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Abstract
This paper introduces a new design method of Fractional-

order PID (FoPID or PIλDδ) controller using Bacterial Forag-
ing Optimization (BFO) algorithm via El-Khazali’s biquadratic
approximation. The integro-differential fractional-order Lapla-
cian operators, s(±α), of order α, for 0 < α ≤ 1, is approximated
using El-Khazali’s approach by finite-order rational transfer
functions. The significance of this approach lies in develop-
ing an algorithm that only depends on the fractional-order α,
which allows one to reduce the number of the controller pa-
rameters to be tuned. To illustrate the influence and the ef-
ficiency of the proposed design method, the BFO-FoPID con-
troller via El-Khazali’s approach is carried out and employed
on some systems and compared with that of the same using
two well-known approximations for s(±α); i.e., Carlson’s and
Oustaloup’s approximations. The main results of this work
are verified via numerical simulations.

Keywords: Fractional calculus, Fractional-order PID controller, Bacterial
foraging optimization algorithm, Laplacian operator, El-Khazali’s approach.

1 Introduction

Many physical systems are modeled by integer-order dynamics, which may
not fully describe their behavior over wide spectrum. In reality, however,
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such systems could be accurately described by fractional-order dynamics [1, 2],
where the total transient and steady-state system responses are fully achieved.
Developing appropriate mathematical models of the system to be controlled is
the first step in the control design process. Such models may be derived either
from physical laws or experimental data [3, 4, 5]. The purpose of a controller
is to enhance systems’ behavior to meet desired performance specifications
[6]. In feedback control, the plant can be monitored and its response can be
measured using sensors and transducers [6]. Then, the controller compares
the sensed signal with a preferred response as specified externally, and uses
the error information to generate a suitable control signal. Generally, a high-
quality control system should be: stable; fast; accurate; insensitive to noise,
external disturbances, modeling errors and parameter variations; sufficiently
sensitive to control inputs; and be free of undesirable coupling and dynamic
interactions [6].

Proportional-Integral-Derivative PID controller is commonly used in indus-
tries and manufacturing applications. The advantage of using such controller
lies in its design simplicity and good performance including low percentage
overshoot and small settling time for slow industrial processes [7, 8]. This
controller includes three parameters to choose; a proportional gain, Kp, an
integral time constant, Ki, and a derivative time Kd. Observe that PID
controller could not perform properly for higher order systems [9]. Espe-
cially in complex systems that mimics real systems [10, 11, 12]. The perfor-
mance of systems when using PID controller can be further improved by using
fractional-order Proportional-Integral-Derivative (FoPID or PIλDδ) controller
[7, 13, 14, 15, 16, 17]. In FoPID-controller, there are two additional parame-
ters; λ and δ, which increase the number of parameters to tune from three to
five parameters; i.e., {Kp, Ki, Kd, λ, δ} [9, 18, 19, 20]. To obtain the best
FoPID-controller, the optimum set of these parameters should be found [21].
Tuning five parameters of a FoPID-controller adds more flexibility to the de-
sign but with an increase complexity. A compromise should be made between
adopting a straightforward design procedure that meets most of the design re-
quirements, and the minimum number of controller parameters that needs to
be optimized. Several optimization methods, such Genetic Algorithm (GA),
Artificial Bee Colony (ABC) algorithm, Zeigler-Nichols (ZN) method, Nelder-
Mead (NM) method, Particle Swarm Optimization (PSO) technique, Bacterial
Foraging Optimization (BFO) algorithm and many others where successfully
used to obtain the optimum set of such five parameters [22, 23, 24, 25, 26].
The main differences between such methods could be appeared in the imple-
mentation (i.e., the realization of the integral and the differential components
of the controller).

In this work, the BFO algorithm is used to determine the optimum con-
troller parameters. The BFO is a swarm intelligence algorithm that has been
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widely approved as a global optimization algorithm to meet some current inter-
ests associated with some distributed and control optimizations [27, 28]. This
algorithm, which is inspired by the social foraging behavior of Escherichia coli,
has already attracted the consideration of many scholars due to its capability
in dealing with many real-life optimization problems arising in various appli-
cation fields [27, 28]. More particularly, the BFO algorithm is implemented,
here, to optimize the five parameters of the FoPID-controller. The realization
of the integro-differential components of the controller is implemented by re-
placing the corresponding Laplacian operators by finite-order rational transfer
functions. The objective of the BFO algorithm is to minimize systems’ integral
time square error (ITSE) and/or the integral square error (ISE) subject to time
or frequency domain constraints, such as the maximum overshoot, rise time
and settling time, or system’s gain and phase margins. The role of these spec-
ifications relatively measures the robustness of the controlled system. This
paper is organized as follows: Section 2 includes some necessary definitions
and preliminaries related to the fractional calculus. Section 3 presents the
concept of the FoPID-controller. Section 4 introduces El-Khazali’s approach
for the fractional-order Laplacian operator, s(±α), followed by Section 5 that
exhibits some numerical simulations, and finally, the conclusion of this work is
summarized in the last section.

2 Fractional Calculus

Fractional calculus is essentially a non-integer-order calculus, in which the
order of differentiation or integration can be real or complex numbers. The
basic operation of fractional calculus is a fractional-order differentiation, aD

α
t

, which denotes the fractional-order differential operator [29], i.e.;

aD
α
t =


dα

dtα
if <(α) > 0

1 if <(α) = 0∫ t
a
(dτ)−α if <(α) < 0

where a and t are the upper and lower bounds of the operators, α is the order
which can be any complex number, and <(α) is the real part of α.

The following definitions illustrate the Riemann-Liouville fractional differ-
entiator and integrator of a function f(t) of order α followed by the Caputo
definition of the fractional differentiator of f(t) of order α.

Definition 2.1 For a positive integer m, let α ∈ R+ be such that m−1 ≤ α ≤
m. The Riemann-Liouville fractional derivative of a function f(t) of order α
is defined by [30]:

Dα
a f(t) =

1

Γ(m− α)

(
d

dt

)m ∫ t

a

(t− τ)m−α−1f(τ)dτ, (1)



Optimal Design of Fractional-order PID Controllers ... 211

where Γ(·) is the Euler’s Gamma function that generalizes the factorial and
allows the operator, Dα

a (·), to take non-integer values.

Definition 2.2 Let f(t) be an integrable piecewise continuous function on any
finite subinterval of t ∈ (0,+∞), then the Riemann-Liouville fractional integral
of f(t) of order α is defined as [30]:

Jαf(t) =
tα−1

Γ(α)
∗ f(t) =

1

Γ(α)

∫ t

0

(t− τ)α−1f(τ)dτ, (2)

where t > 0 and 0 < α ≤ 1.

Definition 2.3 Let α ∈ R+ and m ∈ N such that m − 1 < α < m, then the
Caputo fractional derivative of order α is defined by [30]:

Dα
a f(t) =

1

Γ(m− α)

∫ t

a

fm(τ)

(t− τ)α+1−mdτ, f
m(τ) =

dmf(τ)

dτm
. (3)

The frequency response of dynamical systems is a popular approach to realize
fractional-order controllers. Hence, Laplace transform is generalized to include
systems of non-integer order dynamics [31]. The following two most popular
definitions of factional-order derivatives in the frequency domain are stated for
completeness.

Definition 2.4 The Laplace transform of the Riemann-Liouville fractional-
order derivative is given by [30]:

L{Dαf(t)} = sαF (s)−
m−1∑
k=0

sk
[
Dα−k−1f(t)

]
|t=0, (4)

where m − 1 ≤ α < m; m ∈ N, t > 0 and F (s) is the Laplace transform of
f(t).

Definition 2.5 The Laplace transform of the Caputo fractional-order deriva-
tive is given by [30]:

L{Dαf(t)} = sαF (s)−
m−1∑
k=0

sα−k−1f (k)(0), (5)

where m − 1 ≤ α < m; m ∈ N, t > 0 and F (s) is the Laplace transform of
f(t). If the derivatives of the function f(t) are all equal 0 at t = 0 in (5), then
[30]:

L{Dαf(t)} = sαL{f(t)} = sαF (s). (6)
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The so-called fractional-order Laplacian operator, s(±α), is expressed in the
frequency domain by letting s = jω. Hence, (jω)(±α) can be expressed as [32]:

s(±α) = (jω)(±α) = ω(±α)
[
cos
(απ

2

)
± j sin

(απ
2

)]
, (7)

where ω ∈ (0, 1) and j =
√
−1.

Definition 2.6 The Laplace transform of the fractional-order integral, Jαf(t),
is given by [30]:

L{Jαf(t)} = s−αL{f(t)} = s−αF (s). (8)

3 FoPID Controllers

The FoPID-controller was first introduced by Podlubny in 1997 [33]. The in-
tegration action enjoys fractional-order dynamics of order λ, while the differ-
entiator is of order δ. The FoPID-controller is used for industrial application
to improve systems’ performance. It provides extra degrees of freedom by
adding two more parameters to tune (λ and δ) to the original three parame-
ters, (Kp, Ki, Kd), thus increasing the complexity of parameter tuning [22].
The fractional-order integro-differential equation that describes the FoPID-
controllers is given by [22, 34]:

G(s) = Kp +Ki
1

sλ
+Kds

δ, (9)

where Kp, Ki, Kd, λ, and δ are real constants to be designed.
Obviously, increasing the number of controller parameters from three, in

the case of integer-order PID controllers, to five parameters for the case of
FoPID-controllers increases the complexity of the controller design. This yields
a set of special cases that can be considered to simplify the design process. To
overcome this problem, and to assign the five parameters all at once, optimiza-
tion methods, such as the BFO algorithm, are usually adopted to find the best
candidate of FoPID-controllers [7, 8, 9, 10]. For completeness, equation (10)
represents the class of linear time-invariant (LTI) systems that are considered
in this work [35]:

anD
αny(t) + · · ·+ a0D

α0y(t) = bmD
βmu(t) + · · ·+ b0D

β0u(t), (10)

where u(t) and y(t) are the systems’ input and output signals, while Dα defines
the Caputo fractional-order differential operator of arbitrary constant orders,
αk; k = 0, 1, 2, · · · , n, and βl; ` = 0, 1, 2, · · · ,m, and n,m ∈ N. The transfer
function of system (10) is given by [36]:

G(s) =
Y (s)

U(s)
=
bms

βm + bm−1s
βm−1 + · · ·+ b0s

β0

ansαn + an−1sαn−1 + · · ·+ a0sα0
, (11)
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and the output signal of the FoPID-controller, m(t), can be written as:

m(t) = Kpe(t) +KiJ
λe(t) +KdD

δe(t). (12)

Clearly, the integer-order PID controller when λ = δ = 1 represents one case
from the set of special cases of the FoPID-controllers.

4 Implementation of FoPID Controllers

Many researchers investigated the design of FoPID-controllers using the some
well-known optimization algorithms. The implementation and the effectiveness
of such controllers depend on the type of approximation used to replace the
fractional-order integro-differential Laplacian operators s(±α) [34, 37, 38, 39].
Besides Oustaloup’s and Carlson’s approximations, El-Khazali introduced in
[34] a biquadratic approximation that only depends on the order of integration
or differentiation.

Whence the best five parameters of the FoPID-controller are found using
the BFO algorithm, and in order to decide the way of implementing these con-
trollers, the effectiveness of the design is investigated using the aforementioned
three approximations. A modular representation of El-Khazali’s approxima-
tion is introduced here for completeness [40]. A single module of El-Khazali’s
approximation enjoys a flat phase response at its center frequency, which can
be considered as a constant phase element (CPE). To widen the spectrum of
approximation, one may cascade several 2nd-order biquadratic forms to gener-
ate higher order approximation [40, 41] as given by the following form:(

s

ωg

)α
=

n∏
i=1

Hi(s/ωi) =
n∏
i=1

Ni

(
s

ωi/ωg

)
Di

(
s

ωi/ωg

) , (13)

where ωi, i = 1, 2, ..., n, is the center frequency of each biquadratic module, and
where ωg = n

√∏n
i=1 ωi is their geometric mean. If one selects the first center

frequency, ω1, of the first section, then to obtain a constant phase element,
the subsequent center frequencies of each section can be calculated from the
following recursive formula [40]:

ωi = ω2(i−1)
x ω1; i = 2, 3, ..., n, (14)

where ωx is the maximum real solution of the following polynomial:

a0a2ηγ
4 + a1(a2 − a0)γ3 + (a2

1 − a2
2 − a2

0)ηγ2 + a1(a2 − a0)γ + a0a2η = 0, (15)

and where η = tan(απ
4

). Each biquadratic module in (13) is given by:(
s

ωi

)α
= Hi

(
s

ωi

)
=
Ni

(
s
ωi

)
Di

(
s
ωi

) ∼= a0( s
ωi

)2 + a1( s
ωi

) + a2

a2( s
ωi

)2 + a1( s
ωi

) + a0

, (16)
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where i = 1, 2, 3, · · · , and where

a0 = αα + 2α + 1

a2 = αα − 2α + 1

a1 = (a2 − a0) tan

(
(2 + α)π

4

)
= −6α tan

(
(2 + α)π

4

)
.

(17)

Observe that (16) is the only approximation that yields

Hi

(
s

ωi

)
=

(
s

ωi

)
as α→ 1. (18)

Moreover, the reciprocal of (13) approximates a fractional-order integrator [40],
or simply: (

s

ωg

)−α
=

n∏
i=1

H
¯ i

(s/ωi) =
n∏
i=1

Di

(
s

ωi/ωg

)
Ni

(
s

ωi/ωg

) . (19)

This means that whence the order of the integrators and differentiators are
found, the implementation of the FoPID becomes straightforward.

However, in this work, the FoPID-controller will be taken along with some
transfer functions of several industrial applications. In other words, we will
try to optimize the performance of some systems by improving their unit-step
response. This optimization will be performed by employing the BFO algo-
rithm through using El-Khazali’s approximation. For a complete description
of the BFO algorithm, one may find more details in [27, 28, 42, 43, 44, 45].
The improvement of control system performance in the time domain is equiv-
alent to the problem of minimizing e(t) [36]. For proper tuning of controller in
this domain and to evaluate their performance, there are several performance
criteria that might be taken into consideration such as [42]. In particular, the
minimization of several error functions; ITAE, IAE, ISE and ITSE, will be
the main goal of our optimization technique. These error functions are of the
form:

� Integral Time-Absolute Error (ITAE)

ITAE =

∫ ∞
0

t|e(t)|dt. (20)

� Integral Absolute Error (IAE)

IAE =

∫ ∞
0

|e(t)|dt. (21)
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� Integral Square Error (ISE)

ISE =

∫ ∞
0

e2(t)dt. (22)

� Integral Time Square Error (ITSE)

ITSE =

∫ ∞
0

te2(t)dt. (23)

The performance indices given by (20-23) are very important in measuring sys-
tem performance [36]. Each one shows different aspects of the system response
[46, 47, 48]. The design procedure of the FoPID-controller through the BFO
and algorithm is described by the block diagram shown in Figure 1.

Figure 1: Block diagram of BFO tuned FoPID-controller

The Laplace transform of (12) yields the following dynamics of the FoPID-
controller in the frequency domain:

Gc(s) = Kp +
Ki

sλ
+Kds

δ. (24)

Whence, the best parameters of (24) are found, one may replace s(−λ), and sδ

by realizable rational transfer functions using any of the existing approximation
algorithms [34, 37, 38, 39]. A detailed comparative study will be carried out in
the next section to highlight the effect of the approximation methods on the
performance of the controlled systems.

5 Simulation Results

As will be shown, the effectiveness of any BFO algorithm used to design FoPID-
controllers lies in the approximation method used to approximate the integro-
differential Laplacian operators. In this section, two numerical examples are
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investigated to highlight the effect of approximating s(±α) to the same set of
optimum parameters. Table 1 shows a list of values used for the parameters of
the BFO algorithm (see [27, 28, 42, 43, 44, 45]). One may use different values
when necessary.

Table 1: Parameters of BFO algorithm

Parameter Value

Number of bacteria (n) 100
The probability that each bacteria will be eliminated/dispersed 0.25

Number of chemotactic steps 4

Maximum number of reproductions to be undertaken 6
Maximum number of elimination-dispersal events to be imposed over the bacteria 2

Swimming length after which tumbling of bacteria will be done in a chemotactic step 3

In this work, FoPID-controller design using El-Khazali’s approach is carried
out and compared with Oustaloup’s, and Carlson’s approximations for s(±α),
0 < α ≤ 1 [35, 38, 39, 49, 50].

Remark 5.1 For the case when the BFO-FoPID controller in (24) is tuned
to n < (λ, δ) < n + 1, for n ≥ 1, and to avoid implementing non-realizable
controllers, one may cascade set of fractional-order integrators (differentiators)
each of order (λ/(n + 1)), (δ/(n + 1)), respectively; i.e, equation (24) can be
rewritten as:

Gc(s) = Kp +
Ki∏n+1
i=1

s(λ/(n+1)) +Kd

(n+1)∏
i=1

sδ/(n+1). (25)

For example, when n = 1, equation (25) can be written as:

Gc(s) = Kp +
Ki

s.sλ−1
+Kd

(
sδ/2
)2
. (26)

The representation of the BFO-FoPID controller in (26) can still yield realiz-
able controllers (see Example 5.2 for further details).

Example 5.1 Consider the transfer function of a servo motor [50]:

G(s) =
0.3

s(s+ 0.07)
. (27)

The best values for the fractional order integrator and differentiator using Carl-
son’s approximation were found to be λ = 0.49966, and δ = 0.50196. Thus,
from (24), the best dynamics of the FoPID is given by [50]:

Cc(s) = 4.1267 +
0.44093

s0.49966
+ 1.1309s0.50196, (28)
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where the following approximations were used to realize the FoPID-controller
given by (28) [50], i.e.,

1

s0.49966
=

0.1579s4 + 0.5712s3 + 0.2009s2 + 0.01346s+ 0.0001449

s4 + 0.938s3 + 0.1414s2 + 0.00406s+ 1.133e− 005
, (29)

and

s0.50196 =
3.158s4 + 2.963s3 + 0.4466s2 + 0.01282s+ 3.58e− 005

s4 + 3.619s3 + 1.273s2 + 0.08526s+ 0.0009181
. (30)

Substituting from (29) and (30) into (28) yields the following 8th-order FoPID
using Carlson’s approximation:

Cc(s) =

5.7s8 + 22.7s7 + 24.3s6 + 9.5s5 + 1.6s4 + 0.12s3

+ 0.0038s2 + 4.74e− 05s+ 1.946e− 07

s8 + 4.6s7 + 4.8s6 + 1.8s5 + 0.28s4 + 0.018s3

+ 0.0005s2 + 4.69e− 06s+ 1.04e− 08

(31)

On the other hand, the BFO algorithm is carried out using El-Khazali’s approx-
imation for 50 ≤ n ≤ 200 to minimize the four different objective functions,
i.e., ITAE, IAE, ISE, and ITSE, respectively. As depicted, the values of the
four fitness functions, shown in Figure 2, decrease with the increase of the
number of iterations, where ITSE yields the best result.

Figure 2: Fitness functions vs. number of bacteria (n).

For more insight, the different parameters that minimizes the ITSE fitness
function is listed in Table 2, where the best result corresponds to n = 200.
The corresponding parameters for the FoPID-controller are found to be Kp =
13.03841, Ki = 1, and Kd = 200 with λ = 0.001, and δ = 0.9983754; i.e.,

CK(s) = 13.03841 +
1

s0.001
+ 200s0.9983754. (32)
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Table 2: Values of ITSE fitness function for different number of bacteria

n Kp Ki Kd λ δ ITSE

200 13.0382 1.0 200 0.001 0.998375 6.161e− 05

175 1.0 11.253 175 0.001 0.999547 8.281e− 05
150 9.6297 1.0 150 0.001 0.999982 1.155e− 04

125 7.8457 1.0 125 0.001 0.999748 1.697e− 04

100 1.0 6.0805 100 0.001 0.999994 2.696e− 04
75 4.3032 1.0 75 0.0019 0.999867 4.857e− 04

50 2.6271 1.03166 50 0.001 0.999989 0.001102

To develop a realizable form for (32), one needs to replace s0.001 and s0.9983754

by the following forms, respectively [40]:

s0.001 =
1.995s2 + 5.093s+ 1.991

1.991s2 + 5.093s+ 1.995
, (33)

and

s0.9983754 =
3.995s2 + 4.004s+ 0.001627

0.001627s2 + 4.004s+ 3.995
. (34)

Substituting from (33) and (34) into (32) yields the following 4th-order transfer
function of the FoPID-controller:

CK(s) =
1594s4 + 5779s3 + 6068s2 + 1994s+ 112.3

0.003247s4 + 7.996s3 + 28.36s2 + 28.32s+ 7.955
. (35)

Figure 3 shows the step response of the closed-loop system with unity feedback
using CC(s) and CK(s) controllers given by (31) and (35), respectively.

Figure 3: Closed-Loop system step response using CC(s) (blue color) and
CK(s) (red color).

Obviously, a 50% order reduction is obtained (4th-order instead of 8th-order)
and a significant improvement of the step response have been achieved using
El-Khazali’s approximation over that of Carlson. To see this, take a look at
Table 3 given below.
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Table 3: System step response using (31) and (35).

Step Response Specifications CC(s) CK(s)

Rise Time 0.0102 0.0357

Settling Time 2.8249 0.0640
Settling Min. 0.0801 0.9034

Settling Max. 1.9593 1.000

Overshoot 95.9334 9.294e-4
Peak 1.9593 1.000

Peak Time 0.0304 0.16067

Example 5.2 Consider the following open-loop fractional-order system re-
ported in [49]:

G(s) =
1

0.8s2.2 + 0.5s0.9 + 1
=

1

0.8s2.s0.2 + 0.5s0.9 + 1
. (36)

The objective is to design a FoPID-controller using the BFO algorithm based on
Oustaloup’s and El-Khazali’s approximations. The fractional-order Laplacian
operators s0.2 and s0.9 are first replaced by integer-order rational functions using
Oustaloup’s and El-Khazali’s methods; i.e.,

s0.2
O =

2.512s5 + 98.83s4 + 531.7s3 + 442.3s2 + 56.87s+ 1

s5 + 56.87s4 + 442.3s3 + 531.7s2 + 98.83s+ 2.512
, (37)

s0.9
O =

63.1s5 + 1303s4 + 3679s3 + 1606s2 + 108.4s+ 1

s5 + 108.4s4 + 1606s3 + 3679s2 + 1303s+ 63.1
, (38)

and

s0.2
K =

2.125s2 + 5.051s+ 1.325

1.325s2 + 5.051s+ 2.125
, (39)

s0.9
K =

3.71s2 + 4.215s+ 0.1095

0.1095s2 + 4.215s+ 3.71
. (40)

Substituting from (37-38) and (39-40) into (36) yields the following two trans-
fer functions GO(s) and GK(s), respectively:

GO(s) =

s10 + 165.3s9 + 8213s8 + 1.44e005s7

+9.79e005s6 + 2.57e006s5 + 2.69e006s4

+ 1.09e006s3 + 1.72e005s2 + 9509s+ 158.5

2.01s12 + 296.9s11 + 1.23e004s10 + 1.83e005s9

+1.08e006s8 + 2.80e006s7 + 4.12e006s6 + 4.6e006s5

+ 3.4e006s4 + 1.2e006s3 + 1.8e005s2 + 9695s+ 159.8

(41)

and

GK(s) =
0.1451s4 + 6.138s3 + 26.44s2 + 27.7s+ 7.884

0.1862s6 + 7.608s5 + 26.06s4 + 37.76s3 + 45.03s2 + 32.45s+ 8
.

(42)
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The optimal BFO-FoPID controller using Oustaloup’s approximation denoted
by CO(s) is given by [49]:

CO(s) = 82.3532 +
40.888

s1.5733
+ 27.1914s1.8797. (43)

It was reported in [49] that the integro-differential operators in (43) were sim-
plified as s1.5733 = s×s0.5733, and s1.8797 = s×s0.8797, respectively. Consequently,
the following Oustaloup’s approximations were reported in [49] to realize s0.5733,
and s0.8797; i.e.,

s0.5733 =
14.02s5 + 391s4 + 1492s3 + 879.7s2 + 80.21s+ 1

s5 + 80.21s4 + 879.7s3 + 1492s2 + 391s+ 14.02
, (44)

and

s0.8797 =
57.46s5 + 1209s4 + 3478s3 + 1547s2 + 106.4s+ 1

s5 + 106.4s4 + 1547s3 + 3478s2 + 1209s+ 57.46
. (45)

Remark 5.2 Notice that convolving an integer-order differentiator with (45)
yields an unrealizable FoPID-controller, (i.e., the order of the numerator is
greater than the order of the denominator). This is not acceptable even if
the algebraic manipulation of the closed-loop system transfer function yields a
proper and stable closed-loop system. Since 1 < δ < 2, one may overcome this
problem by decomposing sδ = s(δ/2) × s(δ/2), or s1.8797 = s0.9398 × s0.9398.

Now, to conduct a fair comparison between Oustaloup’s and El-Khazali’s
approximations, a 3rd-order Oustaloup’s approximation to s0.9398 and s0.5733 is
used for ω ∈ (0.01, 100) rad/s, i.e.,

s0.9398 =
659.8s3 + 7655s2 + 879.4s+ 1

s3 + 879.4s2 + 7655s+ 659.8
, (46)

and

s0.5733 =
52.47s3 + 1416s2 + 378.2s+ 1

s3 + 378.2s2 + 1416s+ 52.47
. (47)

Substituting from (46) and (47) into (43) yields the following 7th-order realiz-
able FoPID-Oustaloup’s controller:

CO(s) =

9.5e05s7 + 4.02e07s6 + 4.4e08s5 + 1.05e09s4

+ 4.9e08s3 + 4.76e08s2 + 5.5e07s+ 1.4e06

52.47s7 + 4.76e04s6 + 1.65e06s5 + 1.12e07s4

+ 3.83e06s3 + 2.57e05s2 + 659.8s

(48)

Repeating the same procedure used in the previous example implies Figure 4
(a) that shows the values of the four fitness functions for 50 ≤ n ≤ 200. Figure
4 (b), however, shows the corresponding values of the percentage overshoot of
the system step-response.
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(a) (b)

Figure 4:
(a) Values of the four objective functions vs. no. of bacteria, (b) Overshoot
vs. no. of bacteria.

Obviously, the ISE fitness function yields a zero overshoot for n = 125,
while the ITSE and the IAE are competitive to each other. One may be tempted
to choose the controller parameters using the ISE fitness function for n =
125, which gives Kp = 125, Ki = 0.98837, Kd = 125, λ = 0.8304 and δ =
1.66. From Remark 5.2, this case should be avoided because it may yield an
unrealizable controller if it is not treated carefully. Therefore, to fairly compare
between El-Khazali’s and Oustaloup’s approximations, the case of a maximum
range of n = 100 is considered here, which gives the following FoPID-BFO
controller:

CK(s) = 100 +
100

s0.9944475
+ 66.38609s0.9721622. (49)

Replacing the integro-differential operators in (49) using El-Khazali’s approx-
imation gives the following controller:

CK(s) =
1047s4 + 3761s3 + 5925s2 + 4773s+ 1563

0.1139s4 + 16.3s3 + 31.91s2 + 15.74s+ 0.02187
. (50)

Figure 5 shows the step-response of the closed-loop system using the two con-
trollers CO(s) and CK(s) given by (48) and (50), respectively, while Table 4
shows the corresponding information of the closed-loop system step response.
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Figure 5: Closed-loop step response using (48) and (50).

Table 4: System step response using (48) and (50).

Step Response Specifications CO(s) CK(s)

Rise Time 0.074 0.0326

Settling Time 0.371 0.291

Settling Min. 0.9227 0.905
Settling Max. 1.2423 1.155

Overshoot 24.23% 15.5%
Peak 1.2423 1.155

Peak Time 0.1847 0.0787

Clearly, El-Khazali’s approximation method provides a lower order con-
troller and yields a better system performance than the case when using Out-
saloup’s approximation.

6 Conclusion

A new design method is proposed to synthesize FoPID-controllers using the
BFO algorithm that minimizes several objective functions. The BFO algorithm
is mainly used to minimize the well-known fitness functions; ITAE, IAE, ITSE
and ISE, which eventually improves the time domain characteristics of the con-
trolled systems. The proposed method ensures the implementation of lower
order and realizable FoPID-controllers. The biquadratic form of El-Khazali’s
approximation alleviates the need of using additional filters that is usually
considered when implementing integer-order PID controllers. Moreover, it ex-
hibits an adaptive nature since the structure of the controller is fully dependent
on the orders of the integro-differential components of the FoPID-controllers.
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