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Abstract 

     Discovering interactions between drug compounds and proteins is 
fundamental in drug design. However, Drug target interactions 
(DTIs) prediction is an exceedingly tedious, and onerous task. 
Consequently, several computational approaches have been 
elaborated to improve and accelerate the drug discovery procedure. 
Nevertheless, these methods suffer from the high imbalance rate of 
the available datasets since there are considerably more non-
interacting compound-protein pairs than interacting pairs.  This 
paper presents a contribution in this regard.  We propose a deep-
learning framework using convolutional recurrent layers for drug-
target interaction prediction. This kind of neural networks combines 
the advantages of both recurrent and convolutional networks. Then, 
a cost-sensitive learning is performed to improve the performance of 
our initial model. The experimental analysis shows that our cost-
sensitive models outperform similar methods in terms of area under 
the curve for Receiver Operating Characteristic (auROC) and area 
under the Precision Recall curve (auPR) metric.  

     Keywords: Deep learning models for drug discovery, Drug-target interaction, 
Imbalanced datasets, Cost-sensitive learning, Convolutional LSTM networks. 

 

1      Introduction 

Detection of interactions within drugs and targets is a primordial phase in drug 

design and discovery. Therefore, in the initial phases of drug design, the 

prediction of Drug-Target interaction (DTI) plays a critical role. Nevertheless, this 

task was, previously, very costly, time-consuming, and prone to errors, as it was 

mainly based on biological assays and screening methods [1]. Thus, investigating 
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computational techniques to reduce both costs and errors was indispensable. The 

unprecedented interest witnessed in the development of new computational 

approaches for efficient DTI identification has given rise to various approaches 

for predicting and analyzing DTIs based on the available interaction data [2,3]. 

The main methods were, essentially, ligand-based methods and docking 

simulation methods [4]. However, this class of approaches exhibits poor 

performance and low effectiveness. Nowadays, a huge amount of drugs and 

genomes heterogeneous data is produced and structured in various openly 

accessible databases.  This has inspired the research community to explore the 

development of machine learning (ML) methods for efficient prediction of DTIs.  

ML methods are data-driven techniques whose success, largely, depends on the 

training datasets. In this paper, we propose a new DL-based approach using 

convolutional recurrent networks for drug-target interaction prediction. First, we 

propose a deep-learning model using convolutional LSTM layers for drug-target 

interaction prediction. This kind of neural networks has never been used before 

for DTI prediction. It combines the gating of LSTM with 2D convolutions. Input 

transformations and recurrent transformations are both convolutions. 

Convolutional networks are famous for their ability in discovering patterns, and 

LSTMs excel in learning from sequential data while avoiding the problems of 

long-term dependency.  These characteristics motivated our use of 

CONVLSTM2D since, in our framework, both drugs and targets are represented 

by raw sequences that present patterns. Then, cost-sensitive learning is performed 

to improve the performance of our initial model. We implemented various 

methods to overcome the imbalance rate of the standard datasets. We assessed our 

methods by using auROC and auPR metrics, which are the most adequate metrics 

when the datasets are imbalanced. In this work, we used four balancing methods 

including Tomek links under-sampling [30], SMOTE over-sampling [31], 

Threshold moving, and Class-weight. As a result, our methods have demonstrated 

benefits to overcome the bias issue and provided better prediction performance on 

the usual drug-target datasets.  The rest of this paper is structured as follows: 

Section 2 introduces some related works, Section 3 describes the materials and 

methods we used in this paper; Section 4 highlights the experimental results and 

finally, a conclusion in Section 5 ends this paper. 

2      Related Work 

In an original work on DTI prediction, Yamanishi et al. [5] presented standard 

datasets composed of four sets of drug-protein pairs. A substantial number of ML 

algorithms for DTI prediction, using these datasets, has been developed. This 

comprises various supervised learning approaches as SVM [6], k-nearest neighbor 

[7], fuzzy logic [8], and random forest [9].  Several methods based on the 

similarity network have also been proposed. For instance, KronRLS [10] uses 2-

dimensional compound similarity-based representations of the drugs and Smith-

Waterman similarity representation of the targets. Lately, another method, 
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SimBoost [11] was suggested for DTI prediction with a gradient boosting 

machine. The authors use similarity-based information of DT pairs with features 

extracted from network-based interactions between the pairs. Other methods using 

similarity networks and matrix factorization are presented in [12-18].  However, 

like all ML techniques, these methods require a feature engineering phase. 

Contrasting ML, deep neural networks can automatically extract important 

features from the input data, combine and integrate low-level features into high-

level features, and capture complicated nonlinear relationships in a dataset [19]. 

Stimulated by its noteworthy success, deep learning-based techniques are now 

being investigated in many complex domains, including bioinformatics such as in 

genomics studies [20,21] and quantitative-structure activity relationship (QSAR) 

studies in drug discovery [22-24]. The most noticeable benefit of deep learning 

approaches is their ability to extract automatically latent features of the raw data 

by non-linear transformations in each layer [19]. However, this advantage makes 

them more dependent on datasets. Nevertheless, in DTI prediction research, 

datasets constitute a critical point, since many years, most DTI studies employed 

the four major datasets by Yamanishi et al. [5] in which DT pairs with no known 

binding information are treated as negative (not-binding) samples. Designing 

unknown interactions as negative samples strongly affect methods performance.  

Recently, few DTI methods using datasets with binding information have been 

developed. They create binarized datasets by using a threshold for binding scores. 

Some of these methods employ Deep Neural Networks (DNN) for DTI prediction 

using various input models for proteins and drugs [25,26]. In [27,28], are 

introduced two approaches based on stacked auto-encoders and deep-belief 

networks. DL-based algorithms for DTI prediction, diverge from each other 

regarding two main aspects. The first is the input data representation, particularly, 

drug features. Some examples are Simplified Molecular Input Line Entry System: 

SMILES [29], Ligand Maximum Common Substructure (LMCS) Extended 

Connectivity Fingerprint (ECFP) or a combination of these features. The second 

aspect is the architecture of the model that is defined using different neural 

network (NN) types. Commonly, the prediction of DTI starts with the 

representation of the input data for the drug and target, then diverse NN types 

with various structures are applied to learn their features separately. The obtained 

features are then merged and fed to a feedforward neural network for the 

prediction task.  However, one of the major obstacles in drug-target interaction 

prediction is due to the imbalanced nature of the available datasets.   Negative 

samples extremely outnumber positive samples.  This weakness, if not 

appropriately handled, can reduce drastically the prediction performance of any 

approach. It has been shown that imbalance handling is strongly related to cost-

sensitive learning. In classification problems, cost-sensitive learning is the process 

of associating a different cost to each type of classification error. Cost-sensitive 

learning shows a promising way of modifying the learning in the context of class 

imbalance. However, we need to distinguish between the theory and the practice 

of this subject. In theory, when it is possible to have a good estimate of the cost of 
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each type of classification error (false positive and false negative), using cost-

sensitive learning requires the definition of a cost matrix. In that case, it will be 

judicious to use a metric directly linked to this cost matrix. For example, in the 

case of credit card fraud detection, the datasets are highly imbalanced. The aim 

being to, on one hand, minimize the number of fraud as much as possible, and on 

the other hand, don’t be too strict with one’s clients.  In this regard, it will be 

possible to define a cost function specially tailored for each specific type of error 

with the help of an expert (a credit analyst). In practice, it is not always possible, 

or even suitable, to have an expert to assign error costs.  Therefore, it is usual to 

apply a cost inversely proportional to the class imbalance. Furthermore, it has 

been indicated that learning when costs are different and unknown, and learning 

from imbalanced datasets can be handled in a similar way [29]. Indeed, the 

challenge in classification is to find an adequate decision boundary between 

classes. For imbalanced datasets, this can be done through two families of 

solutions:  

1. Extensive data processing:  Operate on the dataset to modify data distribution. 

2. Optimization of the classification algorithm: Operate on the learning algorithm  

     to handle skewed class distribution in such a way that, examples with higher    

     costs become harder to be misclassified. 

Therefore, in our research, we apply methods from both families. More 

specifically, we will be interested in four methods that have been shown to be 

effective in handling the class imbalance problem, applied to cost-sensitive neural 

networks namely:  over-sampling, under-sampling, class-weight, and threshold-

moving. Our study reveals that these techniques are very effective. 

3      Materials and Methods 

In this section, we introduce our proposed method along with the used datasets.  

Our approach is composed of three main parts: data preparation and pre-

processing, deep learning model, and cost-sensitive techniques.  We use Amino-

acid sequences for proteins and SMILES sequences as a drug representation. 

Hence, in the data processing phase, the drug and protein sequences were 

collected. The training drug-target datasets were then built for the following stage. 

Our deep learning model is based on convolutional recurrent stacked architecture. 

The cost-sensitive handling phase, is performed by using four methods:  SMOTE 

over-sampling [31], Tomek links under-sampling [30], class-weight, and 

threshold moving. These techniques were applied to all the datasets. 

3.1      Datasets  

To assess the performance of our approach, we use the three benchmark datasets: 

Davis [32], Metz [33], and KIBA [34]. Davis dataset contains selectivity assays 

with dissociation constant values. It contains interactions of 442 proteins and 68 

ligands. KIBA dataset has been filtered to contain a total of 229 unique proteins 
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and 2116 unique drugs.  Metz dataset consists of 1421 drugs and 156 targets. All 

these datasets contain binding affinities scores and were used in previous works 

on drug-target binding affinity prediction.  Indeed, it was found that their use as 

binary datasets by defining a threshold for the score value, is more realistic than 

using datasets where all the unknown pairs interactions are considered as negative 

samples [35]. KronRLS [10], SimBoost [11], and Deepdta [36] are among the 

most known methods using these datasets. For their experiments, they used 

binarized versions of the datasets by applying thresholds.  In this paper, we follow 

the same rules as done in these approaches.  For the Metz dataset, we used the 

threshold of pKi ≥ 7.6 as suggested in [10] to assign a label of 1, i.e. the presence 

of interaction. For the Davis dataset, we used a threshold of pKd ≥ 7. In the KIBA 

dataset, [34] suggests a threshold of KIBA value ≤3.0 to binarize the dataset, we 

follow a similar approach. Table 1 summarizes the statistics for these three 

benchmark datasets. In this table, positive interaction represents the presence of 

interaction, while negative interaction reflects the absence of interaction. It is 

manifest that the datasets are highly imbalanced, as the number of negative 

samples is significantly larger than the positive samples, creating a bias issue.  

Table 1. presents a summary of the three datasets. In Fig. 1, the distribution of 

classes is illustrated. We notice the bias in all three datasets, with the highest 

degree of imbalance being in the Davis dataset. 

 

Table 1.   Datasets Summary 

 

 

 

 

      a-  Kiba dataset                       b- Davis dataset                        c- Metz dataset 
Fig. 1 - Classes Distribution for the three datasets:  (a) Kiba dataset , (b) Davis dataset , (c) Metz Dataset 

Dataset Drugs 
  

Proteins 
Positive 

interaction 

   Negative 

Interaction 

 

total 

 

Positive class  

Rate (%) 

 

Negative class 

Rate (%) 

  Davis 68 442 2562 29262 31824 8.05 91.95 

 Kiba 2116 229 32035 128261 160296 19.98 80.02 

 Metz 1421   156 3569 31690 35259 10.12 89.88 
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3.2      DRUG AND TARGET REPRESENTATION 

Our model uses SMILES as drug representation, and amino-acid protein 

sequences for target representation. The Simplified Molecular-Input Line-Entry 

System (SMILES) is a specification in the form of a line notation that uses 

printable characters for describing the structure of chemical elements: molecules 

and reactions. SMILES is a true language, although with a small vocabulary size 

(atom and bond symbols) and only a few grammar rules. In our model, SMILES 

are represented by a one-hot encoding. Protein sequences are encoded similarly. 

Both SMILES and protein sequences have variable lengths, consequently, we 

opted for a maximal length of 1200 for proteins and 100 for drugs.  The sequences 

that are shorter than the maximum length are 0-post-padded, while longer 

sequences are truncated.  The choice of maximum length is guided by the length 

distribution of both sequences. We guaranteed that the chosen maximum lengths 

cover 95% of both proteins and compounds in the datasets. Our choice for 

SMILES as drug representation is motivated by the recent works in drug-target 

binding affinity prediction, that showed their supremacy even on graph-based 

methods [37]. 

3.3      BASE MODEL ARCHITECTURE  

Our model is based on a deep convolutional recurrent architecture using 

CONVLSTM2D layers. This kind of layer combines the gating of LSTM with 2D 

convolutions. Input transformations and recurrent transformations are both 

convolutional. Convolutional networks are famous for their ability in discovering 

patterns, and LSTMs are a class of recurrent neural networks that excel in learning 

from sequential data.  These characteristics motivated our use of CONVLSTM2D 

since, in our framework, both drugs and targets are represented by raw sequences 

that present patterns. .  First a one-hot encoding is applied to each sequence. Then, 

an embedding layer is used to represent sequences characters with high-

dimensional (128-dimensional) dense vectors. The resulting sequences are deeply 

explored by two convolutional recurrent blocks, each one composed of three 

CONVLSTM2D layers to capture the presence of discriminative features.  These 

layers are directly connected without pooling which allows preserving the entire 

information, a pooling is performed at the end of the block, to reduce the output 

size of the previous layers and provide a generalization of the learned features. 

The output of the convolutional recurrent blocks are concatenated.   To conclude, 

the final prediction is performed, in a standard way, by using fully connected 

layers after the feature extraction. All the hidden layers are activated by the “relu” 

activation function.  The output layer was activated with the sigmoid () function. 

The whole neural network model was implemented with Keras [38,39]. The most 

powerful feature of CONVLSTM2D models is their ability to capture local 

dependencies with the help of filters and at the same time find out dependencies 

between distant sequence locations. The number  and  size of filters are among the  



  

 

 

31                                                     Cost-Sensitive Deep Learning Models for… 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 2. Base Model Architecture 

 

hyperparameters that have a high impact on the model performance. Thus, 

increasing the number and the size of filters likely increases the ability of the 

model in patterns recognizing patterns [40]. The output layer was activated with 

the Sigmoid () function, which is the recommended activation for binary 

classification problems. The whole neural network model was implemented with 

Keras with tensorflow as backend [38,39]. The most powerful feature of 

CONVLSTM2D models is their ability to capture the local dependencies with the 

help of filters and at the same time find out dependencies between distant 

sequence locations. The number and size of the filters in a CONVLSTM2D has a 

direct impact on the features the model learns from the input. It is, therefore, well-

established, that as the number of filters increases, the model becomes better at 

recognizing patterns. [40]. Stacking many CONVLSTM2D layers allows the 

automatic detection of more abstracted features. The numbers of filters we used 

and their sizes are described in th Table 2 below. For the ending fully connected 

block, we used 1024 nodes in the first two Dense layers, and 512 nodes in the last 

one.  To overcome overfitting, we used dropout and batch normalization. Dropout 

is a technique that is used to avoid overfitting by excluding the activation of some 

of the neurons. Aggressive regularization is also employed to remove overfitting 

to the maximum extent.  As a regularization technique, we use the L2- regularizer. 

The activation functions used for fully connected layers are all Rectified Linear 

Units (ReLU) which has been widely used in deep learning studies [41].  We used 

binary Crossentropy as a loss function. The learning was completed with 100 
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epochs and a mini-batch size of 128 was used to update the weights of the 

network.  Adadelta optimizer [41] was used as the optimization algorithm to train 

the networks, with a Callback for initializing the learning rate and dynamically 

tuning it during the training by reducing its value based on the monitored 

parameter, the initial learning rate value was set to 0.01, and the minimum value 

was set to 0. 0001. The structure of the network is shown in Fig. 2 

     Table 2. Convolutional Recurrent Block layers 

 

3.4      COST-SENSITIVE DTI   

As shown by the datasets summary, the three datasets are exceedingly imbalanced 

and the classification samples are not uniformly distributed. In this study, we 

applied four classes of solutions. Two of these solutions, namely, over-sampling 

and under-sampling operate on datasets to modify the distribution of the training 

data such that the costs of the examples are conveyed explicitly by the 

appearances of the examples. While the two other methods:  threshold moving 

and class-weight operate on the learning algorithm to handle the skewed class 

distribution, in such a way that examples with higher costs become harder to be 

misclassified.   In general, cost-sensitive learning methods assign costs to classes. 

These costs are inversely proportional to the number of training examples of the 

corresponding class. So, in our study, the positive class will be assigned the 

highest cost.  In this section, we present each of these methods. 

3.4.1      Over-Sampling 

 

Over-sampling operates on datasets; it changes the training data distribution in 

such a way that costs of the examples are concordant to examples occurrences. In 

other words, this method iteratively creates new instances of higher-cost until the 

number of different training examples are proportional to their costs. We applied 

the Synthetic Minority Oversampling Technique: SMOTE.  This technique first 

chooses a positive instance (minority class instance) xi at random and finds its k 

nearest positive neighbors. Typically, and in our work k=5.  A synthetic instance 

is then created by selecting one of the k nearest neighbors xj at random and 

performing an interpolation connecting xi and xj to form a line segment in the 

feature space. The synthetic instances are generated as a convex combination of 

the two chosen instances xi and xj. The newly generated instance value is given by 

the formula (1) below: 

Layer #Filters   Size Dropout Rec-dropout Regularizer 

Convlstm2d-1 16 4 0.2 0.1 L2 

Convlstm2d-2 32 4 0.2 0.1 L2 

Convlstm2d-3 64 4 0.2 0.1 L2 
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Xnew = xi+ λ (xj − xi)     (1) 

 

where λ is a random number in the range [0,1].  This interpolation creates a 

sample on the line between xi and xj. The procedure can be used to create as many 

synthetic examples for the positive class as are required. The approach is effective 

because new synthetic positive examples are created in a consistent way, that is, 

they are relatively close in feature space to existing examples of the positive class.  

We used the imbalanced-learning, imblearn [42] library to implement the SMOTE 

over-sampling.       

 
.       

 

  

 

                                           

                    

Fig.3 Illustration of the SMOTE technique 

3.4.2      Under-Sampling 

 

Under-sampling attempts to decrease the number of inexpensive examples, in our 

case, negative samples. We start by removing redundant examples at first and then 

removing borderline examples and examples suffering from the class label noise. 

The examples that are close to the limits between the two classes are called 

borderline examples. They are unreliable because even a small extent of noise or 

trouble can change their membership and move them to the opposite class. In this 

work, we used the Tomek links under-sampling method. It detects the borderline 

examples and examples suffering from the class label noise. The idea is to take 

two examples, i.e. x and y, such that each belongs to a different class, and then 

compute Dist (x, y) denoting the distance between them.  The pair (x, y) is called a 

Tomek link if no example z exists such that:    

 

Dist (x, z) < Dist (x, y) or Dist (y, z) < Dist(y,x).  (2) 

 

Two samples of different classes that are the nearest neighbors of each other 

produce a Tomek link.  Consequently, we remove any observations from the 

majority class for which a Tomek link is detected. It removes unwanted overlap 

between classes where majority class links are removed until all pairs of closest 

neighbors, at minimum distance, are of the same class. Many studies have 

revealed that under-sampling is effective in learning with imbalanced datasets, 

sometimes even stronger than oversampling, especially on large datasets. We used 

the imblearn [42] library to implement Tomek link under-sampling. 

Data of majority class  

Data of minority class 

Data synthetic of minority class 
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Fig.4   Illustration of Tomek Link technique 

3.4.3      Threshold Moving 

 

Our deep-learning model is predicting a probability of class membership which is 

interpreted before it can be mapped to a class label. This is accomplished by using 

a threshold, usually, 0.5, where all values equal to or greater than the threshold are 

mapped to one class, and all other values are mapped to another class. The default 

threshold results in poor performance for the classification problems suffering 

from highly imbalanced datasets. As such, we explore the idea of improving the 

performance of our model by tuning the threshold used to map probabilities to the 

class label. Threshold-moving moves the output threshold toward inexpensive 

classes such that examples with higher costs become harder to be misclassified. 

This method uses the original training set to train a neural network, the cost-

sensitivity is introduced merely in the test phase. Recently, it has been recognized 

that “When studying problems with imbalanced data, using the classifiers 

produced by standard machine learning algorithms without adjusting the output 

threshold may well be a critical mistake” [43]. It has also been declared that trying 

other methods, such as sampling, without trying setting the threshold might be 

inappropriate [43]. A recent study has revealed that threshold moving is as 

effective as sampling methods in addressing the class imbalance problem [44]. 

Usually, threshold moving is performed by testing different threshold values and 

the resulting labels are evaluated using a selected evaluation metric. The threshold 

attaining the best evaluation metric is applied for the model. In our work, we use 

another method based on Youden’s J-statistic [45] given by the formula (3) 

below, to define the optimal threshold value. The J-statistic attempts to maximize 

simultaneously the Sensitivity and Specificity of the model. This is achieved by 

maximizing their sum. These metrics are given by the formulas:   

Sensitivity = True Positive Rate                                            (1) 

Specificity = 1 – False Positive Rate                                      (2) 

 

Thus, their sum is:     

Sensitivity + Specificity = ( True Positive Rate – False Positive Rate )+1 
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So, maximizing this sum implies simply maximizing the J-statistic given by:  

 

J = TruePositiveRate – FalsePositiveRate                            (3) 

 

We then select the threshold with the largest J-statistic value. Accordingly, we 

performed the training of our initial model without threshold moving but by 

computing in parallel the optimal threshold as explained above.  Then in the 

testing phase, the found value of the optimal threshold is used in evaluating new 

samples.  

3.4.4      Class Weight  

 

In cost-sensitive learning, class weight is one of the performant methods to 

overcome the class imbalance.  One can integrate the weights of the classes into 

the cost function to make the classifier attentive to the imbalanced data. In our 

approach, we give a higher weight (cost) to the positive class and a lower weight 

to the negative class. This places more emphasis on the positive class such that the 

end result is a classifier that can learn equally from both classes.  the positive class 

gains in importance as its errors are considered costlier than those of the negative 

class. For the training of our model, we used Crossentropy as a loss function since 

it is considered as the conventional cost function for binary classification 

algorithms. It is defined as:   

 

Crossentropy = −ylog(p) − (1−y)log(1−p) 

where y is the class binary indicator: 0 for negative class and 1 for positive class; 

p is the predicted probability for instance belonging to class 1. To incorporate the 

weights of the classes into the above formula, we define a weighted Crossentropy 

in which the weights are not the same for the two classes, but are based on the 

value   for class 0  and  (-1) for class 1. The weighted Crossentropy is then 

given by:  

BalancedCrossEntropy = − (ylog(p) – (1-)(1−y)log(1−p) 

 

  is a given parameter that needs to be computed previously. We implemented 

the function that computes the optimal value of  for each dataset based on its 

classes distribution.   

4      Experiments and Results 

In this section, we present and discuss the experimental results of our methods for 

DTIs prediction. We implemented our model in Python with the library 

tensorflow. keras [38,39]. We scrutinized the efficiency of the different techniques 

used in this research. Finally, we make a comparison of our suggested method 

against other similar methods. 
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4.1      Evaluation Metrics   

Several performance metrics have been used to assess the performance of 

prediction approaches and compare classification models.  The most used metrics 

are accuracy, precision, recall, and other similar metrics. Nevertheless, when the 

datasets are imbalanced, these metrics are not suitable to demonstrate the 

efficiency of a method. Usually, in similar situations, two metrics are insensitive 

to imbalanced ratio, namely, the area under the curve for Receiver Operating 

Characteristic (auROC) and the area under the Precision-Recall curve (auPR).  

These two metrics have been extensively used for imbalanced datasets as standard 

metrics for comparisons [46,47]. Both metrics value range from 0 to 1 where a 

random classifier has a score of 0.5 and a perfect classification model will have an 

auPR and auROC score of 1. In both cases the higher the better. Therefore, we 

have used these two effective measures to evaluate the classification performance 

of our method. A ROC curve is a plot of true positive versus false-positive rate for 

diverse threshold values. Another important factor is the bias and variance trade-

off.  Cross-validation is commonly used as an attempt to solve the bias-variance 

problem [48]. Among these cross-validation techniques, the k-fold cross-

validation has been widely employed in research works since it always shows 

notable characteristics. The conventional value of k in DTI approaches is 5.  Thus, 

we have implemented 5-fold shuffled cross-validation on each dataset. During the 

cross-validation procedure, the drug-target datasets are randomly separated into 

five distinct and non-overlapping folds of approximately the same size.  Four 

folds are used as training samples, and the remaining fold is used as testing 

samples. The complete method is accomplished five times and the prediction 

results are calculated for each round. The final prediction result is the average of 

the cross-validation scores measures. For the oversampling SMOTE technique 

with the 5-fold cross-validation process, the original dataset is initially divided 

into training samples and testing samples. SMOTE is then applied to the training 

samples in each phase of cross-validation. So, merely the training samples are 

oversampled. the testing samples are not oversampled, and they are completely 

unseen during the training of the predictive model.  

4.2      Baseline Methods   

To assess the performance of our work, we compared it with three state-of-the-art 

methods, namely: DeepDTA [36], KronRLS [10], and SimBoost [11]. 

4.2.1      DeepDTA  

DeepDTA, introduced in [36] is a deep-learning model based on Convolutional 

Neural Network (CNN) architecture that includes two distinct stacked CNN 

blocks, one for protein sequences and one for SMILES that learn separately latent 

features of drug and target, followed by pooling layers reducing the size. 



  

 

 

37                                                     Cost-Sensitive Deep Learning Models for… 

DeepDTA performance was assessed on Kiba and Davis datasets. It was designed 

for continuous values prediction, but is also assessed for binary classification. 

4.2.2      KronRLS  

 

KronRLS is introduced in [10]. It is based on Regularized Least Squares Models 

(RLS) and it can predict both binary classes and continuous binding values. Given 

a set {di} of drugs and a set {tj} of targets, the goal of KronRLS is to learn a 

prediction function f(x) for all possible drug–target pairs x ∈  {di × tj}. An 

objective function computing the dissimilarity between two pairs has to be 

learned. Thus, the problem of learning the prediction function f is formulated as 

finding a minimizer of a corresponding objective function [4]. 

4.2.3      SimBoost  

SimBoost [11] is a gradient boosting machine-based method that, constructs 

feature for each drug, each target, and each drug–target pair. With each drug-

target pair, SimBoost associates a feature vector. SimBoost uses three networks: 

drug-drug similarity network, target-target similarity network, and drug-target 

binding network. In the latter case, a node can either be a drug or target and the 

drug nodes and target nodes are connected to each other via binding affinity value. 

Latent vectors from matrix factorization are also included in this network. A 

supervised learning method named gradient boosting regression trees [49] is used 

for DTI prediction. 

4.3      Results   

In this section, we present the results obtained by our base model, which is merely 

the DL model without any imbalance treatment.; along with the results for each 

cost-sensitive technique and a comparison with previous methods.  In the 

experiments reported in this paper, each dataset was split into two sets, train set 

and test set using 5-fold cross-validation.  Table 3 and Table 4 present the results 

for our base model, respectively, in terms of Roc and AuPR metrics, with a 

comparison with baseline methods. The results for the baseline methods were 

taken from the experiments reported in the literature [10,11,36]. The performances 

of our imbalance treatment techniques, for the three datasets, are presented in 

Table 5 and Table 6. 

           Table 3. Performance of our base model on the three datasets in terms of    

                          AUROC with comparison to baseline methods.  

 

 

 

 Davis Kiba Metz 

KronRLS 0.931 0.904 0.932 
SimBoost 0.956 0.907 0.958 

DeepDta N/A N/A N/A 

Our base Model 0.959 0.934 0.929 
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             Table 4. Performance of our base Model on the three datasets in terms of  

                           AUPR  with comparison to baseline methods. 

 Davis Kiba Metz 

KronLRS 0.686 0.766 0.565 

SimBoost 0.758 0.782 0.629 

DeepDta 0.714 0.788 N/A 

Our base Method 0.772 0.760 0.6341 

 

We notice that our base model shows high performances in both ROC and AUPR, 

even if it is not the best in all the datasets compared to the baseline methods.   

Tables 3 and 4 show that our method is able to produce results with the best 

AUROC and AUPR in two datasets out of 3.  Still, for the dataset, where the 

performance of our method is not the best, it is very close to the best performing. 

This could be explained by the pertinence of the choice of CONVLSTM2D 

architecture, and the adequacy of the hyper-parameters tuning. 

 

         Table 5.  Performance of our unbalancing methods on the three datasets in  

                         terms of auROC 

Methods Davis Kiba Metz 

SMOTE 0.978 0.965 0.964 

TOMEK LINK 0.907 0.875 0.883 

CLASS-WEIGHTS 0.974 0.955 0.960 

THRESHOLD MOVING 0.963 0.937 0.953 

 

 

            Table 6. Performance of our unbalancing methods on the three datasets in  

                           terms of auROC 

Methods Davis Kiba Metz 

SMOTE 0.8482 0.805 0.864 

TOMEK LINK 0.668 0.703 0.582 

CLASS-WEIGHTS 0.827 0.796 0.7072 

THRESHOLD MOVING 0.795 0.774 0.649 

 

The imbalance handling techniques show overall a great improvement of the 

results. The SMOTE over-sampling was very effective in all the datasets. We 

noticed two unexpected results. The first is about the great efficiency of Class-

weighing, indeed the results show that when we find the optimal class weights, 

this method is very effective. The second remark is about the Tomek link under-
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sampling method, which is usually known to be efficient but did not work very 

well for our experiments, its results could be explained by the complexity of our 

learning problem which requires larger datasets; therefore, the results were 

seriously affected by the reduction in the size of the datasets. We can consider a 

simple ad-hoc solution of this variation, by following this method directly; by 

SMOTE which will catch up with the reduced number of instances by creating 

new ones. The threshold moving method also improved the result of our base 

model, the Fig. 5 presents the AuRoc for the three datasets, with the optimal 

threshold value for each one. Thus, for both metrics, for all the datasets, all our 

methods, except under-sampling, have either the best performance, or their 

performance is very close to the best one. 

 

 

 

(a) Metz Dataset                (b)  Kiba Dataset                (c)    Davis Dataset             

Fig. 5   AUROC for the three datasets with the optimal threshold at the 

                      black point at the top- left of the plot. 

 

5      Conclusion  

To tackle the problem of DTI prediction more efficiently, we propose a cost-

sensitive deep learning based method. We represent both drugs and proteins with 

sequences. Then we use convolutional recurrent Neural Networks 

(CONVLSTM2D) to learn representations from the combined drug-target 

sequence. Our results showed that the use of stacked CONVLSTM2D to learn 

representations of proteins and drug sequences is appropriate.   This could be an 

indication that compound and amino-acid sequences require a structure that can 

handle simultaneously, their ordered relationships along with their hidden 

patterns, which the CONVLSTM architecture accomplished successfully. We 

perform our experiments on three commonly used datasets, Davis, Kiba, and 

Metz. We implemented various methods to deal with the increased imbalance rate 
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of the conventional datasets. We evaluated our methods by using auROC and 

auPR metrics, which are the most suitable metrics when the datasets are 

imbalanced. In this work, we used four balancing methods including under-

sampling Tomek Link, over-sampling SMOTE, Threshold moving, and Class-

weight. As a result, our methods have revealed benefits to deal with the bias issue 

and provided better prediction performance for the three datasets. Our proposed 

method outperforms other state-of–that-art methods in terms of auPR and auROC 

metrics. The results suggest that cost-sensitive learning is effective for an 

unbalanced binary classification. It also reveals that using very complicated forms 

for entry is not the ultimate way to tackle the complexity of DTI detection. 

Instead, using a simpler input representation and approaching the problem 

differently has actually shown better results. It is also very reasonable to use these 

methods to further improve the results, we can easily combine our techniques. As 

example, combine a sampling method each time, with a threshold moving or a 

class weight. We can also start with under-sampling to eliminate noisy and 

borderline samples, and then follow up with over-sampling to create more reliable 

samples. It is also conceivable to try other improvements by deepening the 

network, but at the cost of more computation costs, and with the risk of 

overfitting.  
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