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Abstract 

     Prediction of gene-drug-disease interactions have talented new 
insights in biology. Discovering unknown interactions will provide 
new therapeutic approaches to explore gene expressions. Recent 
improvements in machine learning techniques have gotten 
considerable interest due to higher efficiency, accurate results, and 
their lower cost. However, most of the studies were ignoring relevant 
associations, by representing only drug-disease interactions on a 
network while public available data offers a large variety of 
interactions. Additionally, some computational techniques used in this 
domain are faced with new challenges, related to the organization of 
heterogeneous data which suffer from a high imbalance rate since 
there are extensively more non-interacting gene-drug-disease triplets 
than interacting ones. In this paper we present integration of 
heterogeneous biological data about genes, drugs, and diseases to 
build a model, and building a new graph representation relating gene-
drug-disease interactions. Using extreme gradient boosting 
(XGBoost) algorithm, we have been able to extract a list of valid 
interactions about gene-drug-disease triplets, and a list of gene-drug 
pairs related to lung cancer. 

     Keywords: Biological heterogeneous data, Data integration, Gene-Drug-
Disease interactions, Machine learning. 

1 Introduction 

Traditional methods to develop new drugs are costly and time-consuming [1-4]. 

Computational techniques have gained increased interest to improve drug 

discovery. Nowadays, network analysis has revealed promising results in 

manipulating biological heterogeneous data. In addition, advanced new 
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technologies have generated a large amount of disparate data describing specific 

aspect of cells named Omics layers [5]. Using data integration methods along with 

network analysis have shown effective results to extract new interactions between 

biological data [6]. 

Data integration interests the creation of a model that combines data coming from 

different sources in order to explore new interactions more effectively. It has gained 

a lot of attention due to the large and different Omics datasets available. Several 

public databases provide the research community with a large amount of biological 

heterogeneous data which enabled to study biological processes and to support new 

findings in biology. 

Network analysis are widely used in biology and extremely improved the 

exploration of relations among heterogeneous data. Biological systems are often 

represented as networks. They provide a mathematical representation of 

connections found in the literature. Consequently, they have become essential to 

understand biological mechanisms. Predictions are one of the most applied 

applications of network analysis, mainly to propose novel interactions. In this 

regard, machine learning (ML) algorithms have been widely used to build 

prediction models. Although, the efficiency of these techniques depends mostly on 

the training data and the preprocessing effort carried out over it.  

Nowadays, numerous genes and drugs heterogeneous data is generated. This 

encourages the use of ML methods to learn from this data. One of the main 

difficulties with predictions of gene-drug interactions and gene-disease interactions 

is the volume of the data [7]. The use of an unbalanced dataset will result in an 

overfitting model. The number of single nucleotide polymorphisms (SNPs) present 

in the dataset highly affects the number of positive interactions, and genetic 

heterogeneity which may be common in complex diseases. Moreover, most of the 

studies do not present the preprocessing phase to handle unbalanced datasets such 

as feature selection [8].  

Our contribution is to integrate heterogeneous data into two layers and to create a 

model capable of predicting gene-drug-disease interactions. We take full advantage 

of the disparate biological data present in DisGeNET and DGIdb databases to infer 

gene-disease interactions and gene-drug interactions. We constructed our dataset 

based on the inferred interactions and build a novel gene-drug-disease network. We 

learned from our data to predict valid interactions and evaluated three classifiers: 

XGBoost, ID3, and C4.5. We used the confusion matrix and individual feature 

contribution to evaluate the performance of the model. Our technique revealed 

effective and provided highly accurate prediction results.  

The paper is organized as follows: In section 2 we present some related works. Our 

methodology is explained in section 3. The obtained results are discussed in section 

4, followed by the conclusion. 
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2 Related Work 

Statistical techniques conducted in predictions of biological interactions are 

founded on structure-based approaches or text mining methods. In structure-based 

approaches, the focus was put on the physical and chemical characteristics of the 

studied molecules. For example, prediction of gene-disease associations is based on 

genome-wide association study (GAWS); which selects a chromosome interval 

with candidate genes [9].  Similarly, prediction of drug-target interactions (DTIs) 

focuses on the binding drug sites. They require prior information on the binding 

sites. Consequently, they eliminate genes with unknown sequences. In text mining 

methods, the interactions between biological entities are inferred from the medical 

literature. Typically, this technique completely ignores unidentified interactions. 

Therefore, statistical methods have shown their limitation, besides they are time-

consuming. 

Computational methods have gained a lot of interest to improve prediction of 

biological interactions. Many methods have been proposed, similarity-based 

methods calculate similarity score between drug profiles to collect drug-drug 

interactions (DDIs). Vilar et. al [10] described numerous biological profiles that are 

used to compare the similarity. Drug structural profile is based on the fact that 

structurally similar drugs tend to target related genes [11]. Furthermore, similarity 

metrics have also been a subject of interest, Ferdousi et. al [12] compared several 

metrics and used the most optimal one to predict DDIs. The major disadvantage of 

these methods is to find a suitable threshold of similarity that is highly affected by 

false DDIs. 

Networks-based methods have also been used to predict biological interactions, by 

constructing a network of interactions and then predict novel associations based on 

network analysis. In [13], the authors built a drug-drug similarities network based 

on several drug features and then used matrix factorization techniques to predict 

potential DDIs. Comparatively, in [14] the authors considered the interactions of 

DrugBank database to create an ensemble-based classifier using two techniques of 

matrix factorization: adjacency matrix factorization (AMF) and adjacency matrix 

factorization with propagation (AMFP). Other methods based on protein-protein 

interaction (PPI) networks covered a large number of DDIs detection. In [15] the 

authors used random walk algorithm to capture distant interference on PPI network. 

They assumed that DDIs are affected by close interference of triggered gene 

pathways. The PPI networks based-methods take full advantage of drug actions, but 

they suffer from incompleteness. 

In the last few years, several ML methods have given more importance to data 

integration to improve the accuracy of predictions. Consequently, a substantial 

number of studies using different supervised learning approaches have been 

conducted. For example, in [16] the authors make use of a supervised manner to 

learn a kernel from heterogeneous similarities and different interaction types to 

predict DDIs. To evaluate their approach, they constructed a dataset from 

DrugBank database. Tong et al. [17] proposed a method to predict drug-target 

interactions using gradient boosting machines called SimBoost. The authors used 

features about drug-target (DT) pairs extracted from their network along with 
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similarity-based information. In a recent work on drug-gene interaction predictions, 

Zhu et al. [18] extended the metapath2vec and metapath2vec++ models into the 

gene-drug field and used both models on a biological heterogeneous network which 

involves three types of nodes: drugs, genes, and adverse drug reactions (ADRs). 

Actually, the two models can effectively represent the semantic of the 

heterogeneous information network. Even so, the precedent methodology was 

evaluated on a dataset comprising fewer ADR interactions than gene-drug pairs 

which may highly impact the accuracy of predictions. Most of the studies using ML 

methods require a feature engineering step. In fact, features used in the learning 

process highly affect the performance of the model. Nevertheless, current 

experiences do not present a comparative study of the used properties to reveal 

which characteristics are behind the prediction and which are less informative. 

In this paper, we present a network-based approach to integrate heterogeneous 

biological data about genes, drugs, and diseases. We used an ensemble learning 

classifier, that has proven his superiority against ones usually used in the literature, 

to predict gene-drug-disease interactions. Furthermore, we present the feature 

engineering phase conducted in this study. 

3 Methodology 

Firstly, we describe the followed process to construct our dataset and to succeed the 

training phase. Gene-disease interactions are extracted from DisGeNET database. 

It is a discovery platform which stores human genes and variant-disease 

interactions. It also includes mendelian, rare, complex, and environmental diseases, 

as well as abnormal phenotypes and traits [19-21]. We selected 84038 curated gene-

disease associations to constitute the gene-disease layer. Gene-drug interactions are 

collected from DGIdb database, a collection of various sources of gene-drug 

interactions as well as the druggable gene categories, 32107 gene-drug interactions 

are selected to constitute the gene-drug layer. 

3.1 Graph Construction 

A commonly used method to build an integrated graph is to project the edges of 

different graphs to the same set of nodes [6]. Hence, to construct our graph, we 

merged gene-disease interactions and gene-drug interactions into the same set of 

nodes. The created graph is named GDD (Gene-Drug-Disease). The overall 

framework is shown in Fig 1. 
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Fig 1. Overall framework we followed to build Gene-Drug-Disease interactions 

network and to learn from it. 

We investigate several features to perform the training phase which is a supervised 

classification, where the target feature that we attempt to predict is the score value. 

The categorical features involved:   

 Gene name; 

 Disease name: name of the disease or the abnormal phenotype; 

 Drug name; 

 Evidence level (EL): a measure that denotes the strength of evidence of the 

interaction. It takes 6 values: strong, definitive, moderate, limited, disputed, 

and no reported evidence. Its value is computed by ClinGen. 

The numerical features used:  

 Evidence index (EI): a measure that shows the existence of paradoxical 

statements in articles talking about the same interaction; 

 Disease specificity index (DSI): a measure that reveals if a gene is highly 

coupled with multiple diseases or only a limited number of diseases; 

 Disease pleiotropy index (DPI): a measure that indicates if a set of diseases 

connected to a gene are similar among them; 

 Probability of being loss of function intolerant (pLI): a gene metric that 

defines how much is a gene intolerant to loss-of-function variation (LoF 

variation). Its value is provided by the GNOMAD consortium; 

 Score: defines the strength of the interactions in our GDD graph. It is a 

continuous value that ranges between 0 and 1, weak and strong associations 

respectively. its value is computed by DisGeNET database. 
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The values of the features are obtained from the DisGeNET database which 

computes them and stores them along with the interactions. The values for EI, DSI, 

and DPI are given by the following equations:  

𝐸𝐼 =
N𝑝𝑢𝑏𝑠𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

N𝑝𝑢𝑏𝑠𝑡𝑜𝑡𝑎𝑙

     (1) 

Here, 𝑁𝑝𝑢𝑏𝑠𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒is the number of publications supporting the interaction and 

𝑁𝑝𝑢𝑏𝑠𝑡𝑜𝑡𝑎𝑙 is the total number of publications. 

𝐷𝑆𝐼 =
log2(

𝑁𝑑
𝑁𝑇

)

log2(
1

𝑁𝑇
)
      (2) 

Here 𝑁𝑑  is the count of diseases linked to a gene and 𝑁𝑇 is the total number of 

diseases. 

𝐷𝑃𝐼 = (
𝑁𝑑𝑐

𝑁𝑇𝐶
) ∗ 100     (3) 

Here, 𝑁𝑑𝑐 is the number of the various disease classes of the diseases related to the 

gene and 𝑁𝑇𝐶 is total number of disease classes in DisGeNET. 

Our training set is constituted of 90% of the total samples and the 10% remaining 

samples is considered for the test set. The score feature is a continuous value that 

ranges between 0 and 1, this feature is mapped into 6 discrete values, after a 

resampling operation. the result is 6 target classes, denoted as follows: class 0, class 

1, class 2, class 3, class 4, and class 5. Table 1 shows some data from the training 

set. 

Table 1: Some data of the training set. 
Gene 

Name 

Disease Name Drug 

Name 

EI EL DPI DSI pLI Score 

BRAF Neurofibromat

osis 1 

AEW-

541 

1 strong 0.79 0.35 0.9 0.38 

CASR Pancreatitis ASP 

7991 

0.6 limited 0.65 0.47 0.060 0.46 

NRAS Noonan 

Syndrome 

E-6201 1 definitive 0.69 0.42 0.52 0.77 

ALMS1 Alstrom 

Syndrome 

ZINC 

ION 

0.96 definitive 0.62 0.5 0 1 

ADA melanoma EHNA 1 no reported 

evidence 

0.79 0.4 0 0.02 

Decision tree-based algorithms are commonly used for classification problems. The 

goal is to predict a discrete value based on rules learned from the data features 

[22,23]. In our work, we compare several algorithms using trees to select the best 

association rule discovery method. We have compared the accuracy score of 3 

algorithms: Iterative Dichotomiser 3 (ID3), C4.5, and XGBoost. Table 2 shows the 

results obtained for each algorithm. 

Table 2: Accuracy score obtained for compared algorithms. 

Algorithm ID3 C4.5 XGBoost 

Accuracy score 0.678 0. 706 0.898 
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XGBoost [24] clearly outperforms ID3 and C4.5 in term of accuracy score. It is 

built on top of universal gradient boosting methods with boosting capabilities to 

generate an ensemble of decision trees. Consequently, it turns out to be the best 

classifier among the compared algorithms. 

4 Results, Analysis and Discussion 

Our graph data is quite large. It represents more than 3 million gene-drug-disease 

interactions. To evaluate the performance of our classifier we created a sub dataset 

with samples randomly selected. The newly created sub dataset contains 10000 

gene-drug-disease interactions. We used the Scikit-Learn implementation to train 

and evaluate our model. We used the grid-search function to obtain the optimal 

values for the hyperparameters of the model. The tuning we have performed 

achieved highest performance with 1000 boosted trees and a max depth of 7 level. 

To perform the k-folds cross validation technique our training data is split to k=10 

folds [25]. This value was fixed experimentally, after using different values of k 

and comparing results. 

Fig 2 shows the first 200 samples of the prediction results compared with their 

original values. Among them 7 were misclassified. 

 

Fig 2. Predicted classes of the first 200 samples of our test set 

Table 3 summarizes results of the confusion matrix. It is a way to visualize the 

capabilities of our ML model. It designates in its entries the count of predictions 

where the model correctly or incorrectly classified observations. 

 

Table 3: Results of the 10-fold cross-validation of our sub dataset. 
class precision recall f1-score count of samples 

0 0.98 1.00 0.99 880 

1 0.92 0.77 0.84 30 

2 0.97 0.95 0.96 37 

3 1.00 0.88 0.94 40 

4 1.00 1.00 1.00 11 

weighted avg 0.98 0.98 0.98 

Most samples present in the sub dataset are weak interactions and belong to class 

0, strong interactions that belong to class 5 are not present because this class is 

minority. The recall value for class 1 is quite low; 77% compared to other classes, 

because our model is generating many false positive samples for class 1. This large 

unbalance in our data resulted to an overfitting (for each class). To overcame this 

drawback, we performed classical information gain to understand how the used 

features impact predicted results. There are three standard important measures to 
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explore in a model using trees. The first measure is based on the weight, it shows 

how many times a feature was selected to divide the data. The second measure is 

based on the cover, it’s based on weighting the selected feature by the count of 

training samples going through those splits. The third measure is based on the gain, 

it presents the median training loss reduction gotten by selecting a feature to divide 

the samples. These measures remain global feature attribution and we need 

individualized explanation for each feature to assign feature importance. 

The SHAP method [26] is a technique to find the mean variation in predictions 

taking into consideration selection of all possible features. Fig 3 shows individual 

feature contributions using SHAP method. It illustrates participation of each feature 

of the model, the rows show the impact of each feature on the predicted class. 

 

Fig 3. Individual feature contribution based on used sub-dataset, using six classes 

Our experiments show that some features have weak impact on some classes or no 

impact at all. For example, the EI feature takes values that belong to only four 

classes. Unlike the disease name feature which takes values that belong to all 

classes. We conclude that the choice of the number of classes is very important. 

Moreover, every feature used in the training phase should contribute to the 

prediction of the target class. Our experimental results seem to indicate that a choice 

of three classes correspond to our need in terms of feature contributions. Fig 4 

shows the individual feature contributions for our model after mapping the score 

value to three classes. 

 

Fig 4. Individual feature contributions based on used sub-dataset, using three 

classes. 
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Based on the results we got form our experiments on feature contribution. We 

manually constructed a new balanced dataset with 10000 samples. Learning from 

our new balanced dataset, after mapping the score to 3 classes, we successfully 

increased the performance of our model. We achieved a training score of 0.9877 

with a mean cross-validation score of 0.97 and a mean squared error of 0.035. Table 

4 shows the results of our trained model, there is a higher performance in term of 

recall for each class. 

Table 4: Results of the 10-fold cross-validation of our balanced dataset. 
class precision recall f1-score count of samples 

0 0.99 0.99 0.99 334 

1 0.96 0.94 0.95 321 

2 0.96 0.97 0.96 345 

weighted avg 0.97 0.97 0.97 

We classified the interactions from our graph. Table 5 represents top-20 candidates 

obtained by our balanced model. We sorted the triplets by descending order of the 

strength of interactions. 

Table 5: List of 20-top candidates of gene-drug-disease triplets predicted from 

used dataset. 
rank gene disease drug 

1 EGFR Non-small cell lung cancer metastatic Erlotinib 

2 NTRK1 Intellectual disability Suramin 

3 ERBB2 Malignant neoplasm of breast  Trastuzumab 

4 BRAF Adenocarcinoma of lung (disorder) Alpelisib 

5 MAP3K1 Non-small cell lung cancer metastatic Carboplatin  

6 KRAS Adenocarcinoma of lung, stage IV Atezolizumab 

7 DSCAM Non-small cell lung cancer Carboplatin 

8 KCNJ11 Diabetes mellitus Naminidil 

9 GRB2 Adenocarcinoma of lung (disorder) Dactinomycin 

10 ACE Congestive heart failure Cilazapril 

11 CDH1 Carcinoma of urinary bladder, superficial Erlotinib 

12 HMGCR Aicardi-goutieres syndrome 1 Simvastatin 

13 GHRL Diabetes nephropathy Celecoxib 

14 CYP2B6 Adrenal cortical hypofunction Trofosfamide 

15 HLA-DRB1 Endothelial dysfunction Lym-1 

16 BRCA2 Metastatic prostate carcinoma Talazoparib 

17 LEP Monogenic obesity Risperidone 

18 MET Malignant neoplasm of kidney ALTIRATINIB 

19 BRCA2 Prostate carcinoma Evofosfamide 

20 ADRB2 Diabetes Propranolol 

In the group of top-20 triplets found with our prediction model (Table 5). It is 

important to mention that unreleased gene-drug-disease triplets were joined with 

widely studied candidates in the field of cancerology. As an example, it is 

commonly recognized that aberrant epidermal growth factor receptor (EGFR) 

signaling led to varied oncogenic phenotypes [22]. Alongside with our GDD graph, 

investigations have revealed that the EGFR gene mutation was related with EGFR-
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targeted agents’ efficacy such as Erlotinib’s (rank 1) in the case of non-small cell 

lung cancer (NSCLC) [27,28]. 

Contrariwise, the gene MAP3K1 associated with Carboplatin and NSCLC disease 

(rank 5) appeared novel. On advanced NSCLC patients treated with this 

antineoplastic chemotherapy drug, the genome-wide association study shows that a 

single nucleotide polymorphism in the DSCAM gene has been identified as a 

prognostic biomarker candidate [29]. This sustains our gene-drug-disease triplet in 

rank 7 and reveals possible MAP3K1-DSCAM interaction which needs to be more 

studied.  

Lung cancer is provoked by the excessive cell development in malignant lung 

tumor. It is known as the most frequently causes of deaths in men and second in 

woman. Lung cancer is categorized to two sorts: small cell lung cancer and non-

small cell lung cancer. We ranked top-20 predicted candidates related to lung 

cancer. Table 6 shows the list of gene-drug pairs we have found. 

Table 6. List of 20-top candidates of gene-drug pairs predicted from our data 

related to lung cancer 
rank gene drug 

1 EGFR Erlotinib 

2 BRAF Alpelisib 

3 MAP3K1 Carboplatin 

4 KRAS Atezolizumab 

5 DSCAM Carboplatin 

6 GRB2 Dactinomycin 

7 CASP8 Conatumumab 

8 PIK3CA Linsitinib 

9 TGFB1 Amifostine 

10 TNF Adalimumab 

11 ACE Benazepril 

12 TP53 Abemaciclib 

13 PIK3CA Afuresertib 

14 PTEN Abiraterone 

15 AKT1 Gigantol 

16 HRAS Trifluoroethanol 

17 ELN Vonapanitase 

18 IGF1R Brigatinib 

19 TGFBR2 Galunisertib 

20 NTRK3 Radicicol 

Among all pairs in the prediction list, there are 18 known causal genes unraveled 

as true positives. HRAS, the rank 16 gene, belongs to the Ras oncogene family. 

Malfunctioning in this gene is elaborated in a varied spectrum of cancers. TGFBR2 

is a transforming Growth Factor Beta Receptor 2 which may induce esophageal 

cancer. According to GeneCards database, two genes are susceptive for lung cancer, 

as for AKT1 and TP53. They contribute in the small cell lung cancer pathway 

according to PathCards database. Therefore, 18 gene-drug ranked within top-20 
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have supportive evidence. In addition, all the shown pairs have strong association 

to linked drugs according to DGIdb. 

5 Conclusion 

In this work, we proposed a new approach on how to integrate and validate 

interactions between gene-drug-disease by learning from heterogeneous biological 

data. We constructed two layers of gene-disease and gene-drug interactions to build 

an integrated network. Afterwards, we used the XGBoost classifier on a set of 

10000 interactions in the training phase. Our prediction model was evaluated using 

several methods and achieved a f1-score of 0.97. Moreover, we used our classifier 

to identify and rank 20-top gene-drug-disease interactions. The results were 

interpreted and compared to the medical literature. We have also extracted a list of 

top-20 gene-drug pairs related to lung cancer which contained numerous known 

causal genes unraveled as true positive. Results we obtained with our approach are 

particularly promising in order to formulate new hypothesis about treatments that 

might provide multiple advantages. 
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