
Int. J. Advance Soft Compu. Appl, Vol. 13, No. 2, July 2021 

Print ISSN: 2710-1274, Online ISSN: 2074-8523 

Copyright © Al-Zaytoonah University of Jordan (ZUJ) 

 

Tuning the Fractional-order PID-Controller 

for Blood Glucose Level of Diabetic Patients 

 

Iqbal M. Batiha1,2, Jamal Oudetallah1, Adel Ouannas3, Abeer A. Al-Nana4 

and Iqbal H. Jebril5 

 
1Department of Mathematics, Irbid National University, 2600 Irbid, Jordan 

e-mail: i.batiha@inu.edu.jo 
2Nonlinear Dynamics Research Center (NDRC), Ajman University, Ajman, UAE 

3Department of Mathematics and Computer Science, University of Larbi Ben 

M'hidi, Oum El Bouaghi, Algeria 

e-mail: ouannas.adel@univ-oeb.dz 
4International Center for Scientific Research and Studies (ICSRS), Irbid, Jordan 

e-mail: mathabeer@yahoo.com 
5Mathematics Department, Al Zaytoonah University of Jordan, Amman, Jordan 

e-mail: i.jebri@zuj.edu.jo 

 

 
Abstract 

     The conducted research aims to attain the optimal approach for a 
certain control unit, namely the Proportional-Integral-Derivative-
controller (or simply PID-controller), which typically monitors the 
blood sugar level of a diabetic patient. This would be implemented 
through introducing a fractional-order PID-controller (or 𝑷𝑰𝜸𝑫𝝆-
controller) instead of the already classical one. Two optimization 
algorithms, Particle Swarm Optimization (PSO) and Bacteria 
Foraging Optimization (BFO) algorithms, together with two different 
approximations, the Continued Fraction Expansion (CFE) and the 
Outstaloup's approaches, will be used to complete the design process. 
Several numerical comparisons will be performed to reach the best 
approach to meet the optimal needs of this industrial application.  

     Keywords: 𝑃𝐼𝛾𝐷𝜌-controller, Diabetic patients, Blood Glucose, Laplacian 
operator, Oustaloup’s approach, continued fractional expansion approach. 

1      Introduction 

Recently, the number of people with diabetes has increased significantly, especially 

adults. Diabetes is a chronic disease that occurs when the pancreas is unable to 
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produce sufficient and adequate amounts of insulin. Insulin is the hormone that 

regulates the level of sugar in the blood, and moreover helps the glucose flow into 

the body's cells for energy. Scientists have shown that diabetes is the cause of many 

diseases of the body, such as kidney failure, heart attacks, strokes, and remove limb. 

Diabetes has several types, type 1, type 2 and gestational diabetes, including type 1 

Diabetes, which often appears during childhood. The body cannot produce insulin, 

as for type 2, it is the most common, which often appears in adults over the age of 

40, due to the slow appearance of symptoms on the patient for several years, finally 

gestational diabetes, it is the one that affects some pregnant women, as blood 

glucose levels are above the normal level [1, 2]. 

In order to know and sense the disturbance of the sugar level in the blood, a certain 

device containing a unit of control known usually as PID-controller is used. This 

would inform the medical practitioner automatically with an appropriate amount of 

insulin needed to control the level of glucose in the blood [1, 2]. Typically, the 

construction of the PID-controller relies on an integro-differential equation that 

possesses three parameters, 𝐾𝑝 , 𝐾𝑖  , 𝐾𝑑. It is well-known in the industrial field that 

optimal tuning of these parameters would yield a significant improvement in the 

performance of the device under consideration. Such tuning can be performed using 

several schemes, including Particle Swarm Optimization (PSO) algorithm, Bacteria 

Foraging Optimization (BFO) algorithm, Genetic Algorithm (GA), Ziegler–

Nichols (ZN) tuning method, and many others. 

More recently, it has been shown that the PID-controller can be further improved 

using the notion of fractional calculus, see [3, 4, 5]. Such notion, which relies on 

dealing with the derivative and the integral in their fractional-order forms, allow to 

turn the classical controller into the so-called fractional-order PID-controller, which 

consequently implies that the classical integro-differential equation would be turn 

into its fractional-order form, see [5, 6, 7]. This would add two extra parameters to 

the required tuning process; the fractional-order integral value (𝛾) and the 

fractional-order derivative value (𝜌), which consequently requires a proper dealing 

with the two-corresponding fractional-order Laplacian operators, 𝑠𝛾 and 𝑠𝜌 . 

Actually, these two operators can be approximated using several numerical 

approaches. The Continued Fractional Expansion (CFE) scheme, Oustaoup's 

approximation, Matsuda's approximation, El-Khazali's approximation are some of 

these approaches. The advantage of such approaches lies in approximately 

converting the fractional-order Laplacian operators (𝑠𝛾 and 𝑠𝜌 ) into their 

corresponding integer-order rational transfer functions. The same optimization 

techniques can be also employed to obtain the optimal tuning of the five parameters 

(𝐾𝑝 , 𝐾𝑖 , 𝐾𝑑 , 𝛾, 𝜌) for this newly constructed controller, the fractional-order PID-

controller (or simply the 𝑃𝐼𝛾𝐷𝜌-controller). 

In this work, we intend to implement two optimization algorithms, the PSO and 

BFO algorithms, for the purpose of tuning the fractional-order PID-controller, and 
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hence make the performance of blood glucose monitoring system more accurate 

and responsive. Once the fractional-order Laplacian operators, 𝑠𝛾 and 𝑠𝜌 , will be 

needed to be approximated, we will use the CFE and Oustaloup's approaches. 

However, the remaining of this paper is arranged as follows: In the next section, we 

provide a brief overview about the Fractional-order PID–controller, while the 

design process of such controller for the blood glucose test system is illustrated in 

Section 3, followed by the last section that summarizes the whole work. 

2      Fractional-order PID-Controller 

The major construction of the fractional-order PID-controller was established by 

Podlubny et al. in 1997 in [8]. This was carried outby adding two additional 

parameters, namely (𝛾 and 𝜌) to the main parameters (𝐾𝑝 , 𝐾𝑖  , 𝐾𝑑) of the PID-

controller. It was clearly verified that this construction is faster and more responsive 

than the classical one. In general, the PID-controller is extracted by applying the 

following fractional-order integro-differential equation: 
 

𝑦(𝑡) = 𝐾𝑝𝑒(𝑡) + 𝐾𝑖𝐽
𝛾𝑒(𝑡) +  𝐾𝑑𝐷𝜌𝑒(𝑡)     (1) 

where 𝐽𝛾 is the Riemann-Liouville operator of order 𝛾, 𝐷𝜌 is the Caputo operator 

of order 𝜌, and 𝑒(𝑡) is the error signal. By using the forward Laplace transform of 

(1), we get: 
 

𝑍(𝑠) =
𝑌(𝑠)

𝐸(𝑠)
 = 𝐾𝑝 +

𝐾𝑖

𝑠𝛾 +  𝐾𝑑𝑠𝜌     (2) 

where 𝐸(𝑠) =  𝐿{𝑒(𝑡)} is the Laplace transforms of 𝑒(𝑡). The main task of this 

work is to make the proposed controller applied efficiently within the blood glucose 

device. For attaining this purpose, we apply the PSO and BFO algorithms to find 

the optimal values of the five parameters of the Fractional-order controller. For 

those whom interested in understanding how these two algorithms work, they may 

refer to several references [5, 9, 10, 11]. In the optimality theory, there is an urgent 

need to build the so-called fitness function within the algorithms, in which reducing 

its value represents the desired goal of the optimization algorithm, so as to obtain 

optimal values for the fractional-order PID–controller. Herein, we intend to 

consider a certain fitness function that relies on four criteria; the steady-state error, 

settling time, rise time, and peak overshoot [10, 11]. However, the following is how 

such fitness function can be expressed [10, 11]: 
 

𝑉 = (1 − 𝑒𝛽)(𝑀𝑃 − 𝐸𝑠𝑠) + 𝑒−𝛽(𝑇𝑠 − 𝑇𝑟)     (3) 

where 𝛽 is the scaling factor, 𝑀𝑃 is the peak overshoot, 𝐸𝑠𝑠 is the steady state error, 

𝑇𝑠 is the settling time, and 𝑇𝑟 is the rise time. However, the overall tuning process 

of the 𝑃𝐼𝛾𝐷𝜌-controller using the PSO and BFO algorithms could be described by 

the block diagram shown in Figure 1. 
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Fig. 1: Block diagram of PSO/BFO running to tune the 𝑃𝐼𝛾𝐷𝜌 - controller 

In order to go forward through the proposed tuning scheme, we will need to 

approximate the two fractional-order Laplacian operators, 𝑠𝛾 and 𝑠𝜌 , where 0 <
𝛾, 𝜌 < 1. In this regard, we will use two significant approaches; the CFE and 

Oustaloup's approaches. In particular, these two approaches have an ability to 

generate two more acceptable equivalent formulations to the two aforesaid 

Laplacian operators. Such formulations are of the form of integer-order rational 

transfer functions. However, to obtain a complete overview about the two under 

consideration approaches, the reader may refer to the references [6, 12, 13, 14]. 

3      Design the Fractional-order PID-Controller 

It was reported in [1, 2] that the transfer function, which indicates the ratio between 

the two Laplace transforms of the output and the input for the blood glucose level 

system, is given by: 
  

𝐺(𝑠) =
1

𝑠3+6𝑠2+5𝑠
     (4) 

In this regard, we will attempt to reduce the value of the fitness function given in 

(3) by applying the PSO and BFO algorithms. The two yielded fractional-order 

operators (𝑠𝛾 and 𝑠𝜌 ) will be then approximated using the CFE and the Oustaloup’s 

methods. This would approximately construct four fractional-order PID-controllers 

𝐶𝑖(𝑠), which would imply also four closed-loop systems 𝐻𝑖(𝑠), where i = 1,2,3,4. 

These closed-loop systems will be compared with each other to attain the best 

controller from the proposed ones. However, the overall results of the 

improvements are highlighted in the next manner. 

 The 𝑷𝑰𝜸𝑫𝝆-PSO-controller via CFE approach: 

After executing PSO algorithm, we gain the following Fractional-order PID-

controller: 
 

𝐶1(𝑠) =  2.69683 +
55

𝑠0.911 +  51𝑠0.52043     (5) 
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The two Laplacian operators, 𝑠0.911 and 𝑠0.52043, can be therefore approximated 

using the CFE approach to be as follows: 
 

𝑠0.911 =
246.9621𝑠5+2.6421e+3𝑠4+5.6074e+3𝑠3+2.9951e+3𝑠2+332.0787𝑠+1

𝑠5+332.0787𝑠4+2.9951e+3𝑠3+5.6074e+3𝑠2+2.6421e+3𝑠+246.962
   (6) 

 

𝑠0.52043 =
12.2762𝑠5+180.8438𝑠4+499.3263𝑠3+351.6941𝑠2+57.5560𝑠+1

𝑠5+57.5560𝑠4+351.6941𝑠3+499.3263𝑠2+180.8438𝑠+12.27621
   (7) 

 

Thus, the 𝑃𝐼𝛾𝐷𝜌-PSO-controller 𝐶1(𝑠) would be in the form: 
 

𝐶1(𝑠) =
1.553𝑒5𝑠10+3.999𝑒6𝑠9+3.606𝑒7𝑠8+1.453𝑒8𝑠7+ 3.132𝑒8𝑠6

+4.018𝑒8𝑠5+3.2198𝑠4 +1.523𝑒8𝑠3+3.826𝑒7𝑠2+4.272𝑒6𝑠+1.668𝑒55
247𝑠10+1.686𝑒4𝑠9+2.445𝑒5𝑠8+1.378𝑒6𝑠7+3.509𝑒6𝑠6+4.353𝑒6𝑠5

+2.659𝑒6𝑠4+ 7.767𝑒5𝑠3+9.732𝑒4𝑠2+4258𝑠+12.28

   (8) 

 

This, consequently, implies the close-loop system  𝐻1(𝑠), which would be in the 

following form: 
 

𝐻1(𝑠) =
1.553𝑒5𝑠10+ 3.999𝑒6𝑠9+3.606𝑒7𝑠8+1.453𝑒8𝑠7+ 3.132𝑒8𝑠6

+4.018𝑒8𝑠5+3.2198𝑠4+ 1.523𝑒8𝑠3+3.826𝑒7𝑠2+4.272𝑒6𝑠+1.668𝑒5
247𝑠13+1.834𝑒4𝑠12+3.469𝑒5𝑠11+3.085𝑒6𝑠10+ 1.7𝑒7𝑠9+6.836𝑒7𝑠8+1.916𝑒8𝑠7

+3.517𝑒8𝑠6+4.199𝑒8𝑠5+ 3.263𝑒8𝑠4+1.528𝑒88𝑠3+3.828𝑒7𝑠2+4.272𝑒6𝑠 +1.668𝑒

  (9) 

 The 𝑷𝑰𝜸𝑫𝝆-BFO-controller via CFE approach: 

Herein, to obtain another Fractional-order PID-controller, we intend to execute the 

BFO algorithm this time. In summary, we obtain the following form: 
 

𝐶2(𝑠) =  6.3127 +  
4.7229

𝑠0.9151 +  17.4946𝑠0.5781     (10) 

The two operators 𝑠0.9151 and 𝑠0.5781 can be approximated using the CFE approach 

to be as follows: 
 

𝑠0.9151 =
262.5893𝑠5+2.8005𝑒+003𝑠4+5.9273𝑒+3.1564𝑒+3𝑠2+348.3569𝑠+1

𝑠5+348.3569𝑠4+3.1564𝑒+3𝑠3+5.9273𝑒+3𝑠2+2.8005𝑒+3𝑠+262.5893
   (11) 

 

𝑠0.5781 =
16.9101𝑠5+236.9145𝑠4+628.9111𝑠3+425.6896𝑠2+66.1069𝑠+1

𝑠5+66.1069𝑠4+425.6896𝑠3+628.9111𝑠2+236.9145𝑠+16.9101
   (12) 

 

This would make (10) to be rewritten in the following form: 
 

𝐶2(𝑠) =
7.935e4𝑠10+2.046e6𝑠9+1.829e7𝑠8+7.105e7𝑠7+ 1.376e8𝑠6

+1.425e8𝑠5+8.376e7𝑠4+2.883e7𝑠3+5.714e6𝑠2+5.634𝑒5𝑠+2.11e4
262.6𝑠10+2.016e4𝑠9+3.028e5𝑠8+1.752e6𝑠7+ 4.556e6𝑠6+5.762e6𝑠5

+3.585e6𝑠4+1.068e6𝑠3+1.365e5𝑠2+6128𝑠+16.91

   (13) 

 

Hence, the closed-loop system will be in the form: 
 

𝐻2(𝑠) =
7.935e4𝑠10+2.046e6𝑠9+1.829e7𝑠8+7.105e7𝑠7+1.376e8𝑠6

+1.425e8𝑠5+8.376e7𝑠4 +2.883e7𝑠3+5.714e6𝑠2+5.634e5𝑠+2.11e4
262.6 𝑠13+2.174e4𝑠12+4.251e5𝑠11+3.749e6𝑠10+ 1.86e7𝑠9+6.02e7𝑠8+1.32e8𝑠7

+1.89e8𝑠6+1.67e8𝑠5+ 8.992e7𝑠4+2.955e7𝑠3+5.745e6𝑠2+5.635e5𝑠+2.11e4

  (14) 
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 The 𝑷𝑰𝜸𝑫𝝆-PSO-controller via Oustaloup’s approach: 

In this instance, we execute the PSO algorithm to obtain a third fractional-order 

PID-controller, which would be in the following form: 
 

𝐶3(𝑠) =  28.8018 +  
66

𝑠0.821
+ 57.9553𝑠0.976     (15) 

Using Oustaloup’s approach will turn the two operators 𝑠0.821 and 𝑠0.976 into the 

following integer-order rational transfer functions: 
 

𝑠0.821 =
43.85𝑠5+973.9𝑠4+2957𝑠3+1388𝑠2+100.8𝑠+1

𝑠5+100.8𝑠4+1388𝑠3+2957𝑠2+973.9𝑠+ 43.85
   (16) 

 

𝑠0.976 =
89.54 𝑠5+1724 𝑠4+4538𝑠3+1847𝑠2+116.2 𝑠+1

𝑠5+116.2𝑠4+1847𝑠3+4538𝑠2+1724𝑠+ 89.54
   (17) 

 

Therefore, 𝐶3(𝑠) in (15) will be turned in 
 

𝐶3(𝑠) =
2.289𝑒5𝑠10+9.624𝑒6𝑠9+1.308𝑒8𝑠8+6.544𝑒8𝑠7+1.535𝑒9𝑠6

+2.002𝑒9𝑠5+1.695𝑒9𝑠4+ 7.52𝑒8𝑠3+1.51𝑒8𝑠2+1.107𝑒7𝑠+2.618𝑒5
43.85𝑠10+6069𝑠9+1.971𝑒5𝑠8+2.343𝑒6𝑠7+ 1.012𝑒7𝑠6+1.768𝑒7𝑠5

+1.167𝑒7𝑠4+ 3.117𝑒6𝑠3+3.026𝑒5𝑠2+1.075𝑒4𝑠+89.54

   (18) 

 

This consequently yields the following closed-loop system: 
 

𝐻3(𝑠) =
2.289𝑒5𝑠10+9.624𝑒6𝑠9+ 1.308𝑒8𝑠8+6.544𝑒8𝑠7+1.535𝑒9𝑠6

+ 2.002𝑒9𝑠5+1.695𝑒9𝑠4+7.52𝑒8𝑠3+ 1.51𝑒8𝑠2+1.107𝑒7𝑠+2.618𝑒5
43.85𝑠13+6332𝑠12+233750𝑠11+ 3.785𝑒6𝑠10+3.478𝑒7𝑠9+ 2.209𝑒8𝑠8+8.227𝑒8𝑠7

+1.697𝑒9𝑠6+ 2.08𝑒9𝑠5+1.712𝑒9𝑠4+7.536𝑒8𝑠3+ 1.511𝑒8𝑠2+1.107𝑒7𝑠+2.618𝑒5

  (19) 

 The 𝑷𝑰𝜸𝑫𝝆-BFO-controller via Oustaloup’s approach: 

Similarly, we execute here the BFO algorithm to obtain the last fractional-order 

PID controller. This controller has the form: 
 

𝐶4(𝑠) =  8.3518 +  
17.6913

𝑠0.8676 + 10.5999𝑠0.906     (20) 

In this case, we use the Oustaloup approach to approximate the two operators 

𝑠0.8676 and 𝑠0.9061, which would be in the following two forms: 
 

𝑠0.8676 =
54.35𝑠5+1156𝑠4+3363𝑠3+1513𝑠2+105.2𝑠+1

𝑠5+105.2𝑠4+1513𝑠3+3363𝑠2+1156𝑠+54.35
   (21) 

 

𝑠0.906 =
64.89𝑠5+1332𝑠4+3741𝑠3+1624𝑠2+109𝑠+1

𝑠5+109𝑠4+1624𝑠3+3741𝑠2+1332𝑠+64.89
     (22) 

 

Actually, the above two Laplacian operators can convert (8) to be written in the 

following form:  
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𝐶4(𝑠) =
3.786𝑒004𝑠10+1.625𝑒6𝑠9+2.287𝑒7𝑠8+1.218𝑒8𝑠7+3.154𝑒8𝑠6

+4.608𝑒008𝑠5+4.125𝑒8𝑠4+ 1.846𝑒8𝑠3+3.687𝑒7𝑠2+2.678𝑒6𝑠+6.295𝑒4
54.35𝑠10+7080𝑠9+2.176𝑒5𝑠8+2.449𝑒6𝑠7+ 1.002𝑒7𝑠6+1.659𝑒7𝑠5

+1.039𝑒7𝑠4+ 2.629𝑒6𝑠3+2.42𝑒5𝑠2+8158𝑠+64.89

   (23) 

 

Hence, the corresponding closed-loop system would be in the form: 
 

𝐻4(𝑠) =
3.786e4𝑠10+1.625e6𝑠9+2.287e7𝑠8+1.218e8𝑠7+3.154e8𝑠6

+4.608e8𝑠5+4.125e8𝑠4+1.846e8𝑠3+3.687e7𝑠2+2.678e6s+6.295e4
54.35𝑠13+7406𝑠12+2.604e5𝑠11+3.828e6𝑠10+2.743e7𝑠9+ 1.118e8𝑠8+2.819e8𝑠7

+4.633e8𝑠6+5.287e8𝑠5+ 4.271e8𝑠4+1.859e8𝑠3+3.692e7𝑠2+2.679e6s+6.295e4

  (24) 

To spotlight the dissimilarities between all previous design methods, some 

numerical results of the closed-loop transfer functions given in 𝐻1(𝑠), 𝐻2(𝑠), 𝐻3(𝑠) 

and 𝐻4(𝑠) are exhibited in Figure 1, Figure 2, Figure 3, Figure 4, and Table 1. 

 
Fig.2: Step responses of 𝐻1(𝑠) & 𝐻2(𝑠). 

 
Fig.3: Step responses of 𝐻3(𝑠) & 𝐻4(𝑠). 

 
Fig.4: Step responses of 𝐻1(𝑠), 𝐻2(𝑠), 𝐻3(𝑠) & 𝐻4(𝑠). 
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Fig.4: Bode diagrams of 𝐻1(𝑠), 𝐻2(𝑠), 𝐻3(𝑠) & 𝐻4(𝑠). 

 

 

Table 1: Step responses of 𝐻1(𝑠), 𝐻2(𝑠), 𝐻3(𝑠) & 𝐻4(𝑠) 

Step response 𝐻1(𝑠) 𝐻2(𝑠) 𝐻3(𝑠) 𝐻4(𝑠) 

Rise Time 0.28180 0.51710 0.18170 0.57550 

Settling Time 7.22640 7.80250 2.62810 14.8656 

Settling Min 0.60260 0.92860 0.93150 0.73440 

Settling Max 1.77110 1.33160 1.37960 1.49400 

Overshoot 77.1078 33.1579 37.9555 49.4014 

Undershoot 0.00000 0.00000 0.00000 0.00000 

Peak 1.77110 1.33160 1.37960 1.49400 

Peak time 0.84000 1.28560 0.45400 1.78430 

 

5      Conclusion  

Four 𝑃𝐼𝛾𝐷𝜌–controllers of the blood glucose level system have been designed by 

two different algorithms; Particle Swarm Optimization (PSO) algorithm and 

Bacteria Foraging Optimization (BFO) algorithm via two different approaches of 

the fractional-order integro-differential Laplacian operators 𝑠𝛾 and 𝑠𝜌 , namely the 

Continued Fractional Expansion (CFE) approach and the Oustaloup’s approach, 

where 0 < 𝛾, 𝜌 < 1. Based on the numerical results gained from several performed 

comparisions, we can conclude that, although all proposed controllers are often 

competing to each other in providing high performance response specifications of 

all their corresponding closed-loop systems, there are some slight improvements of 

the step responses achieved using PSO algorithm over than that of using BFO 

algorithm. In particular, it is clearly shown that the best controller among of all 

proposed controllers is the 𝑃𝐼𝛾𝐷𝜌–controller which has been established by 

executing PSO algorithm through Oustaloup’s approach. This is because such 

controller has provided the closed-loop system with the fastest step response and 

fastest settling time without too much overshoot among of all other controllers. 
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