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Abstract 

     Reservoir operation studies purely based on the storage level, 
inflow, and release decisions during dry periods only fail to serve the 
optimal reservoir operation policy design because of the fact that the 
release decision during this period is highly dependent on wet season 
water conservation and flood risk management operations. 
Imperatively, the operation logic in the two seasons are quite 
different. If the two operations are not sufficiently coordinated, they 
may produce poor responses to the system dynamics. There are high 
levels of uncertainties on the model parameters, values and how they 
are logically operated by human or automated systems. Soft 
computing methods represent the system as an artificial neural 
network (ANN) in which the input- output relations take the form of 
fuzzy numbers, fuzzy arithmetic and fuzzy logic (FL). Neuro-Fuzzy 
System (NFS) soft computing combine the approaches of FL and 
ANN for single purpose reservoir operation. Thus, this study 
proposes a Bi-Level Neuro-Fuzzy System (BL-NFS) soft computing 
methodology   for short and long term operation policies for a newly 
inaugurated irrigation project in Gidabo Watershed of Main 
Ethiopian Rift Valley Basin. 

     Keywords: Bankruptcy rule, BL-NFS, Reservoir operation, Sensitivity analysis, 
Soft computing, Water conservation. 
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1      Introduction 

In hard computing one has to deal with a large set of conventional techniques such 

as mathematical, stochastic and statistical methods. In contrary, soft computing 

combines biological structures like human knowledge including recognition, 

understanding, learning, and others into the computing. Soft computing is an 

approach to construct computationally intelligent techniques, such as Fuzzy Logic 

(FL), Artificial Neural Networks (ANNs) and Neuro-Fuzzy System (NFS) that 

lead in to the possibility of constructing intelligent systems such as autonomous 

and automated designed systems techniques (Sonawane et al, 2013). 

In early attempts to assist reservoir operations, models were developed with 

detailed physical characterization of climate-soil-plant interaction proposed by 

FAO (Dudley and Burt, 1973; Smout and Gorantiwar 2005; Singh, 2014; Difallah 

et al., 2017). For multi-crop irrigation Vedula and Nagesh Kumar (1996) proposed 

SDP model. Both excess and insufficient allocation of water resources that do not 

promote optimum and timely agricultural plant water uptake are due to knowledge 

gaps between farmers' experiences on water application and that actually 

consumed in the root zone. 

Reservoir operation is a complex problem that is often challenging for water 

resource planners and managers because it involves many decision variables, 

multiple objectives as well as considerable risk and uncertainty (Saliha, 2012). 

Determination of irrigation reservoir operating policies is a complex problem 

because of uncertainty involved in the inflow, upstream and downstream demand, 

climatic and environment conditions, crop water intake, soil moisture content, etc.  

Reservoirs play an important role in irrigation water management, as they have 

major storage facilities and release outlets for storing the excess water during 

rainy periods for later deficit during dry season, sometimes for extended drought 

years (Jiang et al., 2015). The purpose of a storage reservoir is to transform the 

random and periodic natures of flows into a series of releases that more closely 

correspond with the seasonal water demands for irrigation agriculture (Kumar et 

al., 2006; Consoli et al., 2008). This objective is achieved by regulating the 

amount of stored water and by passing flows through the reservoir outlet works to 

farm units. Flow regulation takes an uncontrolled flow, such as water flowing 

naturally from river or barrage and turns it into controlled releases from a 

reservoir to fully or partially satisfy seasonal irrigation water demands. 

Reservoirs are operated by means of rule curves that relate time dependent storage 

level and release based on the amount of inflow, irrigation demands and 

downstream flow regulation (Shiau and Lee, 2005; Klipsch and Evans 2007; 

Gebresenbet, 2015). To assist planners in predicting the behavior of a water 

supply network consisting of reservoirs, junctions, river reaches, diversions and 

demand sites, models are built as simulation models, optimization models or a 

combination of the two (Mirchi et al., 2009). Dynamic Programming (DP) is a 
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widely used mathematical modeling technique to determine the optimum 

allocation of scarce resources among multiple competing sectors.  

The use of more accurate decision support tools like reservoir simulation and 

optimization modeling from historical and forecasted water availability scenarios 

helped to overcome the limitations. Farmers lack sound knowledge of on-farm 

water management, particularly on how much to irrigate and when to irrigate as 

they tend to over-irrigate at times of abundances and stress crops unnecessarily at 

times of water shortages leading them to conflicts in other parts of the schemes. 

The difficulty also arises from the complexities of water supply system design and 

the difficulties to control water flow for different irrigation technologies (Tulu, 

2003). 

The reason why the soft computing techniques have been used for deriving 

operating policies for reservoir operations is to decrease the dimensions of the 

problem and propose more flexible decisions to changes in system dynamics. 

These techniques can be advantageously employed to handle such problems when 

conditions of the systems are uncertain. New research directions have found very 

efficient soft computing techniques in handling large uncertain data like large-

scale reservoir operation (Sonawane et al, 2013). Operating policies developed by 

using soft computing techniques showed very good results in terms of water 

saving and sustainable water management. 

2      Related Work 

To shift to irrigation technologies, several irrigation development projects are 

under construction in Ethiopia such as Kesem-Tendaho, Koga, Rib, Gidabo, 

Megech-Sereba, Kobo-Girana, Raya-Azebo and Adea-Betcho and sooner or later 

will be operational. Ethiopia is increasingly investing in irrigation sector in order 

to exploit the agricultural production potential of the country to achieve food self 

sufficiency at the national level, to generate foreign currency from export earnings 

and to satisfy the raw material demand of local industries (Birhanu et al., 2015).  

The newly inaugurated Gidabo Dam Irrigation Project (GID) in the Central Rift 

Valley Basin of Ethiopia is subjected to water-related conflicts. GID is looking 

forward to begin cultivation of a number of proposed crops with specified crop 

calendar and specified percentages of land allocated to each crop.   By enabling 

production twice or three times a year the project creates irrigation supply to more 

than 79,000 farmers and fish farming for many others. There are a number of 

other user sectors mainly small and medium level irrigation projects in the 

upstream areas, more than 400 coffee processing plants, more than 15 urban cities 

and towns and rural population throughout the watershed, livestock productions, 

beneficiaries of Lake Abaya in the downstream area of Arba Minch in the forms 

of aquaculture production, water transportation or recreation. All these users rely, 

in one way or the other, on the water resources in the Gidabo Watershed.  



 

 

 

 

 

 

 

Redi et al.  (2021)                                                                                               226 

Thus, due to the complications of the water user sectors and their water intake 

rate, it is almost impossible to build a near optimal reservoir operation policy for 

GID using hard computation methods.  Furthermore, there are no long time 

historical data that relate water inflow, reservoir storage level and release for GID 

Reservoir. The socioeconomic conditions and the base of hydrology pattern 

during planning of the reservoir construction have changed overtime. The project 

area updated the irrigation plan several times and therefore may not operate 

according to the water allocation target during feasibility studies and there are 

needs to adapt to changes. Here comes the need to use soft computing methods 

that are more advantageous over hard computing. 

Furthermore, the water allocation to GID reservoir takes hierarchical nature at the 

watershed level and at the farm level that give a bi-level decision making 

problem. The water supply authority determines the water allocation target while 

the environment protection authority determines to minimize the flood risk 

throughout the watershed. The GID reservoir was meant to play both purposes. 

In bi-level multi-objective programming, managers/planners at upper level 

allocate the water based on certain criteria to lower-level decision makers (DMs); 

dispatch their decision to lower level DMs who allocate the water to different 

competing uses, thereby making it a hierarchical decision making problem 

(Masood et al. 2021). Masood et al. (2021) analyzed several applications of bi-

level programming on water resource allocation for different basin studies 

including a bi-level fuzzy goal programming proposed by Redi et al. (2020) for 

planning agro-processing water allocation in Gidabo Watershed. 

The agro-processing study was restricted to sampled data from upper and middle 

sub-watersheds in Sidama and Gedeo regions of the same study area to allocate 

water to coffee processing plants, coffee farmers and consumers. The possible 

extensions of this study are to conclude from sampled data to the population data 

for all coffee processing plants and also extension of the study to all kinds of 

agro-processing productions like food processing, oil refinery, sugar production 

and beverage. The methodology efficiently incorporated capacitated two-stage 

production and dynamic inventory control optimization (TSP-DICO) to the soft 

computing methodology for water allocation decision.  

The coffee processing plants also compete for water during dry season with the 

downstream irrigation water project GID. The two productions are uncoordinated 

and uncooperative unless they are sufficiently communicated. In the current study, 

a bi-level soft computing methodology is proposed for reservoir operation. One 

has to understand the similarities and differences between the two related studies 

to fully understand the system dynamics by putting the two models in series or 

parallel to come up with unified concussions.  
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3      Problem Formulation 

3.1      Variables definition 

Indices 

  Period:  

  Planning years 

  End of wet season    

  End of dry season 

  End of planning year 

  Neural network used for the operation    

Input variables     

 Net irrigation water demand for reservoir operation        

 Net water inflow to the reservoir  

Artificial variables     

 Irrigation water deficit above the inflow 

 Excess inflow of water above irrigation demand  

Constants   

DSL Reservoir minimum storage (dead storage) level  

ASL Reservoir active storage (conservation storage) level  

FCL Reservoir maximum storage (flood control)  

CCL Canal capacity limit  

M m3    Million Cubic Meter  

Output variables 

 Reservoir storage level 

 Reservoir maximum storage level at the end of wet season 

 Reservoir minimum storage level at the end of dry season 

 Water release from the reservoir and inflow 

 The overflow from the reservoir spillway 

 Water diverted from the inflow 
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3.2      Input layer: water demand and supply analysis 

For each time period t, either  or . The annual agricultural 

production cycle is divided into two growing seasons: a wet season  

 in which rain falls on agricultural land and flows into the 

reservoir. If   , the water supply is larger than the irrigation demand 

and it may mean that t is a “wet season” in which case the excess water 

 could be permanently stored in the reservoir for future deficit 

periods.  On the other hand, during dry months rainfall is at a minimum and the 

base inflow is not sufficient to meet the irrigation demand of the project area. That 

is why the reservoir is built with associated appurtenant structures. Otherwise, 

agriculture without reservoir may face crop failure and drought. If   , 

the water supply is smaller than the irrigation demand and it may mean that t is a 

“dry season” in which case the water deficit  may be fully or 

partially released from the reservoir to meet the irrigation demand during this 

period. This classification is fuzzy in its nature and may vary according to the 

hydrological, meteorological, environmental, socioeconomic conditions, 

catchment area, other competent users, political and man-made decisions, etc. The 

water demand for irrigation also depends on farm size, irrigation technology, 

irrigation efficiency and losses, crop water demand, season of the year, etc. 

Different combinations of these fuzzy parameters lead to different operation 

conditions of the reservoir.  

3.3      Objective function and constraints 

The objective functions of the bi-objective reservoir operation model are 

minimization of the total deficit for the water conservation goal and minimization 

of the maximum of the overflow for any period for flood risk management goal.  

The constrained dynamic reservoir operation used for the study was proposed by 

Guüntner et al. (2004) given by  

 

                 (1) 

 

In equation (1) above   is beginning period storage level while  is end of 

period storage level.  is the diverted water from inflow  from an upstream 

reservoir or catchment area. The term  may be positive or negative 

depending on whether  is in a wet or dry season where  and  are precipitation 

and evaporation rates to or from the reservoir surface area .   and  are the 

decision variables of reservoir release and overflow respectively. 

The first constraint of the model is the release decision at any period should not 

exceed the irrigation water demand i. e.   or in fuzzy terms the 
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difference between the release and the demand should be “small”. The other 

constraints are the reservoir and canal capacity limits,  and 

 . In fuzzy terms DSL is assigned 0 fuzzy membership degree for 

storage level, while FCL is assigned the highest membership degree of 1. 

Similarly, release decision “small” gets fuzzy membership degree 0, while release 

decision “high” closer to CCL gets the highest fuzzy membership degree of 1. The 

objective functions of the Bi-Level Neuro-Fuzzy System (BL-NFS) reservoir 

operation model are water conservation and flood risk management. For the water 

conservation goal, minimization of the total of the squares of the unmet irrigation 

water demands are considered while for the second goal, minimization of the 

maximum of the monthly overflows is considered.   

In the BL-NFS reservoir operation model, a variable FCL was obtained from all 

the inflow-demand pairs when the water level at any time reaches above this limit 

the reservoir has either to release “high” irrigation water or else deliberately 

overflow to downstream non-beneficial uses.  Similarly, variable DSL   is 

obtained from all the inflow-demand pairs when the water level at any time 

reaches below this limit, the reservoir can no more release water or deliberately 

overflow. Thus, the feasible reservoir operation rule curves lie between the two 

limits. The reservoir ASL is determined as the maximum of all the deficits during 

dry season obtained by the backward operation logic. The release decision at any 

time is made by observing the beginning period storage level, inflow and 

irrigation water demand in relation to variable DSL, FCL and ASL.  

The objective function for the water conservation operation is minimization of the 

sum of the squares of the water deficit/excess to all cropped area given by 

equation (2).  

 

                   (2) 

The interpretation of equation (2) is the difference between the volume drop and 

irrigation water demand is irrigation deficit and it has to be sufficiently “small”. 

The objective function for the flood control operation is minimization of the 

maximum of the overflow beyond the flood control limit given by equation (3).  

 

     (3) 

The interpretation of equation (3) is the difference between the beginning period 

storage level plus the incoming excess water and the flood control volume level 

should be sufficiently “small”. 

3.4      Single objective optimization using neuro-fuzzy system     

It has always been difficult to model the multi reservoir system using classical 

Stochastic Dynamic Programming (SDP), due to curse of dimensionality 

inherently associated with it. The fuzzy inference system employed for the current 
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study were suggested by (Sonawane et al, 2013), originally proposed by Panigrahi 

and Mujumdar (2000) and it includes the following functional steps for each of 

the enhanced bi-level neuro-fuzzy system soft computing method. 

Step 1: A fuzzification interface that transforms the crisp inputs into degrees 

of match with linguistic values. This includes fuzzification of 

available inputs, in which the crisp inputs such as the inflow, reservoir 

storage and release were transformed into fuzzy variables. Available 

data are  

Step 2: A knowledge base that includes formulation of the fuzzy rule set, 

based on an expert knowledge 

Step 2a: A rule base containing a number of fuzzy ‘If–Then’ rules; 

Step 2b: A database that defines the membership functions of the 

fuzzy sets used in the fuzzy rules; 

Step 3: A decision-making unit that performs the inference operations on the 

rules; and application of a fuzzy operator to obtain one number 

representing the premise of each rule, 

Step 4: A defuzzification interface that transforms the fuzzy results of the 

inference into a crisp output. 

Step 4a: Shaping of the consequence of the rule by implication, 

Step 4b: Defuzzification.   

Soft computing method using Artificial Neural Networks (ANN) is motivated by 

the recognition that the human brain computes in all the different ways from what 

the digital computer does. Neural network does not have real nerve cells; instead 

an artificial system of neurons that carry out the computational work. It is 

representation of complex decision making problem by a neural network system. 

Genetic Algorithm (GA) is a natural selection soft computing methodology to 

choose from such large combination of events with uncertainty.  It is an 

optimization and heuristic search technique that uses techniques inspired by 

evolutionary biology such as inheritance, mutation, selection, and crossover (also 

called recombination). GA works simultaneously on a set (population) of potential 

solutions (individuals) to the problem. The algorithm starts with a set of solutions 

(representing chromosomes) called a sub-population. Then candidate solutions or 

operating conditions are chosen with qualitative or quantitative measure of fitness 

values. This fitness measure is used to select solutions meet some performance 

criterion of evaluation and used to select “surviving” individuals that will 

“reproduce” a new, better sub-population (Huang et al. 2010). Then, the 

individuals will conduct alterations similar to the natural genetic mutation and 

crossover. At times, soft computing methods like FL, ANNs, NFS, Evolutionary 

Computing, Probabilistic Computing, are overlapping and are combined in certain 

logical order and their combined effect are exhibited in decision making problems.   



  

 

 

231                                                                   A Bi-level Neuro-Fuzzy System …             

We first represent all the demand and inflow combinations as demand and supply 

nodes in the Artificial Neural Network (ANN) with associated fuzzy logic (FL). 

The default and optimized dynamic reservoir operation simulation results give rise 

to different fuzzy decisions discussed in the following sub-sections. The default 

and optimized dynamic reservoir operation simulation results give rise to different 

fuzzy decisions discussed in the following sub-sections.  

4      The Proposed Bi-Level Neuro-Fuzzy System Soft 
Computing 

The main execution of the model involves the following three neural network 

operation logic that are referred as first comes first served (FCFS), first comes last 

served (FCLS) and the neural network correction operations (NNCO) that are 

progressively updated when the algorithm communicates data. 

4.1      Feed forward neural network operation 

In order to begin irrigation agriculture, sufficient water capable to meet all the 

irrigation demand for the coming dry season should be stored in the reservoir 

during the wet season. At the start of the release decision process, reservoir 

operation simulation sets the allowable release range to the physical limits of the 

dam or outlet. For transient reservoir operation, we assume the reservoir is first 

time filling and all the water supply from upstream area will be stored in the 

reservoir until the water level exceeds the dead storage level (DSL). Throughout 

the planning horizon, DSL is the lowest point of the range for the storage level. 

Release decision below this point is not possible to withdraw water for 

downstream beneficial uses. However, the stored water below DSL is available 

for in-stream uses like fishery, navigation and recreation.  

In this first operation rule FCFS, priority is given to conservation of water for 

supplemental irrigation and the reservoir is expected to be filled to the brim at the 

end of wet season. FIFO is "A -Wait -To- See", “FCFS” greedy search heuristic 

given by equation (4).  

      (4) 

At any time when the water level exceeds the FCL the fuzzy logic operator returns 

the highest membership degree of 1 for the reservoir storage level and remains so 

until the first dry season occurs.  

However, cases may arise in which the reservoir is not filled to its maximum level 

at the end of wet period to meet full irrigation demand during dry season. In this 

operation logic farmers irrigate more water during beginning periods when the 

reservoir is "full" or the inflow is "high". However, this decision may result in an 

inefficient solution if the reservoir empties before the end of the dry season as in 

"drought" areas. Water is important at the initial development and flowering 
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stages more than the late developmental stages. Thus, expertise knowledge plays a 

significant role to the irrigation planning.  

 4.2      Feedback response operation 

The default operation logic of water conservation (FCFS) contradicts to the flood 

control objective to some extent because except the overflow beyond the reservoir 

maximum capacity, “little” water is depleted for flood control operation (FCO) 

and once the water level reaches the highest fuzzy membership degree of 1 all the 

incoming excess water beyond canal capacity limit, it overflows.  

In "humid" climate or "fairly good" inflow conditions the reservoir may be filled 

before the end of the flood periods and there is “small” space above FCL to trap 

any incoming flood peak afterwards, as a consequence, the water overflows above 

the dam and reservoir outlets and may probably cause flood inundations in 

downstream stream areas if the probability above FCL is “high”. In this case all 

the incoming excess water overflows. 

 is the overflow volume and the fuzzy logic operator assigns membership 

degrees between 0 and 1 as “low”, “average” or “high.”  Thus, it is necessary to 

deliberately release water ahead of time so that the overflow at any single period 

does not exceed some FCL based on a knowledge base on environment protection.  

In the second phase of planning, if the reservoir is filled to its maximum limit 

before the end of the wet season and there is high flood for some wet periods, it 

becomes necessary to change the default forward operation logic. Thus, it is 

necessary to deliberately release water ahead of time to environment in 

downstream at the initial wet periods with the anticipation that more water would 

be stored before the end of wet periods so that the overflow at any single period 

does not exceed some FCL. This limit may be accessed from environment 

protection authority's database.  

Mathematically, the total overflow beyond irrigation water demand during all the 

wet season is distributed to all wet season using any of the convenient bankruptcy 

rules (Mianabadi et al., 2014). More appropriately, if the input-output operation 

results in good water conservation goal and yet the reservoir is not empty at the 

end of the dry season, priority is given to flood control and the reservoir is 

depleted before the beginning of rainy season to its lowest level in order to trap 

any incoming flood peak. The operation logic in this case is obtained by a 

backward recursion dynamic operation (Sari et al., 2016)   beginning with the end 

period of dry season and ending with the first wet period, each time calculating 

the minimum storage level of the reservoir to meet all the irrigation demands 

afterwards. This is an intelligent learning neural network given by equation (5).  

      (5) 
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4.3      Neural network correction using bankruptcy rules 

In both FCFS and FCLS operations the water allocated to periods may be below 

the normal irrigation demand or the overflow is “high” or “very high” in which 

cases recourse actions are made by the NNCO. Water deficit at the end of the 

planning period may occur because of one or more of the following reasons. The 

water inflow during dry season is “low” or “very low”, the reservoir is not filled 

to the brim during the previous season, the rainfall event is average or below 

average, the reservoir evaporation is “high” or “very high”, or the reservoir 

storage capacity cannot accommodate full irrigation demand etc. All of these 

expressions are fuzzy descriptions of very complex environment conditions and 

hydrology factors.  

5      Results, Analysis and Discussions  

5.1      Case study area 

 

 

Fig. 1: Location map of Gidabo Dam farm units and reservoir in Gidabo 

Watershed of Ethiopia 

Generally speaking the Gidabo Watershed is a highly important region in Ethiopia 

comprising of economically and ecologically rich zones from three regional states 

alongside the main Ethio-Kenyan corridor. It stretches from North East to South 

West a distance of around 120 km, a catchment area of about 3440 sq. km. The 

Gidabo Watershed is shared by W. Guji zone of Oromia National Regional State, 

parts of Sidama National Regional State and Gedeo zone of Southern Nations, 

Nationalities and People Regional State. It is found in the Abaya-Chamo sub-

basin of the Rift Valley Basin in Ethiopia. River Gidabo originates in Sidama 
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National Regional State.  The river is one of the main flow contributors to Lake 

Abaya (Mechal et al., 2015). The dam was built in the downstream areas. 

5.2      Irrigation water demand and supply 

Water supply and demand take into account the inflow from an upstream reservoir 

and catchment area, upstream irrigation water demand, the flow regulation for 

non-consumptive uses and downstream flood risk management goals based on the 

pre-designed states of the reservoir size, canal and outlet capacity limits. In 

irrigation planning, water availability during dry months affects the real-time 

operation of the reservoir when modifying successive feasibility studies in order 

to adopt or modify crops to grow, area to irrigate, water to release or store (Tulu, 

2003).  In the study area, the annual planning cycle has one wet season followed 

by one dry season.  

Two water demand scenarios based on two land use plans of Gidabo Irrigation 

Dam (GID) project feasibility studies, the first one referring to feasibility study in 

2009 to irrigate net area of 7374 ha and the second revised plan in 2011 to irrigate 

net area of 8164 ha of land by Left Bank Main Canal and 3810 ha of net area by 

Right Bank Main Canal, summing up to 11,974 ha through its canal distribution 

networks (MoWIE 2008, 2009, 2011).  

For modeling purpose, an irrigation efficiency of 60% is considered as an 

adaptation measure in place of the irrigation efficiency of 48.6% proposed during 

feasibility study 1. In all scenarios, in addition to GID there are 527 ha irrigation 

areas with diversion structure estimated to 2.0 which are operated during dry spell 

in the year (Oct-March). Furthermore, compulsory downstream release for 

environmental requirement in feasibility study 1 was considered as 4.76 M m3 per 

month (1.84 m3 /s) which is equal to 10% of annual mean flow distributed equally 

among all the months. This flow is not directly deducted from the water 

availability scenarios but it is regulated through the reservoir operation of GID. 

Thus in the irrigation demand and reservoir operation analysis, this amount is 

added to the planned irrigation demand in the entire reservoir operation model. 

However, this may have effect on the active storage size of the reservoir expected 

to satisfy full irrigation demand.  

A new hydrology flow guaging station at Meissa (near the dam site) is set up in 

1997 on Main River where its catchment area is 2575 km2 with mean annual 

runoff 238.85 mm and mean annual discharge 615.05 M m3   . The minimum, 

average and maximum water availability scenarios refer to the corresponding 

values in the hydrology report for the years 1997-2006 for annual inflow ranges 

300<400, 350<450 and 450<600. 
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Table 1 Input data of monthly inflow and irrigation water demand for GID 

Reservoir 

  [Inflow values (M m3   )] [Demand values (M m3   )] Fuzzification 

  [Lower, Middle, Upper] [Lower, Middle, Upper]  Seasons  

Dec [13.8,16.2,31.2] [27,28.6,40.9]  Dry  

Jan [4.9,5.8,14.4] [24,34.2,36.1]  Dry  

Feb [0,0.8,8.2] [11.6,15.9,30.3]  Dry   

Mar [1.8,2.8,8.4] [6.4,7.3,13.9]  Dry  

Apr [15,29.5,30.6] [6,6.7,7]  Wet  

May [31.3,56.7,59.4] [6.5,11.7,16.1]  Wet  

Jun [28.7,32,46.4] [14.1,14.1,20]  Wet  

Jul [19.8,25.8,57.4] [12.5,17.2,17.3]  Flood  

Aug [24.4,41.6,63.4] [8.4,10.6,15.1]  Flood  

Sep [29.9,61.7,70.5] [9.4,9.6,12.3]  Flood  

Oct [54.9,69.2,71.2] [11,16.3,23.5]  flood 

Nov [25.1,32.1,44.1] [20.1,22.8,34]  Dry   

Sum [249.6,374.2,505.2] [157,195,266.5]  Dry  

Mean [20.8,31.2,42.1] [13.1,16.3,22.2]  Dry  

Maximum [54.9,69.2,71.2] [27,34.2,40.9]  Wet  

Canal(l/s) [20.89,26.33,27.09] [10.27,13.01,15.56]   

m3/s/ha [1.49,1.88,1.94] [0.73,0.93,1.11]   

 

Table 1 summarizes the monthly inflow and demand given as triangular fuzzy 

numbers with lower, middle and upper values as inputs of water demand and 

supply for the proposed BL-NFS reservoir operation model. One can see that the 

periods January to March are extremely dry and the inflows during these periods 

are negligible due to the competition of water in upstream areas. The upstream 

irrigation areas do not have reservoirs but they extract directly from the barrage by 

diversion structures. This also has direct effect on the reservoir size and operation 

of the downstream reservoir. In this worst case sensitivity analysis, the input data 

given in Table 1 shows the inflow during the dry and very dry seasons are “very 

low” and the irrigation water demands are “high” or “very high”. However, the 

inflow during wet season are “fairly good” because the total excess during this 

season can compensate the irrigation demand if the reservoir can accommodate 

the full demand.  

We fuzzify a season as “dry” if the upper demand exceeds the lower inflow and 

their difference is the fuzzy measure of deficit for each dry period. A period is 

“wet” if the lower inflow exceeds the upper demand and their difference is the 

fuzzy measure of the wet period excess. A wet period is “floody” if the lower 

inflow exceeds the flood control limit. Using fuzzy arithmetic the excess and 
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deficit of water during each dry and wet periods are calculated and the ANNs are 

trained the forward and backward operations and are communicated each other to 

identify efficient solutions for storage, release and overflow decisions. 

 
 

Fig. 2 Demand vs. supply combinations 

5.3      Reservoir characteristics  

GID is a newly inaugurated multi-purpose irrigation reservoir which has been in 

operation after 2019. The major crops planned to grow in the command area are 

cotton, wheat, maize, sesame, tomato, soybean, groundnut and mango. The 

reservoir has a gross storage capacity of 102 M m3 , a live storage capacity of 69 

M m3  and dead storage capacity of 23 M m3 . 

 
 

Fig. 3 Quadratic approximations of volume vs. altitude  
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Fig. 4 Polynomial approximation of surface area-altitude  

5.4      Reservoir water conservation operation  

In simulation, the fuzzy rules are used as follows: Knowing the reservoir inflow, 

season of the year and the excess/deficit (i.e., high, medium etc.), appropriate 

fuzzy rule for the period is made as the proportion to store or overflow. The fuzzy 

operator, implication and aggregation together yield a fuzzy set for the release. A 

crisp release is then obtained by using the centroid of the fuzzy set. Figures 5-7 

show the storage levels of the reservoir after execution of BL-FNS for different 

demand and supply nodes of the ANN at initial stage of the algorithm execution. 

The fuzzy rule of the release is obtained by applying the fuzzy rules of whether 

supplemental irrigation from the reservoir is made. Then the admissible set of 

storage level of the reservoir for all demand and supply nodes are determined.  
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Fig. 5 The ANN responses to reservoir operation under different demand and 

supply conditions for the forward operation 

The interpretation of Fig. 5 is that the forward operation guarantees filling the 

reservoir before the end of the wet season and all the incoming excess water 

beyond canal capacity overflows.  

 

 
 

Fig. 6 The ANN reservoir operation under different demand and supply 

conditions for the backward operation 
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The interpretation of Fig. 6 is that the backward operation eliminates all the 

excess storage beyond irrigation demand and the reservoir is empty at the 

beginning of wet season but this does not guarantee full irrigation demand if the 

water demand vs. supply condition changes. The forward and backward 

operations are ideal solutions of the water conservation and flood control 

operations. As a result, they may be not feasible to the other objective.  
 

 
 

Fig. 7 The ANN responses to reservoir operation under different demand 

and supply conditions for the communicated operation 

 

 

 
 

Fig. 8 Continuous time linear and exponential reservoir filling operation during 

wet season 
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The interpretation of Fig. 8 is that during the reservoir filling phase beginning 

with the first wet season, the wet period is partitioned into 3o equal units and the 

water level is allowed at a rate of 2.89 M m3    during each sub-units and the rest of 

inflow is continuously overflows or released for downstream beneficial uses.  

 

 

 

Fig. 9 Average expected reservoir operation policy for ten years time 

The interpretation of Fig. 9 is that during the beginning phases of operation the 

reservoir operates in between the fuzzy storage levels 40 and 80 and gradually 

increases water conservation. In the second phase the project tries to enter full 

production capacity without increasing water use efficiency and operates between 

the two extreme fuzzy storage levels but the penalty terms for both not meeting 

irrigation demand and expedience of fuzzy flood control limit are high or very 

high. In the third phase of operation the project enters into full production level 

but due to the application of bi-level neuro-fuzzy system application, the penalty 

terms for both not meeting irrigation demand and expedience of fuzzy flood 

control limit are minimized.  

5.4      Reservoir overflow for flood control operation  

For the flood control operation, the flood risk is measured (as low, medium or 

high) and fuzzy decision of deliberate release for downstream non-beneficial uses 

are made in references to variable flood control limit. The fuzzy rules of storage 

and overflow are communicated sufficiently by ANN. 
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Fig. 10 Variable reservoir flood control limit 

 

The interpretation of Fig. 10 is that at any iteration of the algorithm, if the 

observed water level is above the variable flood control limit, then more water 

should be released than incoming. However, if the observed water level is below 

the variable flood control limit, then more water should be stored than released. 

 

Figures 11-12 show the amount of excess water incoming after execution of BL-

FNS for different demand and supply nodes of the ANN. The fuzzy rule of the 

release is whether to store water or release ahead of time in comparison to the 

reservoir is made. Then the admissible set of storage level of the reservoir for all 

demand and supply nodes are determined.  

 

 

Fig. 11 Reservoir overflows under different demand and supply 

conditions for the forward operation 
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The interpretation of Fig. 11 is that during the flood controlling phase, the forward 

neural network operation produces over flooding at the end. The flood risk can 

rise up to 50-60 M m3    per a single period. 

 

Fig. 12 Optimized reservoir’s overflows under different demand and 

supply conditions for backward operation. 

 

The interpretation of Fig. 12 is that during the flood controlling phase, the 

backward neural network operation produces over flooding at the beginnings 

only. The flood risk can reduce to 30-40 M m3    per a single period.  

5.5      Reservoir release operation  

 

 
 

Fig. 13 Reservoir variable active storage level  
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The interpretation of Fig. 13 is that when the observed storage level of the 

reservoir is above the variable active storage level, more water is released for 

consumptive uses in dry season and more water is spilled ahead  
 

 
 

Fig. 14 Continuous time exponential vs. linear decay reservoir release operation 

during dry season 

The interpretation of Fig. 14 is that during the reservoir release phase beginning 

with the first dry season, the dry period is partitioned into 2o equal units and the 

water level is allowed to drop exponentially or released for downstream beneficial 

uses.  

 

 
 

Fig. 15 Fuzzy optimal reservoir operation rule curve 
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6      Conclusion 

In this study an enhanced bi-level soft computing method for optimal reservoir 

operation model was proposed from available data of inflow and irrigation water 

demand considering upstream and downstream water demand and socioeconomic 

data of the study area in Gidabo Watershed from the feasibility studies during 

planning of the project. The methodology of BL-NFS soft computing using fuzzy 

logic and artificial neural network representations gives simplified understanding 

of the complex environment and hydrology events.  The worst case sensitivity 

analysis of upper end fuzzy demand membership and lower end fuzzy inflow 

membership show that the proposed reservoir size of 102 M m3  is not sufficient 

to meet full irrigation demand. On contraries, lower end demand membership and 

upper end inflow membership show that the reservoir is mainly operated for flood 

control and the land resources are not fully utilized. In the analysis GID was 

treated as autonomous/independent of upstream users and the decision of sharing 

the water deficit during dry periods to all demand and supply nodes, improving 

the water supply systems in upstream coffee processing plants and irrigation 

districts help to shift traditional diversion structures to more water saving 

technologies. The choices were left open to decision makers and researchers.  
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