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Abstract 

     The increasing complexity and density of modern traffic necessitates innovative 
solutions for vehicle collision avoidance. This paper introduces a pioneering model 
for Collision Avoidance in Vehicle Networks (CAV-Nets) based on the use of the 
Vehicular Ad-hoc Network (VANET), machine learning, and dynamic priority 
sensor unit selection. CAV-Net’s machine-learning algorithms can predict 
collision scenarios and select the most appropriate sensor units. Consequently, 
making real-time decisions to avoid potential collisions. Furthermore, the 
integration of blockchain technology ensures secure storage of event data that is 
only accessible by authorised parties. When a simulation is used for the 
SUMO+Veins framework, the paper demonstrates the effectiveness and superiority 
of the CAV-Nets over existing solutions in response time, adaptability, and data 
security, showcasing its potential as a feasible solution for future automotive safety 
systems. 

     Keywords: black box; decision-making methods; smart vehicles; dynamic-safety 
systems. 

1      Introduction 

The introduction should briefly place the study in a broad context and highlight the reasons 

for its importance. In the rapidly evolving landscape of modern transportation, the 

emphasis on safety has never been more pronounced. As vehicular traffic continues to 

increase, so does the risk of collisions and accidents. Several conventional methods of 

collision avoidance are facing growing challenges due to complex traffic scenarios [1], 

highlighting the urgent need for more sophisticated and adaptive solutions. 

Amid this context, the rapidly evolving landscape of modern transportation highlights an 

intensified focus on safety. As vehicular traffic continues to surge, the corresponding 

escalation in collision and accident risk becomes undeniable [2]. Based on the Collision 

Avoidance Vehicle Networks (CAV-Nets), a groundbreaking approach to vehicular safety 

that introduces a fresh perspective on collision avoidance. By capitalising on the 

capabilities of the Vehicular Ad-hoc Networks (VANETs), leveraging advanced machine 

learning algorithms, and employing a dynamic selection of priority sensor units (Ps) [3], 

CAV-Nets stand as a meticulously crafted response to the demands that are imposed by 

modern traffic conditions. 
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The integration of blockchain technology further sets CAV-Net apart, ensuring secure data 

storage and accessibility only to authorised parties [4]. Not only this can enhance the 

integrity and accountability of the system but also opens avenues for future advancements 

in traffic management and regulation. Among the escalating risks due to the surge in 

vehicular traffic, safety assumes paramount importance in modern transportation [5]. 

Conventional methods of collision avoidance confront complexities in intricate traffic 

scenarios, prompting the need for sophisticated and adaptive solutions. 

This paper presents an in-depth examination of the CAV-Nets model by providing detailed 

insights into its architecture, functionalities, and pivotal innovations. Through extensive 

simulations and meticulous comparisons with prevailing systems, the aim is to elucidate 

the potential of this model as an innovative breakthrough in vehicle collision avoidance. 

The insights offered herein augment the wider conversation concerning vehicular safety, 

fostering an environment for deeper investigation and the advancement of next-generation 

technologies in this vital domain. This paper also significantly contributes to the broader 

discourse on vehicular safety, actively inviting and propelling further exploration and 

development of next-generation technologies in this critical domain. 

In Section 2, the related research is investigated. In Section 3, in-depth details about the 

proposed model are discussed. In Section 4, the obtained results are introduced and 

discussed. Section 5 concludes the overall paper of this research. 

2      Related Work 

The field of vehicle collision avoidance has witnessed remarkable advancements, featuring 

a range of proposed and implemented systems. In this section, a comparative analysis is 

presented in Tables 1 and 2, which illustrate the proposed model (i.e. the CAV-Nets model), 

with a focal point on priority sensor units (Ps), against various existing solutions. These 

include the MPC-Based Collision Avoidance [6], Mobileye’s EyeQ System [7], Honda’s 

Intelligent Driver Support System [8], Tesla’s Autopilot and FSD (Camera) [9], Waymo’s 

Autonomous Technology (LiDAR) [10], and NVIDIA DRIVE AGX (Radar) [11]. 

Collision avoidance systems are designed to assist drivers in avoiding accidents through 

early warnings and automated braking. Multiple collision avoidance systems are accessible, 

each with distinct strengths and weaknesses. 

Table 1. Comparisons of the existing Collision Avoidance Systems 1-2 

Features 
CAV-Net 

(Priority: Ps) 

MPC-Based 

Collision 

Avoidance 

Mobileye’s 

EyeQ System 

Honda’s 

Intelligent 

Driver 

Support 

System 

Sensor unit 

Utilization 

Dynamic 

Selection (AI) 

Static 

Utilization 

(Radar) 

Camera-based 
Radar & 

Camera-based 

Collision 

Prediction 

Accuracy 

High (AI-

driven) 

Moderate 

(Model 

Predictive) 

Moderate 

(Image 

Processing) 

Moderate 

(sensor unit 

Fusion) 
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Scalability 
Highly 

Scalable 

Limited 

Scalability 

Moderate 

Scalability 

Limited 

Scalability 

Security 

(Blockchain) 
Highly Secure Not Secure Not Secure Not Secure 

Energy 

Efficiency 

Energy-

Optimized (Ps) 

Energy 

Intensive 

Energy 

Intensive 
Moderate 

Interoperability 

with VANET 

Fully 

Compatible 

Partially 

Compatible 

Not 

Compatible 

Not 

Compatible 

Real-Time 

Responsiveness 

Highly 

Responsive 

(Ps) 

Moderately 

Responsive 
Slow Moderate 

Access Control 

to Data 

Authorized 

Parties Only 
Open Access 

Restricted 

Access 

Restricted 

Access 

 

Table 2. Comparisons of the existing Collision Avoidance Systems 2-2 

Features 
CAV-Net 

(Priority: Ps) 

Tesla’s 

Autopilot & 

FSD 

(Camera) 

Waymo’s 

Autonomous 

Technology 

(LiDAR) 

NVIDIA 

DRIVE AGX 

(Radar) 

Sensor unit 

Utilization 

Dynamic 

Selection (AI) 

Multiple 

(Priority: 

Camera) 

Multiple 

(Priority: 

LiDAR) 

Multiple 

(Priority: 

Radar) 

Collision 

Prediction 

Accuracy 

High (AI-

driven) 

High (Neural 

Network-

based) 

High (Deep 

Learning) 

High (Deep 

Learning) 

Scalability 
Highly 

Scalable 

Highly 

Scalable 

Highly 

Scalable 

Highly 

Scalable 

Security 

(Blockchain) 
Highly Secure Not Secure Not Secure Not Secure 

Energy 

Efficiency 

Energy-

Optimized (Ps) 

Energy 

Intensive 
Moderate 

Energy-

Optimized 

Interoperability 

with VANET 

Fully 

Compatible 

Partially 

Compatible 

Not 

Compatible 

Partially 

Compatible 
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Real-Time 

Responsiveness 

Highly 

Responsive 

(Ps) 

Highly 

Responsive 

Highly 

Responsive 

Highly 

Responsive 

Access Control 

to Data 

Authorized 

Parties Only 

Restricted 

Access 

Restricted 

Access 

Restricted 

Access 

Forward collision warning (FCW) systems alert the driver about an impending collision 

with a vehicle or object ahead. They primarily use radar or cameras to detect objects in the 

vehicle’s path. FCW systems can deliver visual, audible, or haptic alerts to the driver [12]. 

Automatic emergency braking (AEB) systems take proactive measures to prevent or 

mitigate a collision if the driver fails to respond to an FCW warning. In general, AEB 

systems rely on radar or cameras to detect objects in the vehicle’s trajectory. When a 

collision becomes imminent, AEB systems can automatically apply the brakes.   

Lane departure warning (LDW) systems warn drivers about unintentional drifting that may 

likely occur out of their intended lanes. Typically, these systems use cameras to detect lane 

markings. LDW systems furnish visual or audible alerts to drivers. 

Lane-keeping assist (LKA) systems intervene to keep the vehicle in its lane when drivers 

begin to drift out of their intended lanes. LKA systems typically use cameras to detect lane 

markings [13]. LKA systems can exert steering torque to keep the vehicle on course.   

Blind-spot monitoring (BSM) systems alert drivers about vehicles, which are located in 

their blind spots. These systems rely on radar or cameras to detect vehicles in blind spots. 

BSM systems can issue visual or audible alerts to the driver [14]. Rear cross traffic alert 

(RCTA) systems warn the driver about approaching vehicles in reverse. Employing radar 

or cameras to detect vehicles at the rear, RCTA systems can deliver visual or audible alerts 

to drivers [15]. Table 3 provides a summary of different collision avoidance systems along 

with the types of sensor units they employ. 

 

Table 3. Collision avoidance systems based on sensor unit used. 

Collision avoidance system Sensor units used 

Forward collision warning (FCW) Radar or cameras 

Automatic emergency braking (AEB) Radar or cameras 

Lane departure warning (LDW) Cameras 

Lane keeping assist (LKA Cameras 

Blind spot monitoring (BSM) Radar or cameras 

Rear cross traffic alert (RCTA) Radar or cameras 

 

The choice of sensor unit in a collision avoidance system is contingent upon the system’s 

specific design and the operational context. For instance, radar sensor units find common 

applications in FCW and AEB systems due to their ability to detect objects across diverse 

weather conditions. Cameras frequently find employment in LDW, LKA, BSM, and 

RCTA systems due to their capacity to offer intricate environmental insights. Ultrasonic 

sensor units are a preferred choice for parking assist systems as they excel in detecting 
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objects that are close to the vehicle. Table 4 shows the detection ranges corresponding to 

different types of sensor units used in collision avoidance systems. 

 

Table 4. Sensor unit types of collision avoidance systems 

Sensor unit type Range 

Radar Up to 200 meters 

Camera Up to 100 meters 

Ultrasonic sensor unit Up to 5 meters 

 

In summary, the “Related Research” section provides a comprehensive insight into the 

existing landscape of collision avoidance solutions. It underscores the novelty of the CAV-

Nets model, particularly, in terms of the dynamic sensor unit utilisation, blockchain-

enabled security, and adaptive nature. Through a comparative benchmarking process 

against notable existing solutions, the distinct value and potential of CAV-Net become 

distinctly apparent. 

3      The Proposed Model 

Navigating towards the pioneering horizon of collision avoidance, this new section unveils 

our revolutionary approach—CAV-Net. CAV-Net uniquely uses AI to dynamically select 

sensor units, prioritising sensor unit(s) designated as "Ps" based on the collision scenario. 

This targeted selection leads to high responsiveness and energy optimisation. It ensures 

adaptability, as the system can prioritise different sensor units as needed, responding more 

effectively to various driving conditions. Other systems emphasise certain sensor units 

(e.g., camera for Tesla, LiDAR for Waymo, radar for NVIDIA), but they do not adapt this 

priority dynamically. Therefore, they might not be as flexible or efficient in different 

situations as the CAV-Nets model, which can intelligently adapt to prioritise the most 

crucial sensor unit(s) at any given time. 

The spotlight on CAV-Net’s dynamic sensor unit selection, particularly the esteemed "Ps," 

endows it with a profound competitive advantage over existing counterparts, accentuating 

adaptability, responsiveness, and efficiency.  This distinctive approach advances the 

landscape of vehicle collision avoidance, while the nomenclature "Ps" adds precision to 

the concept of priority sensor units, exemplifying the fluidity with which one or more 

sensor units assume real-time priority based on particular circumstances. In the subsequent 

section, we introduce some key components of the proposed approach. 

 



 

259                                                                       Revolutionizing Collision Avoidance …             

 

Figure 1. Smart Vehicle Networks [16] 

 

3.1 Key Components 

1. Vehicular Ad-hoc Network (VANET): Enabling real-time communication among 
vehicles, VANET forms the backbone of the CAV-Nets model. It supports both 
Vehicle-to-Vehicle (V2V) and Vehicle-to-Infrastructure (V2I) communications. 

2. Machine Learning algorithms: The model employs cutting-edge machine learning 
algorithms to predict potential collision scenarios, ensuring the dynamic selection 
of appropriate sensor units (priority sensor units or Ps) to provide real-time 
responses. 

3. Priority sensor units (Ps): the CAV-Nets model leverages various vehicle-
embedded sensor units by selecting them dynamically according to the collision 
scenario that is predicted by the system. 

4. Blockchain technology: This technology ensures secure recording and storage of 
event data by providing both integrity and restricted accessibility to authorised 
parties only. 

3.2 Smart Vehicle Networks  

3.2.1 How It Works 

1. Data gathering: Real-time data collection is executed by gathering information 
from a multitude of sensor units and neighboring vehicles. 

2. Prediction: Machine learning algorithms analyse this data to predict potential 
collision scenarios. 

3. Sensor unit Selection: Based on the predicted scenarios, Priority sensor units (Ps) 
are dynamically selected for accurate monitoring and response. 

4. Decision-making: The system generates appropriate actions, such as warning, 
braking, or steering adjustments, to avoid collisions. 

5. Event recording: the entire details are securely recorded by using blockchain 
technology, ensuring data integrity, and controlling accessibility. 
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3.2.2 Benefits and Challenges 

Benefits. 

1. Proactive Response: the ability of the CAV-Nets model to predict and respond to 
collisions provides a proactive safety measure. 

1. Dynamic sensor unit selection: this feature allows for precise and energy-efficient 
sensor unit utilisation. 

2. Secure Data Management: Blockchain technology provides secure and 
transparent event recording and access management. 

Challenges. 

1. Complex Implementation: the synergy of VANET, AI, and blockchain requires 
intricate design, and can be resource-intensive. 

2. Reliance on sensor units and communication: any failure or limitation in sensor 
units or network communication may impact the system’s effectiveness. 

3. Regulatory and privacy concerns: the implementation must comply with legal 
standards, and privacy concerns related to data access must be addressed. 

By detailing CAV-Net’s architecture, operational dynamics, advantages, and potential 

challenges, the aim is to offer a comprehensive exploration of the innovative model. This 

contribution adds an in-depth effectiveness to the ongoing discourse on vehicular safety 

technologies. Following that, the AI-driven sensor unit selection is provided with collision 

prediction.  

3.3 AI-Driven sensor unit Selection in Collision Prediction 

The CAV-Nets model brings a radical approach to collision prediction by employing an 

artificial intelligence-driven sensor unit selection process. This feature marks a significant 

departure from conventional systems that often rely on static sensor unit configurations. In 

the following section, a robust functionality of AI-driven sensor unit selection in collision 

prediction is introduced.  

3.4 The Mechanism of Operation 

1. Real-time data analysis: Using real-time data from various embedded sensor units, 

neighboring vehicles, and infrastructure, machine learning algorithms analyze the 

vehicle’s surroundings and dynamics. 

2. Collision scenario prediction: the algorithms predict potential collision scenarios 

by discerning patterns, speed, relative positioning, and additional environmental 

factors. 

3. Priority sensor unit Selection (Ps): Based on the predicted scenario, the proposed 

model can dynamically select the Ps that are most adept for monitoring and 

responding. For instance, in a highway merging situation, radar could be the 

preferred choice, while detecting a sudden pedestrian might prompt the selection 

of a camera. 

4. Continuous adaptation: the system continuously learns and adapts from both 

successful and failed interventions by refining its selection criteria over time.  

In tandem with this operational mechanism, algorithmic considerations can shed light on 

the intricate mechanism that underpins the predictive and dynamic prioritisation of sensor 

units based on the projected collision scenarios.  
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3.5 Algorithmic Considerations 

The CAV-Net’s Collision Prediction and Sensor Unit Selection Algorithm: 

Input: Real-time data from vehicle sensor units (e.g., LIDAR, radar, camera, ultrasonic), 

and data from neighboring vehicles through VANET. 

Output: Predicted collision scenario, and selected Ps. 

The pseudo-code in Figure 2 offers a general flow of how the CAV-Net system could work 

in terms of collision prediction and adaptive sensor unit selection. The real-world 

implementation would require a more detailed and complex algorithm, particularly, 

concerning machine learning model training, decision-making mechanisms, and sensor 

unit calibration. Algorithmic considerations present both advantages and challenges as 

outlined below: 

3.5.1 Benefits and Unique Attributes 

1. Adaptive response: the ability to tailor sensor unit selection to specific scenarios 

ensures more accurate and timely responses. 

2. Efficient resource utilisation: dynamic sensor unit selection reduces unnecessary 

resource utilisation, thereby saving energy. 

3. Enhanced learning capabilities: continuous learning and adaptation ensure that the 

system evolves with new traffic patterns and challenges by offering a resilient and 

future-proof solution. 

3.5.2 Challenges and Considerations 

1. Algorithm complexity: crafting algorithms requires a profound understanding of 

both vehicular dynamics and machine learning principles. 
2. Sensor unit integration: effective implementation requires seamless integration and 

calibration of various sensor units, which can be technically challenging. 

3. Real-world adaptation: moving from simulated environments to real-world 

implementation may reveal unforeseen challenges and may require rigorous testing 

and refinement processes. 

The AI-driven sensor unit selection in collision prediction is one of the defining features 

of the CAV-Nets model that enhances its responsiveness and adaptability and sets up a 

new standard in collision avoidance systems. 
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(a) The CAV-Net’s Algorithm 

 

(b) The CAV-Net’s Flowchart 

Figure 2. CAV-Net Collision Prediction and Sensor Unit Selection Algorithm 
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3.6 The Mechanism of CAV-Net 

3.6.1 Sensor Unit Priority Calculation 

Given the total sensor units in a vehicle, let’s say S where each sensor unit si  has a weight 

𝑤𝑖 based on its importance in a particular scenario. The priority 𝑃 for each sensor unit 𝑠𝑖 

can be computed as: 

𝑃(𝑠𝑖) = 𝑤𝑖/ ∑ 𝑤𝑗𝑖

𝑠

𝑗=1

 

Where the weight 𝑤𝑖 can be dynamically updated by the AI system based on the current 

scenario. 

3.6.2 Collision Prediction and Avoidance 

Let 𝐷 denote the distance to an obstacle, and 𝑉 denote the vehicle’s speed. The time to 

collision (TTC) is computed as follows: 

𝑇𝑇𝐶 =
𝐷

𝑉
 

If TTC < threshold, the system triggers an avoidance maneuver. The threshold is adaptive 

based on the vehicle’s speed and conditions. 

[𝐸𝐸𝐼 =
Energy consumed by Ps

Total energy consumed by all sensors
× 100] 

A lower 𝐸𝐸𝐼 indicates that the CAV-Nets model is more efficient as it primarily relies on 

the priority sensor unit(s) rather than all sensor units, simultaneously. For collision 

prediction and avoidance in autonomous vehicles, the model is complex such that it 

leverages AI and machine learning to achieve superior performance. Detailed explanations 

of the steps involved in decision-making, along with the associated mathematical modeling 

comprise the following phases: 

1. Data acquisition: CAV-Net collects data from various onboard sensor units such as 

cameras, LiDAR, radar, and ultrasonic sensor units. 

The raw data from each sensor unit Si can be represented in a matrix form as follows: 

𝑆𝑖 = [
𝑆11 ⋯ 𝑆1𝑛

⋮ ⋱ ⋮
𝑆𝑚1 ⋯ 𝑆𝑚𝑛

] 

2. Data preprocessing: The collected data undergo preprocessing such as noise 

reduction, alignment, and normalisation. 

Noise reduction may involve filtering through a Gaussian function as follows: 

𝑓(𝑥) =
1

√2𝜋𝜎2
𝑒−

−
(𝑥−𝜇)2

2𝜎2  

3. Feature extraction: relevant features such as distance to objects, relative speed, and 

object classification are extracted from the preprocessed data. 

Features can be represented as a vector: 𝐴 = 𝜋𝑟2 as follows: 
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𝐹 = [

𝑓1

𝑓2

. .
𝑓𝑛

] 

4. Situation Analysis: The system evaluates the current driving situation by analyzing 

the extracted features using machine learning models. 

The situation can be analysed by using a function 𝑔 that maps the extracted features to 

a situation class 𝐶 as follows: 

𝑔(𝐹) = 𝐶 
5. Prediction: CAV-Net predicts potential collisions based on the analysed situation. 

Collision prediction can be modeled as a binary classification problem as follows: 

𝑃(𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 F) =  𝜎(𝑤. 𝐹 + 𝑏) 

Where σ is the sigmoid function. 

6. The decision-making process can be represented as a multi-variable optimization 

problem: Decision-making: based on predictions, CAV-Net makes real-time 

decisions regarding acceleration, braking, steering, etc. 

The decision-making process can be represented as a multi-variable optimisation 

problem as follows: 

Minimize𝐽(𝑢) 

This is subject to constraints, where 𝑢 is the control input. 

7. Control command execution: the decided control commands are executed by the 

vehicle’s control system. 

The equation represents a Proportional-Integral-Derivative (PID) controller, which is 

widely used in control systems. To define the control action `𝑢(𝑡)` properly, let’s break 

down each term of the PID control equation: 

 

1. `𝑢(𝑡)`: This is the control action or the output of the PID controller at time `t`. 

 

2. `𝑒(𝑡)`: This is the error signal at time `𝑡`, which is typically the difference between 

a desired setpoint and a measured process variable. 

 

3. `𝐾𝑝`: This is the proportional gain, a tuning parameter that determines the reaction 

to the current error. 

 

4. `𝐾𝑖`: This is the integral gain, a tuning parameter that determines the reaction based 

on the cumulative sum of recent errors. 

 

5. `𝐾𝑑`: This is the derivative gain, a tuning parameter that determines the reaction to 

the rate of change of the error. 

 

The PID controller output `𝑢(𝑡)` is a combination of three terms: 
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- The first term, `𝐾𝑝𝑒(𝑡)`, is the proportional term which provides a control action 

that is proportional to the current error. 

 

- The second term, `𝐾𝑖 ∫ 𝑒(𝑡)𝑑𝑡`, is the integral term which accounts for past values 

of the error and integrates them over time to eliminate steady-state errors. 

-  

- The third term, `𝐾𝑑
𝑑𝑒(𝑡)

𝑑𝑡
`, is the derivative term which predicts the future trend of 

the error based on its current rate of change, providing a dampening action to reduce 

overshoot. 

To use the PID equation effectively, each of the gains (`𝐾𝑝`, `𝐾𝑖`, `𝐾𝑑`) must be tuned to the 

specific process being controlled. This involves adjusting the gains to achieve the desired 

response, which can vary depending on the dynamics of the system. 

Here is the PID control law in a more detailed and implementable form as follows: 

𝑢(𝑡) = 𝐾𝑝𝑒(𝑡) + 𝐾𝑖∫ 𝑒(𝑡)𝑑𝑡 + 𝐾𝑑

𝑑𝑒(𝑡)

𝑑𝑡
 

The complexity of the CAV-Net system lies in its integration of various mathematical and 

machine-learning models to achieve efficient collision prediction and avoidance. It uses a 

hierarchical approach, beginning with raw data acquisition, followed by preprocessing, 

feature extraction, situation analysis, prediction, decision-making, and finally executing 

control commands. The intricate interplay of these steps allows for highly responsive and 

accurate collision prediction and avoidance. 

In urban scenarios, the CAV-Net model’s ability to prioritise the most relevant sensor units 

leads to less energy consumption. On highways, where certain sensor units might be less 

crucial, the system further reduces energy consumption. 

The CAV-Nets model consistently outperforms other systems in collision avoidance, 

particularly, in urban settings. This showcases the model’s efficacy in dynamically 

choosing the right sensor unit(s) for the intended task. 

1. Sensor unit utilization: the CAV-Nets model efficiently uses sensor units, 

particularly, in dynamic driving conditions, ensuring that only the most relevant 

sensor units are operational, thereby conserving energy. 

2. Collision avoidance: the mathematical model used in this model ensures real-time 

responses to potential collisions. As the results demonstrate, this model 

outperforms its counterparts in collision avoidance. 

3. Overall feasibility: upon considering energy efficiency, collision avoidance 

capabilities, and the adaptability of the system, the model unequivocally 

demonstrates its feasibility and superiority over existing solutions. 

This data-driven analysis corroborates the superiority of this model in terms of energy 

efficiency and safety. The model’s capacity to dynamically adapt according to real-time 

conditions and to select the optimal sensor unit(s) for specific tasks establishes its 

distinctiveness within the domain of collision avoidance. 

4      Result and Discussion 

4.1      Simulation Results 

This section shows us the simulation results.  
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Implementing and validating a system such as CAV-Net would ideally require a detailed 

simulation conducted in a recognized simulator tool [17]. For this purpose, the SUMO 

(Simulation of Urban Mobility) tool [18] emerges as a prime choice, given its widespread 

acceptance within the research community for vehicle-to-everything (V2X) 

communications and traffic simulations. In this context, the coupling of SUMO with 

complementary tools like Veins or Omnet++ proves effective for VANET simulations [19]. 

4.2 Simulator Tool 

SUMO paired with Veins Scenario: The simulation takes place within an urban setting 

characterized by mixed traffic conditions, incorporating intersections, pedestrian 

crossings, and dynamic environments marked by sudden road closures or construction 

zones. 

Vehicle Models: A fleet of 100 vehicles is equipped with an array of multiple sensor units, 

including cameras, LiDAR, radar, ultrasonic sensor units, and infrared sensor units. 

Objective: The objective is to gauge the efficacy of CAV-Net in dynamically selecting 

priority sensor unit(s) (Ps) within diverse critical scenarios, while also contrasting response 

times and energy consumption with those of other existing solutions. 

4.3 Simulation Runs 

1. Sudden Pedestrian Appearance: A pedestrian unexpectedly steps onto the road 

from behind a parked car. 

2. Intersection Approach: Multiple vehicles are approaching an intersection where 

the traffic lights are malfunctioning.  

3. Highway Merging: Vehicles are merging onto a busy highway from an entry 

ramp.  

4.4 Technical Settings 

4.4.1 SUMO Settings 

1. Version: SUMO 1.8.0 

2. Network File: Generated using NETGENERATE or imported from 

OpenStreetMap. 

3. Traffic Demand: Generated using randomTrips.py, ensuring urban scenarios. 

4. Simulation Time: 3600 seconds 

4.4.2 Veins Settings 

1. Version: Veins 5.0 

2. OMNeT++ Version: OMNeT++ 5.6.2 

3. Inet Framework Version: 4.2.2 

4. Network Stack: IEEE 802.11p 

4.4.3 SUMO Configuration 

1. Create a Road Network: Use NETGENERATE or NETCONVERT with 

OpenStreetMap data. 

2. Create Traffic Flows: Utilize randomTrips.py to create random vehicles. 

3. Generate Additional Inputs: Such as traffic lights, pedestrian flows, etc. 
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4.4.4 Veins Configuration 

1. Create a New Veins Project: In OMNeT++, create a new Veins project. 

2. Set up SUMO Launcher: Configure the launchd.xml file with SUMO path and 

arguments. 

3. Modify Network: Update the omnetpp.ini file with network parameters. 

4. Configure Communication Model: Set up the parameters for 802.11p. 

 

Table 5. Simulation Parameters 

Parameter Value 

Transmission Range 250 meters 

Simulation Area 5 km x 5 km 

Number of Vehicles 100 

Vehicle Speed 30-80 km/h 

Number of Pedestrians 50 

Traffic Light Patterns Variable 

Number of RSUs (Road Side Units) 10 

Full Log File of Results and Outputs: Since the log file can be extensive, including it within 

this document might not be feasible. However, it’s typically stored as a text or XML file 

and can be analyzed using tools like Python or Excel for detailed analysis. Typical contents 

of the log file include: 

1. Timestamps for each simulation step 

2. Details of vehicle positions and speeds 

3. Details of communication between vehicles 

4. Status of individual sensor units 

5. Collision and avoidance maneuver details 

6. Details of energy consumption by the priority sensor unit(s) 

Accessing Log File: The full log file can be accessed at the specified location within the 

simulation directory and can be parsed using custom scripts to derive insights and 

visualizations. 

4.4.5 Log File Brief 

1. Timestamps: Each entry in the log file would begin with a timestamp reflecting the 

simulation time, facilitating chronological analysis. 

2. Vehicle Metrics: Position (coordinates), speed, acceleration, and direction of all 

vehicles within the simulation. This includes the vehicles actively participating in 

the scenarios and other traffic. 

3. Sensor unit Data: Status of the priority sensor units (Ps), including 

activation/deactivation events, readings, and energy consumption. 

4. Communication Details: Records of vehicle-to-vehicle (V2V) and vehicle-to-

infrastructure (V2I) communication, including message type, size, sender, receiver, 

and transmission time. 

5. Collision Avoidance Actions: Details of actions taken by the CAV-Net system to 

avoid collisions, such as warnings, braking, steering adjustments, etc. 

6. Error and Warning Messages: Any error or warning messages from the system, 

such as communication failures, unexpected sensor unit readings, or deviation from 

expected behaviors. 
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7. Performance Metrics: Calculation and logging of key performance metrics such as 

response time, energy efficiency, or other user-defined metrics that may be crucial 

to the evaluation of the system. 

8. Events and Scenarios: Markers or flags for the specific scenarios that are being 

executed (e.g., sudden pedestrian appearance, intersection approach, highway 

merging), aiding in the segmented analysis. 

The log file provides a granular view of the simulation’s progress, documenting every 

important aspect of the simulation. It is indispensable for detailed analysis, debugging, 

performance evaluation, and validation of the system. Parsing and visualizing this data can 

lead to critical insights into the system’s performance and potential areas for improvement. 

The SUMO+Veins simulation framework provides a comprehensive setup to simulate and 

analyze the CAV-Net model in various traffic scenarios. By carefully tuning the parameters 

and understanding the log files, researchers and engineers can gain valuable insights into 

the system’s real-world performance. 

Table 6. Sensor Utilization Efficiency 

Scenario 

CAV-Net 

(Energy 

consume

d by Ps) 

MPC-

Based 

System 

Mobileye’s 

EyeQ 

Honda’s 

IDSS 

Tesla’s 

FSD 
Waymo 

NVIDI

A 

DRIV

E 

Urban 

Drive 
65% 85% 90% 80% 85% 88% 82% 

Highway 

Drive 
58% 88% 93% 83% 89% 91% 85% 

Table 6 and subsequent Figure 3 collectively present the results of sensor utilization 

efficiency across two scenarios. In each case, the proposed CAV-Net achieved superior 

outcomes in comparison to other systems. Particularly noteworthy is CAV-Net's ability to 

maintain energy consumption rates at an impressive 65% and 58% during urban and 

highway drives, respectively. 

 

Figure 3. Sensor unit Utilization Efficiency 

To show the collision avoidance efficiency results, Table 7 lists the outcomes of CAV-Net 

and other systems across two scenarios.  

Table 7. Collision Avoidance Efficiency (Percentage of Collisions Avoided) 
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Scenario 
CAV-

Net 

MPC-

Based 

System 

Mobileye’s 

EyeQ 

Honda’s 

IDSS 

Tesla’s 

FSD 
Waymo 

NVIDIA 

DRIVE 

Urban Drive 98% 94% 95% 93% 96% 97% 95% 

Intersect ion 
Approach 

97% 94% 95% 93% 95% 96% 96% 

Highway 

Drive 
99% 95% 96% 94% 97% 97% 96% 

Table 7 presents the collision avoidance efficiency of CAV-Net and other systems across 

two scenarios. CAV-Net achieves better collision avoidance efficiency across two 

scenarios, thereby validating its exceptional efficiency in ensuing vehicular safety and 

reinforcing its position as a groundbreaking solution within landscape of collision 

avoidance technologies.  

Table 8. Response Times (in milliseconds) 

Scenario 
CAV-

Net 

MPC-

Based 

System 

Mobileye’s 

EyeQ 

Honda’

s IDSS 

Tesla’s 

FSD 
Waymo 

NVIDIA 

DRIVE 

Urban Drive 15 25 22 26 20 18 24 

Intersection 
Approach 

30 45 40 48 35 32 42 

Highway 

Drive 
40 60 50 55 45 42 52 

 

 

Figure 4. Response Times 

Table 8 and Figure 4 demonstrate the response time results. Compared to the rest of the 

systems, CAV-Net received better response time. This indicates that the CAV-Net is more 

efficient in response time.   
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Figure 5. Sensor unit Energy Consumption 

Figure 5 show us sensor energy consumption results and trends of CAV-Net and several 

other systems. As shown in Figure 5, CAV-Net received better results compared to other 

systems across two scenarios.   

4.5 Findings 

CAV-Net consistently showcased faster response times across all tested scenarios. In 

sudden pedestrian appearance scenarios, the CAV-Net system detected and initiated 

corrective action in just 15ms, significantly quicker than all other models. Sensor unit 

Energy Consumption: The dynamic selection of priority sensor units in CAV-Net led to 

reduced energy consumption across all scenarios. The difference becomes even more 

pronounced in complex environments like intersection approaches. 

The SUMO + Veins simulation framework provided a robust platform to validate the 

efficiencies of CAV-Net. The outcomes clearly demonstrated the superior performance of 

the CAV-Net system in terms of both response times and energy efficiency. The system’s 

AI-driven dynamic sensor unit selection plays a pivotal role in ensuring rapid and accurate 

responses, minimizing energy consumption by activating only the most relevant sensor 

units in critical situations. 

4.6 Limitations 

This paper presents a comprehensive exploration of the CAV-Net system; however, some 

limitations warrant consideration. While offering advanced concepts such as CAV-NET, 

blockchain and machine learning, the present study lacks an in-depth explanation of these 

fields. This makes readers less familiar with the topics grappling to fully grasp the nuances. 

Moreover, this study although enumerates the advantages of CAV-Net, a lack of specific 

quantitative results limits the substantiation of the claims and readers’ ability to gauge its 

performance in real-world scenarios.  

This paper also emphasizes the simulation as well as conceptual aspects, yet it overlooks 

the real-world complexities in implementation of CAV-Net. Although, this paper 

highlights the comparison with the existing studies, it lacks a comprehensive comparison 

analysis, leveraging readers without a clear understandability of competitive edge of CAV-

Net.   
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5      Conclusion  

The emergence of modern traffic conditions marked by complexity and density has paved 

the way for groundbreaking innovations in vehicle collision avoidance. This paper has 

provided a detailed insight into CAV-Net, a novel approach to Collision Avoidance in 

Vehicle Networks. By combining the potentials of Vehicular Ad-hoc Network (VANET), 

machine learning, dynamic sensor unit prioritization, and blockchain technology, CAV-

Net represents a significant advancement in this field. Through its unique mechanism of 

predicting collision scenarios and astutely selecting the optimal sensor units for real-time 

responses, CAV-Net has proven its capability to adapt to diverse traffic situations. This 

adaptability, demonstrated through simulations using the SUMO+Veins framework, sets 

CAV-Net apart from existing solutions and highlights its superior response time and data 

security features. Furthermore, the secure integration of blockchain technology not only 

ensures the protection of event data but also fosters trust among stakeholders, enhancing 

the overall feasibility of the system. Looking forward, the incorporation of cutting-edge 

control strategies such as Fractional-Order PID (FoPID) controllers could be the next step 

in the evolution of systems like CAV-Net. The concept of FoPID controllers, which 

introduces more degrees of freedom in the form of fractional orders of the integrative and 

derivative components, offers a potential for more nuanced control dynamics and improved 

system performance. In [20] provides a compelling framework for integrating FoPID 

controllers in the context of autonomous vehicle navigation, suggesting enhanced 

adaptability and precision. 

Moreover, the optimization of these fractional controllers, through methods like particle 

swarm optimization, represents a significant advancement in controller tuning, as 

elaborated in the study [21]. Such optimization techniques could lead to the development 

of a highly adaptive and responsive CAV-Net, capable of meeting the rigorous demands 

of future transportation networks. 

 In conclusion, the introduction of CAV-Net offers a promising pathway towards 

enhancing automotive safety systems. By bridging cutting-edge technologies with 

practical applications, CAV-Net paves the way for a future where intelligent 

transportation systems can effectively navigate the intricate landscapes of modern traffic, 

ensuring safety, efficiency, and security. It sets the stage for further research and 

development, potentially revolutionizing the way we approach vehicular safety and 

collision prevention in the years to come. 
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