, as in the SMPs case. There are many cache memory hierarchies that is

Saleh Ali Alomari 68

developed for different purposes. Generally, the first level cache is dedicated for the

core, while it is possible to share L2 and L3 cache among two or more cores. Figure

1 (a) and (b) shows a dual core processor, with L2 cache unshared and shared,

respectively. A multi-threaded application running on the processing presented in

figure 1 (b) threads can share their data using L2 cache; this is expected to

significantly post the performance of the processor and the application.

(a) (b)

Figure 1 (a): Dual core processor, unshared cache. (b): Dual core processor,

shared L2 cache

Figure 2 shows a quad core processor with committed L1 and L2 cache and then

will shared (L3) cache. It is possible in this design to execute different threads and

have the ability to store their details in L2 cache, allowing the thread re-scheduled

on the same processor to perform faster than the case being re-scheduled on another

core or another processor.

Figure 2: Quad core processor, shared L3 cache

2.2 Scheduling Mechanism

The Operating System (OS) scheduler handles the execution of different

applications running on the same system. The scheduler manages the threads or

processes allocation to the execution units based on different algorithms that is

69 Efficient Study on Evaluating Processor’s Affinity in Multi-Core

designed for this purposes. To achieve the best performance, the scheduler tries to

ensure that all execution units are allocated all the time. However, this might have

negative influence on the performance. It is possible that the allocation of the

processes might results in high level of data migration, which degrades the

performance. Based on that, the scheduler should have a log that indicates which

processes executed on a certain core or processor, trying to re-allocate those

processes to the same core or processor. This is expected to enhance the

performance of the execution. On the other hand, it is possible that between two

successive allocations of a process that the process’s details are overwritten, hence,

it is possible for that process to be allocated on any available execution unit in the

system. Generally, there are two main scheduling methodologies: partitioned and

Global. In Global scheduling the process can be allocated to any core or processor

on the system, hence, there is one scheduler that manages the scheduling of the

processes in the system. In partitioned scheduling, the available execution units are

divided into partitions, and each partition is managed by a single scheduler. The

number of scheduler is determined by the number of partitions. In this case, a

process allocated to a partition is not allowed to migrate to another partition while

being executed. Partition scheduling can be viewed as a sort of processor affinity

scheme, thus, enhancing the performance of the application by keeps the processes

closer to their data. On the other hand, it is possible that at runtime a partition is

able to finish execution of the process allocated to it faster than the other partitions,

resulting in busy and idle partitions. This can be avoided using a balanced scheme

of designing the partition and the allocation of processes to these partitions.

2.3 Image Histogram

Image histogram is a number of pixels in an image depending on its intensity;

this can be presented as a graphical drawing. Image histogram can be developed

for gray scale and colored images. In gray scale image the histogram represents the

256 degrees of the gray scale levels. In color images the histogram represents the

distribution of the three basic colors; Red, Green, and Blue. Image histograms are

an important tool for image processing as it can be used to view different features

of the image as quantization noise. The calculation of the image histogram requires

accessing every pixel in the image to read its value, and to develop the image

histogram. Hence, the computational requirements of this function are dependent

on the image size. The usage of the image histogram function is based on the fact

that the image, which represents the data in our case, is divisible. Hence, it is

possible to divide a certain image into multiple segments and to provide each

segment to a thread. This ensures that the number of threads factor is highly tested

and contributes to the overall execution time.

Saleh Ali Alomari 70

3 Research Methodology

According to the discussion in the previous chapter, cache size, localization,

and the number of processing threads are the main factors in determining the

performance of the systems. Hence, the design of the paper is considering these

three factors.

3.1 Research Process

The research considered image processing application to perform the testing.

This is based on the following facts:

• Data size varies: in image processing applications the size of the images might be

very small or very large, which enables the testing of cache thoroughly.

• Data can be partitioned: in image process applications, the image can be partitioned

and processed by different threads. This enables the testing of multithreading and

the different loads for each thread.

• Computational prone: it is well-known that an image processing application is

computational prone, which enables the testing process to have variance time

requirements. The available machine for testing is a DELL PowerEdge 2950

server, equipped with two Intel XEON processors (the processor’s model is

E5345). Each processor is quad core with dedicated L1 data cache of 32KB and

shared L2 cache of 8MB. The server has a main memory of 32GB.

3.2 Data Load Selection

Based on the available server, the images are selected to satisfy all testing

requirements. Images’ size varies between 10KB and 13MB, as shown in table 1.

Table 1: Selected image sizes and the purpose of each case

Image Size Testing Requirement

10KB Single load in L1 data cache

50KB Single load in L2 cache and two loads in L1 data Cache

800KB Single load in L2 cache and more than 10 time loads in L1 data

Cache

3MB Single load in L2 cache and more times loads in L1 data Cache

compared to 800KB size

13MB Two Loads in L2 data cache from main memory and more

number of transfers between L2 and L1 data Cache.

Figure 3 (a) shows the image size of 10KB. Figure 3 (b) shows the image size of

50KB. Figure 3 (c) shows the image size of 800KB. Figure 3 (d) shows the image

size of 3MB. Figure 3 (e) shows the image size of 13MB.

71 Efficient Study on Evaluating Processor’s Affinity in Multi-Core

(a) (b)

(c) (d)

(e)

Figure 3 (a): image of size 10KB. (b): image of size 50KB, (c): image of size

800KB. (d): image of size 3MB and (e): image of size 13MB

3.3 Testing scenarios

All the tests are performed with one processor or two processors enabled. This

two measure the degree to which the increased computational power may influence

the performance.

Saleh Ali Alomari 72

3.3.1 Test scenario 1

In this test, the image size selected is 10KB, which can be loaded into L1

data cache in one time. The number of threads in this test varies between 2 and 16

threads, with increments of 2. Hence, the goal of this test is to measure the increased

number of threads while having the same number of execution units and data load.

In the case of the number of threads more than 8, the first 8 threads are assigned to

the 8 cores and the rest of the threads are going to wait for the any of the cores to

be available. Each thread is assigned the image in whole, so, the data size for each

thread is 10KB.

3.3.2 Test scenario 2

In this test, the image size selected is 50KB. Since the size of L1 data cache

is 32KB, and then it is required to perform the load of the image into L1 data cache

in two steps, rather than 1 time as in 10KB image. As in test scenario 1, the number

of threads varies between 2 and 16 threads with increments of 2. Each thread is

assigned the image in whole, so, the data size for each thread is 50KB.

3.3.3 Test scenario 3

In this test, the image size selected is 800KB. The image is divided among

the available threads. So, by increasing the number of threads the data size to be

processed by each thread is going to decrease, as shown in table 2. The increase of

the number of threads is going to utilize the available cores in the system; however,

this requires more transfer of data between L2 cache and L1 data cache. As the

number of threads increase, the threads are not guaranteed to be re-scheduled on

the same core, or the same processor. Besides that, the increased numbers of threads

will influence the contents of L1 data cache and it will be required to re-fill the

cache every time a thread starts execution. In another case, the size of the image is

selected to be 3MB. The only difference in this case is the number of times required

for each thread to transfer the data to be processed from L2 cache into L1 data cache.

For example, in the case of 8 threads, it is required to transfer the share of data of

each thread, which is 100KB, from L2 cache into L1 data cache on four times, while

in the case of 3MB, the share of each thread is 375KB, which requires 12 times of

transfer to process that data.

3.3.4 Test scenario 4

In this test, the size of the image is 13MB. As the size of L2 cache is 8MB, then

it is required to perform higher number of transfers between main memory and L2

cache. Besides that, as the number of threads increase, it is expected to have high

level of variation in the execution time of each thread, which might increase the

level of re-scheduling of the threads on different cores in other processor. This case

increases the data migration between the cores, if the thread is rescheduled on the

same core, or between the processors, if the thread is re-scheduled on a different

processor.

73 Efficient Study on Evaluating Processor’s Affinity in Multi-Core

4 Implementation and Modeling

The target of the paper is to measure the performance of the system; hence, the

concentration is on the functionality of the application rather than its Graphical User

Interface (GUI). An image processing functionality is selected to perform the

evaluation process, which is the image histogram, discussed in section 2.3. A

Different data load is used to measure the diversity of the factors that contribute to

the performance. Accordingly, a Java application is developed to perform the

required tasks. As Java provide versatile tools for image processing and execution

environment control. There are many functions within the image processing.

However, as the interest is in the testing rather than the functionality itself, the

selection function is the processing of the image to build its histogram. The code

shows the image histogram for the images with gray scale.

5 Assumptions

All tests are performed on a dedicated server with no other application

interference the testing process. Hence, L2 and L1 data cache of all the cores are

utilized by the testing case. Global scheduling is used; hence, any thread can be

scheduled or rescheduled on any available core.

Saleh Ali Alomari 74

6 Evaluation Process

The evaluation process is designed such that the different related factors are

considered either individually or combined. The evaluation is designed to consider

the following four factors:

• The data size to be processed: the amount of time required to perform the operation

is dependent on the data size. Hence, different data loads are considered such that

the execution of the threads achieves high diversity. The data size considered for

this evaluation varies between 10KB and 5MB.

• The number of processing threads: for the same data load, if the number of threads

is increased the data size for each thread is decreases, as shown in table 2. The

available machine is equipped with 2 processor - Quad core each. Hence, the

number of threads is selected between 2 and 16.

• The number of L1 cache refills: the available processors have L1 data cache of

32KB. The data size and by each thread. To ensure the coverage of all possible

diversities, image sizes of 10KB, 50KB, 800KB, 2MB, 5MB, and 10MB are used.

For each of these images different number of threads used to perform the execution;

the selected number of threads are: 2, 4, 6, 8, 10, 12, 14, and 16. The selection of

these values is based on the machine used to perform the evaluation. The machine

used is equipped with two Intel E5345 processors. Each processor has a L2 cache

of 8MB and L1 data cache of 32KB.

Table 2 shows the distribution of the images and threads. For example, in the

test of image with size of 800KB, if the number of threads is 14, each thread is

supposed to process 57KB of data.

Table 2: Processing threads data share according to the number of threads, all

values are in KB, unless otherwise mentioned

 2 4 6 8 10 14 14 16

10 10 10 10 10 10 10 10 10

50 50 50 50 50 50 50 50 50

800 400 200 133 100 80 67 57 50

3M 1.5M 0.75M 500 375 300 250 214 188

14M 7 M 3.5 M 2.33 M 1.75 M 1.4 M 1.67 M 1 M 875

7 The Results

7.1 Small Size Images’ Results

The two images selected for this test have sizes of 10KB and 50KB. The

target of this test is to measure the influence of the time required to transfer the data

between L2 and L1 data cache; in other words, the degree of the locality influence

75 Efficient Study on Evaluating Processor’s Affinity in Multi-Core

on the execution time. In the 10KB case, the image can be loaded in single transfer

to L1 data cache and processed by the thread, however, at least two transfers is

required for the 50KB image. Figures 4 (a) and (b) show the results of performing

the execution using different number of threads for the image of size 10KB, on 2

processors and 1 processor, respectively. The results in Figure 4 (a) present the

number of threads increase the time required to perform the operations decrease.

This is due to the fact that, by the first load of the thread the image is loaded into

L2 cache and all subsequent accesses to the images are performed from L2 cache.

The results of Figure 4 (b) shown the number of threads increase the time

required to perform the execution decrease. However, there is a limit to that, which

is when the number of threads exceeds twice the number of cores. This is due to the

time a thread is waiting in the queue for one of the cores to be available. The results

indicate that the time required performing the execution one a single processor is

significantly better than 2 processors, this is due to the facts that in the 2 processors

case, the threads might be re-scheduled on a different processor each time, which

requires migration of data between the processors. While in the single processor

case, all the threads are scheduled in the same processor and the data resides in L2

cache all the time.

(a) (b)

Figure 4: (a) Image of 10KB - 2 processors. (b): Image of 10KB - 1 processor

Figures 5 (a) and (b) show the results of performing the execution using

different number of threads for the image of size 50KB, on 2 processors and 1

processor, respectively. The results in both cases indicate the number of threads

increase the time required to perform the operations decrease. As noticed the time

required to perform the execution on the single processor case is significantly lower

than the 2 processors case, which is due to no need in migrating the data between

the processors in the case of rescheduling the threads among the processors.

Saleh Ali Alomari 76

(a) (b)

Figure 5: (a) Image of 50KB - 2 processor. (b): Image of 50KB - 1 processor.

7.2 Medium Size Images’ Results

Figures 6 (a) and (b) show the results of performing the execution using different

number of threads for the image of size 800KB, on 2 processors and 1 processor,

respectively. Generally, the results in both cases indicate the number of threads

increase the time required to perform the operations decrease.

(a) (b)

Figure 6: (a) Image of 800KB - 2 processor. (b): Image of 800KB - 1 processor

The results in figure 6 (a) shown the number of threads did not exceed the number

of cores the execution time is relatively constant. However, as the number of threads

exceeds the number of cores there is an increase in the execution time, this is due

to the waiting time and the possible requirements of migrating the data among the

processors in the case of rescheduling the thread on a different processor. It is

77 Efficient Study on Evaluating Processor’s Affinity in Multi-Core

noticed that the execution time significantly enhanced after certain number of

threads. This is due to that the data size to be processed by each thread is decreasing,

hence, the migration requirement significantly decreases. In the case of single

processor, figure 6 (b) the execution time decreases as the number of threads

increase, as there is no migration required when the thread is rescheduled.

Figures 7 (a) and (b) show the results of performing the execution using

different number of threads for the image of size 3MB, on 2 processors and 1

processor, respectively. Generally, the results in both cases indicate the number of

threads increase the time-required to perform the operations decrease.

(a) (b)

Figure 7: (a) Image of 3MB - 2 processor. (b): Image of 3MB - 1 processor

The results in figure 7 (a) indicate the number-of-threads increase the

execution-time decrease. In this case, the decrease in the data size to be processed

by each thread compensates for the waiting time and the time required performing

any migration if the thread is rescheduled on a different processor. The results in

figure 7 (b) indicated that the execution time for the single processor is significantly

better that the execution time for the 2 processors. This is due to the locality of the

data for the threads, as the image can be loaded into L2 cache and used by all the

threads.

7.3 Large Size Image Results

Figures 8 (a) and (b) show the results of performing the execution using

different number of threads for the image of size 13MB, on 2 processors and 1

processor, respectively. Generally, the results in both cases present the number of

threads increase the time required to perform the operations increase. The results in

figure 8 (a) indicate the number of threads exceeds the number of cores the

execution time increases significantly.

Saleh Ali Alomari 78

(a) (b)

Figure 8: (a) Image of 13MB - 2 processor. (b): Image of 13MB - 1 processor

The increase in the number of threads is combined with a decrease in the

data size should be processed by each thread, however, this did not enhance the

performance, as this results in more transfer of the data between the main memory

and L2 cache.

8 Results, Analysis and Discussions

The test cases are designed to ensure that different factors in the execution

environment are challenged, which are: the data size, the number of execution units,

the number of threads, and the transfer of data required, either within the processor

or among the processor and the main memory. Transfer of data within the processor

has no noticeable influence on the execution time, as the transfer of data within the

processor can be performed instantly. The machine used to perform the evaluation

is able to transfer 5GB/sec internally. The number of threads used to perform the

execution has influence on the execution time, however, there is no specific, thus,

it should be discussed along with the data size should be processed by each thread

and the number of execution units. The transfer of data between the processor &

memory is the factor that has the most negative influence on the execution time; in

other words, the miss penalty is very expensive and cannot be tolerated. This paper

intends to measure the performance of SMPs by executing application with different

loads in order to determine the effect of locality and computational power. The

machine that is used to perform the testing is a dedicated machine, hence, there is

no influence of any other application executing concurrently on the same machine.

The server runs Linux Mageia 5, with Global scheduling; hence, there is no update

or change to the scheduling algorithm.

79 Efficient Study on Evaluating Processor’s Affinity in Multi-Core

ACKNOWLEDGEMENTS

The author would like to thank the Faculty of Science and Information

Technology (FSIT), Jadara University for their support and assistance with this

project and for their appreciation of the benefits to be gained from independent

research. Special thanks also go to the late Dr. Imad Al-Aqili, may God have mercy

on him and make him spacious in his paradise, for the advice, counsel, and expertise.

References

[1] H. B. Jang, I. Yoon, C. H. Kim, S. Shin, and S. W. Chung (2009). The impact

of liquid cooling on 3d multi-core processors. In 2009 IEEE International

Conference on Computer Design, pages 472–478, Oct 2009.

[2] https://www.extremetech.com/extreme/171678-intel-unveils-72-core x86-

knights-landing-cpu-for exascale-supercomputing.

[3] Y. Ben-Asher (2012). Multicore Programming Using the ParC Language.

Undergraduate Topics in Computer Science. Springer London, 2012.

[4] McDougall, R., Mauro, J. (2006): SolarisTM Internals: Solaris 10 and

OpenSolaris Kernel Architecture. Prentice Hall, Englewood Cliffs

[5] Torrellas, J., Tucker, A., Gupta, A. (1995): Evaluating the Performance of

Cache-Affinity Scheduling in Shared-Memory Multiprocessors. Journal Of

Parallel and Distributed Computing 24, 139–151

[6] Becchi, M., Crowley, P. (2006): Dynamic Thread Assignment on

Heterogeneous Multiprocessor Architectures. In: Proceedings of the

Conference on Computing Frontiers

[7] Fedorova, A., Vengerov, D., Doucette, D.: (2007) Operating System Scheduling

On Heterogeneous Multicore Systems. In: Proceedings of the PACT 2007

Workshop on Operating System Support for Heterogeneous Multicore

Architectures

[8] Kumar, R., Tullsen, D.M., Ranganathan, P., Jouppi, N., Farkas, K.: (2004)

Single-ISA Heterogeneous Multicore Architectures for Multithreaded

Workload Performance. In: Proceedings of the 31st Annual International

Symposium on Computer Architecture

[9] Snavely, A., Tullsen, D.M. (2000): Symbiotic Jobscheduling for a Simultaneous

Multithreaded Processor. In: Proceedings of the Ninth International Conference

on Architectural Support for Programming Languages and Operating Systems

(ASPLOS)

[10] Kumar, R., Farkas, K., Jouppi, N., Parthasarathy, R., Tullsen, D.M. (2003):

Single-ISA Heterogeneous Multi-Core Architectures: The Potential for

Processor Power Reduction. In: Proceedings of the 36th annual IEEE/ACM

International Symposium on Microarchitecture

https://www.extremetech.com/extreme/171678-intel-unveils-72-core

Saleh Ali Alomari 80

[11] Coskun, A., Rosing, T. (2007): Temperature aware task scheduling in

MPSoCs. In: Proceedings of the DATE

[12] Powell, M.D., Gomaa, M., Vijaykumar, T.N. (2014): Heat-and-Run:

Leveraging SMT and CMP to Manage Power Density Through the Operating

System. In: Proceedings of the ASPLOS

[13] Mike Aderson, “Understanding and Using SMP/MultiCore Processors, New

Hardware and How to use it”, The PTR Group, Inc. 10/28/2018.

[14] D. Morley and C.S. Parker (2017). Understanding Computers: Today and To

morrow, Comprehensive. Cengage Learning,

[15] Tomasz Bawej., (2015), “Achieving High Performance With TCP over 40 GbE

on NUMA Architectures for CMS Data Acquisition”, IEEE TRANSACTIONS

ON NUCLEAR SCIENCE, February 26, 2015.

[16] V. Doraisamy, et al., “Video on Demand Caching System using NIPBCS over

Mobile Ad Hoc Network,”International Journal of Digital Content Technology

and its Applications,vol. 5, no. 6,pp. 142-154, 2011

[17] Torrellas, J., Tucker, A., Gupta, A. (1995): Evaluating the Performance of

Cache-Affinity Scheduling in Shared-Memory Multiprocessors. Journal Of

Parallel and Distributed Computing 24, 139–151

[18] Constantinou, T., Sazeides, Y., Michaud, P., Fetis, D., Seznec, A., (2015).

Performance Implications of Single Thread Migration on a Chip MultiCore. In:

Proceedings of the Workshop on Design, Architecture and Simulation of Chip

Multi-Processors

Notes on contributor

 Dr. Saleh Ali K. Alomari obtained his MSc and PhD in

Computer Science from Universiti Sains Malaysia

(USM), Pulau Penang, Malaysia in 2008 and 2013

respectively. He is a lecturer at the Faculty of Science

and Information Technology, Jadara University, Irbid,

Jordan. He is Assistance Professor at Jadara University,

Irbid, Jordan 2019.

He is a Vice Dean of the Faculty of Science and Information Technology and

Director of the E-Learning Center 2020. He was Assistant Dean of the

Faculty of Science and Information Technology for Student Affairs &

Quality Assurance. Head of the Software Engineering Department,

2019/2020. He was a head of the Software Engineering, 2019-2020 and

Computer Network department at Jadara University, 2014 until 2016. He is

the candidate of the Multimedia Computing Research Group, School of

Computer Science, USM. He is managing director of ICT Technology and

Research and Development Division (R&D) in D&D Professional Consulting

81 Efficient Study on Evaluating Processor’s Affinity in Multi-Core

Company. He has published over 50 papers in international journals and

refereed conferences at the same research area. He is a member and reviewer

of several international journals and conferences (IEICE, ACM, KSII,

JDCTA, IEEE, IACSIT, etc). His research interest are in area of multimedia

networking, video communications system design, multimedia

communication specifically on VOD system, P2P Media Streaming,

MANETs, caching techniques and for advanced mobile broadcasting

networks as well.

