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Abstract 

Using Mathematica computer software, a numerical procedure called the 
modified Adomian decomposition method (MADM) is successfully imple-
mented for obtaining exact solutions of some classes of Volterra integro-differ-
ential equations based on the ADM approximate series solutions, Laplace 
transform, and Pade approximants. The reliability and effectiveness of MADM 
are tested in some examples. The obtained results indicate that the implemented 
procedure is very effective and powerful for handling this kind of differential 
equation and is valid for a wide class of other types of differential equations. 

Keywords: Integral Equations, ADM Procedure, Series Expansion, Laplace 
Transform, Pade Approximant.  

1. Introduction 
     Volterra integro-differential equations occur in many scientific fields, including as-
tronomy, biology, biotechnology, engineering, physics, radiology, and many others. 
These equations are used in a variety of attractive applications, such as heat and mass 
transfer, diffusion processes, and cell growth. Volterra came across a situation in which 
both differential and integral operators occurred in the same equation while investigat-
ing a population growth model for the study of hereditary influence. The Volterra in-
tegro-differential equation was the name given to this novel type of equation. These 
formulas have the following form: 

  𝑢𝑢(𝑛𝑛)(x) = 𝑓𝑓(𝑥𝑥) +  λ ∫ 𝑘𝑘(𝑥𝑥. 𝑡𝑡)𝑢𝑢(𝑡𝑡)𝑑𝑑𝑑𝑑.𝑥𝑥
0                                   (1.1) 

    Because this equation is a combination of differential and integral operators, it is 
essential to define the initial conditions 𝑢𝑢(0).𝑢𝑢′(0).𝑢𝑢 ′′(0). … .  𝑢𝑢(𝑛𝑛−1)  (0). before de-
termining the specific solution u(x). 
 Due to the fact that differential equations model and describe the majority of real-
world phenomena, their solutions are very essential in applied mathematics and engi-
neering. But the solutions to these equations are not easy, especially if the equation is 
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strongly nonlinear, so obtaining an exact solution or accurate approximate solutions 
with a high degree of accuracy is required because they enable us to study and under-
stand the behavior of these phenomena. Regarding this purpose, various numerical and 
approximated methods were applied and developed for finding solutions to numerous 
equations such as the delay differential equations, Integral and integro differential 
equations and fuzzy differential equations  and so on of linear and nonlinear ODEs and 
PDEs, for examples, the homotopy perturbation method (HPM) was employed success-
fully for obtaining exact solutions for linear and nonlinear integral equations of 
Volterra kind and in mathematical physics for solving fractional PDEs [1, 2], homotopy 
analysis method (HAM) which was implemented for solving fuzzy fractional two-point 
boundary value problems and it is applications and other types of linear and nonlinear 
differential equations  [3-7], optimal homotopy asymptotic method (OHAM) [8-11], 
differential transformation method (DTM) [12-15], Galerkin method [16-20], varia-
tional iteration method (VIM) [21-24], conformable fractional approach [25, 26] and 
multistage OHAM [27], Adomian decomposition method (ADM) [28, 29, 32], and so 
on [31, 32, 33].  
  The Adomian decomposition method is a well-known systematic technique for solv-
ing a variety of linear and nonlinear equations, such as ordinary differential equations, 
partial differential equations, integral equations, integro-differential equations, and so 
on. The accuracy of ADM procedure depends on the given models or problem and also 
on the order of the approximation, and this require more efforts and calculations espe-
cially if the given problem is strongly nonlinear which means that there will be diffi-
culties on computing the Adomian polynomial. For this purpose it very important to 
find a way or process that modify the ADM procedure and enhance it is efficiency and 
capability.   
    The objective of this study is to enhance the Adomian decomposition method in or-
der to acquire accurate solutions for Volterra integro-differential equations by employ-
ing an alternative technique (MADM) that modifies the series solution for classes of 
Volterra integro-differential equations by applying the Laplace transformation to the 
truncated series obtained by ADM, then converting the transformed series into a mer-
omorphic function by Pad'e approximants, and finally applying the inverse Laplace 
transform to the obtained analytic solution, which gives the exact solution or a more 
accurate solution than the ADM solution. 
     The structure of this work is as follows: The basic concepts of ADM, Pad'e approx-
imation, and Laplace transformation are briefly described in Section 2. Some examples 
are provided in Section 3 to support and illustrate the applicability and effectiveness of 
our procedure. Section 4 provides a conclusion of this study. 

𝟐𝟐. RESEARCH METHOD 

𝟐𝟐.𝟏𝟏   Fundamental Idea of ADM Procedure 
       The basic idea of the ADM procedure concerns with differential equations of the 
form: 

  𝐿𝐿𝐿𝐿 + 𝑅𝑅𝑅𝑅 + 𝑁𝑁𝑁𝑁 = 𝑔𝑔,                                                       (2.2.1) 
where g is the system input, and u is the system output, L is the linear operator needed 
to be inverted, R is the linear remainder operator, and N is the nonlinear operator, which 
is assumed to be analytic.  We remark that this choice of the linear operator is designed 
to yield an easily invertible operator with resulting trivial integrations. Additionally, 
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we concentrate that the choice for L and its inverse 𝐿𝐿−1 are decided by the particular 
equation to be solved (Adomian ). 

Generally, we choose 𝐿𝐿 = 𝑑𝑑𝑚𝑚

𝑑𝑑𝑑𝑑𝑚𝑚
(. ) for 𝑚𝑚𝑡𝑡ℎ −order differential equation and thus its in-

verse  𝐿𝐿−1 follows as 𝑚𝑚 −fold definite integration operator from 𝑥𝑥0 to 𝑥𝑥.  We get 
𝐿𝐿−1𝐿𝐿𝐿𝐿 = 𝑢𝑢 − 𝜓𝜓, where 𝜓𝜓 incorporates the initial values as  

𝜓𝜓 = ∑ β𝑣𝑣𝑚𝑚−1
𝑣𝑣=0

(𝑥𝑥−𝑥𝑥0)𝑣𝑣

𝑣𝑣!
.  Applying the inverse linear operator 𝐿𝐿−1 to both sides of 

Eq.(2.2.1) gives: 

                          𝑢𝑢 = 𝑔𝑔(𝑥𝑥) − 𝐿𝐿−1[𝑅𝑅𝑅𝑅 + 𝑁𝑁𝑁𝑁].                                             (2.2.2) 

where  𝑔𝑔(𝑥𝑥) = 𝜓𝜓 + 𝐿𝐿−1𝑔𝑔. The ADM decomposes the solution into a series: 

                            𝑢𝑢(𝑥𝑥) = ∑ 𝑢𝑢𝑛𝑛∞
0 (x).                                            (2.2.3)              

and then decomposes the nonlinear term 𝑁𝑁𝑁𝑁 into a series:  

                                                            
                                𝑁𝑁𝑁𝑁 = ∑ 𝐴𝐴𝑛𝑛(𝑥𝑥)∞

0 .                                          (2.2.4) 

where An,  depending on u0. u1. … . un.  are called the  Adomian polynomials, and can 
be gained for the nonlinearity  Nu = f(u) by the following formula (Adomian and 
Rach, 1983)                       

𝐴𝐴𝑛𝑛 =
1
𝑛𝑛!

𝑑𝑑𝑛𝑛

𝑑𝑑𝜆𝜆𝑛𝑛
�𝑓𝑓�𝜆𝜆𝑛𝑛𝑢𝑢𝑛𝑛

∞

𝑛𝑛=0

�
𝜆𝜆=0

  𝑛𝑛 = 0.1.2,                       (2.2.5) 

where 𝜆𝜆 is a grouping parameter of convenience. 
 
𝟐𝟐.𝟐𝟐 Padѐ approximation 

The � 𝐿𝐿
𝑀𝑀
� Padѐ approximation [14, 15] of the function u(x) is defined by: 

�
𝐿𝐿
𝑀𝑀
� =

𝑃𝑃𝐿𝐿(𝑡𝑡)
𝑄𝑄𝑀𝑀(𝑡𝑡)

, 

where 𝑃𝑃𝐿𝐿(𝑡𝑡) and 𝑄𝑄𝑀𝑀(𝑡𝑡) are polynomials of degrees at most L and M, respectively. The 
general form of the power series is 

𝑢𝑢(𝑡𝑡) = �𝑎𝑎𝑖𝑖𝑡𝑡𝑖𝑖 .
∞

𝑖𝑖=1

 

The coefficients of the 𝑃𝑃𝐿𝐿(𝑡𝑡) and 𝑄𝑄𝑀𝑀(𝑡𝑡) polynomials are obtained from: 

𝑢𝑢(𝑡𝑡) − 𝑃𝑃𝐿𝐿(𝑡𝑡)
𝑄𝑄𝑀𝑀(𝑡𝑡) = 𝑂𝑂(𝑡𝑡𝐿𝐿+𝑀𝑀+1).                                                      (2.2.1)  

When the function of the numerator and denominator 𝑃𝑃𝐿𝐿(𝑡𝑡)
𝑄𝑄𝑀𝑀(𝑡𝑡) is multiplying by a nonzero 

constant the functional values remain unchanged, then we can define the normalization 
condition as (16): 

          QM(0) = 1.                                                               (2.2.2) 

It can be noted the 𝑃𝑃𝐿𝐿(𝑡𝑡) and 𝑄𝑄𝑀𝑀(𝑡𝑡) have no public factors. If we represents the coef-
ficient of 𝑃𝑃𝐿𝐿(𝑡𝑡) and 𝑄𝑄𝑀𝑀(𝑡𝑡) as (17): 
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              � 𝑃𝑃𝐿𝐿
(𝑡𝑡) = 𝑃𝑃0 + 𝑃𝑃1𝑡𝑡 + 𝑃𝑃2𝑡𝑡2 + ⋯+ 𝑃𝑃𝐿𝐿𝑡𝑡𝐿𝐿

𝑄𝑄𝑀𝑀(𝑡𝑡) = 𝑞𝑞0 + 𝑞𝑞1𝑡𝑡 + 𝑞𝑞2𝑡𝑡2 + ⋯+ 𝑞𝑞𝑀𝑀𝑡𝑡𝑀𝑀
� ,                                        (2.2.3) 

Then, by (2.2.2) and (2.2.3) we can multiply (2.2.1) by 𝑄𝑄𝑀𝑀(𝑡𝑡), to linearizes the coeffi-
cient equations. We can write out (18) in more detail as (18): 

⎩
⎪
⎨

⎪
⎧ 𝑎𝑎𝐿𝐿+1 + 𝑎𝑎𝐿𝐿𝑞𝑞1 + ⋯+ 𝑎𝑎𝐿𝐿−𝑀𝑀+1𝑞𝑞𝑀𝑀 = 0
𝑎𝑎𝐿𝐿+2 + 𝑎𝑎𝐿𝐿+1𝑞𝑞1 + ⋯+ 𝑎𝑎𝐿𝐿−𝑀𝑀+2𝑞𝑞𝑀𝑀 = 0.

.
𝑎𝑎𝐿𝐿+𝑀𝑀 + 𝑎𝑎𝐿𝐿+𝑀𝑀−1𝑞𝑞1 + ⋯+ 𝑎𝑎𝐿𝐿𝑞𝑞𝑀𝑀 = 0 ⎭

⎪
⎬

⎪
⎫

,                                     (2.2.4)  

⎩
⎪
⎨

⎪
⎧

𝑎𝑎0 = 𝑃𝑃0
𝑎𝑎0 + 𝑎𝑎0𝑞𝑞1 = 𝑃𝑃1

𝑎𝑎2 + 𝑎𝑎1𝑞𝑞1 + 𝑎𝑎0𝑞𝑞2 = 𝑃𝑃2
.
.

𝑎𝑎𝐿𝐿 + 𝑎𝑎𝐿𝐿−1𝑞𝑞1 + ⋯+ 𝑎𝑎0𝑞𝑞𝐿𝐿 = 𝑃𝑃𝐿𝐿⎭
⎪
⎬

⎪
⎫

,                                               (2.2.5)                                                                      

    The solutions of these equations will be obtained using Eq. (2.2.4), which is consider 
as a set of linear equations for the unknown q`s. Once the q`s are known, then (2.2.5) 
gives an explicit formula for the unknown p`s, which complete the solution. If (2.2.4) 
and (2.2.5) are non-singular, then we may solve them direct and we obtain (2.2.6) 
[23,33], where (2.2.6) holds, and if the lower index on a sum exceeds the upper, the 
sum is replaced by zero: 

�
𝐿𝐿
𝑀𝑀�

   =

𝑑𝑑𝑑𝑑𝑑𝑑

⎣
⎢
⎢
⎢
⎡

𝑎𝑎𝐿𝐿−𝑀𝑀+1 𝑎𝑎𝐿𝐿−𝑀𝑀+2    … 𝑎𝑎𝐿𝐿+1
. . … .
. . . .
𝑎𝑎𝐿𝐿 𝑎𝑎𝐿𝐿+1 . 𝑎𝑎𝐿𝐿+𝑀𝑀

∑ 𝑎𝑎𝑗𝑗−𝑀𝑀𝑋𝑋𝑗𝑗𝐿𝐿
𝑗𝑗=𝑀𝑀 ∑ 𝑎𝑎𝑗𝑗−𝑀𝑀+1𝑋𝑋𝑗𝑗𝐿𝐿

𝑗𝑗=𝑀𝑀−1 … ∑ 𝑎𝑎𝑗𝑗𝑋𝑋𝑗𝑗𝐿𝐿
𝑗𝑗=0 ⎦

⎥
⎥
⎥
⎤

𝑑𝑑𝑑𝑑𝑑𝑑

⎣
⎢
⎢
⎢
⎡
𝑎𝑎𝐿𝐿−𝑀𝑀+1 𝑎𝑎𝐿𝐿−𝑀𝑀+2 … 𝑎𝑎𝐿𝐿+1

. . . .

. . . .
𝑎𝑎𝐿𝐿 𝑎𝑎𝐿𝐿+1 … 𝑎𝑎𝐿𝐿+𝑀𝑀
𝑋𝑋𝑀𝑀 𝑋𝑋𝑀𝑀−1 … 1 ⎦

⎥
⎥
⎥
⎤

,   (2.2.6) 

3.   Numerical Examples  

   In this part of the discussion, we will examine two different illustrations. For both 
linear and nonlinear Volterra integro-differential equations, these examples are taken 
into account and considered to be illustrative of the technique. 
Example 3.1 Consider the following Volterra integral differential equation taken from 
Wazwaz 2010 [31]. 

                  u′(x) = 1 + 1
2!
𝑥𝑥2 − ∫ u(t)dt.x

0    u(0) = 1.                      (3.3.1) 

To obtain approximate solution of the above problem using ADM procedure, we apply 
the  integral operator 𝐿𝐿−1 =  ∫ (. )𝑑𝑑𝑑𝑑𝑥𝑥

0  to both sides of Eq. (3.3.1), we have  

                       𝑢𝑢(𝑥𝑥) = 1 + 𝑥𝑥 + 𝑥𝑥3

6
+ 𝐿𝐿−1(∫ 𝑢𝑢(𝑡𝑡)𝑑𝑑𝑑𝑑).𝑥𝑥

0                            (3.3.2) 

           Based on ADM procedure, we have the following components 

                         𝑢𝑢0(𝑥𝑥) = 1 + 𝑥𝑥 + 𝑥𝑥3

6
,                                                (3.3.3)  
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and      

                       𝑢𝑢𝑛𝑛+1 (𝑥𝑥) =  𝐿𝐿−1(∫ 𝑢𝑢𝑛𝑛(𝑡𝑡)𝑑𝑑𝑑𝑑).𝑥𝑥
0                                  (3.3.4)  

Which gives  

   𝑢𝑢1(𝑥𝑥) = −
𝑥𝑥2

2
−
𝑥𝑥3

6
−

𝑥𝑥5

120
,                                                       (3.3.5) 

         𝑢𝑢2(𝑥𝑥) =
𝑥𝑥4

24
+

𝑥𝑥5

120
+

𝑥𝑥7

5040
,                                                      (3.3.6) 

   𝑢𝑢3(𝑥𝑥) = −
𝑥𝑥6

720
−

𝑥𝑥7

5040
−

𝑥𝑥9

362880
,                                        (33.7) 

   𝑢𝑢4(𝑥𝑥) =
𝑥𝑥8

40320
+

𝑥𝑥9

362880
+

𝑥𝑥11

39916800
,                            (3.3.8) 

        𝑢𝑢5(𝑥𝑥) = −
𝑥𝑥10

3628800
−

𝑥𝑥11

39916800
−

𝑥𝑥13

6227020800
,         (3.3.9) 

Consequently, the solution of (3.3.1) in a series form given by  

𝑢𝑢(𝑥𝑥) = 1 + 𝑥𝑥 − 𝑥𝑥2

2
+ 𝑥𝑥4

24
− 𝑥𝑥6

720
+ 𝑥𝑥8

40320
− 𝑥𝑥10

3628800
− 𝑥𝑥13

6227020800
.  (3.3.10) 

  And this in the limit of infinitely many terms converge to the exact  solution 𝑢𝑢(𝑥𝑥) =
𝑥𝑥 + 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐. Table (3.1) present numerical results for example 3.1, while Fig (3.1) rep-
resent graphically the plot of the exact and approximate  solution. In order to improve 
the accuracy of ADM approximate solution, we will modify the ADM solution by ap-
plying the Laplace transformation on the truncated series solution of the ADM approx-
imate solution (3.3.10) and then employing the Pade approximate and finally using to 
invers of the Laplace transform to get accurate results in most cases closed to the exact 
form, as follows:  

𝐿𝐿�𝑢𝑢(𝑡𝑡)� = 1
𝑠𝑠

+ 1
𝑠𝑠2
− 1

𝑠𝑠3
+ 1

𝑠𝑠5
− 1

𝑠𝑠7
+ 1

𝑠𝑠9
+ ⋯                              (3.3.11) 

for the simplicity, let 𝑠𝑠 = 1
𝑧𝑧
 , then  

𝐿𝐿�𝑢𝑢(𝑡𝑡)� = 𝑧𝑧 + 𝑧𝑧2 − 𝑧𝑧3 + 𝑧𝑧5 − 𝑧𝑧7 + 𝑧𝑧9 + ⋯                       (3.3.12) 

The Pade approximate �4
4
� = 𝑧𝑧+𝑧𝑧2+𝑧𝑧4

1+𝑧𝑧2
  

Recalling = 1
𝑠𝑠
 , we obtain Pade approximate of �4

4
� in terms of s  

�4
4
� = 1

(1+ 1
𝑠𝑠2

)𝑠𝑠4
+ 1

(1+ 1
𝑠𝑠2

)𝑠𝑠2
+ 1

(1+ 1
𝑠𝑠2

)𝑠𝑠
.                               (3.3.13) 

By using the inverse Laplace transform to the �4
4
� Pade approximate, we obtain the 

modified approximate solution 𝑢𝑢(𝑥𝑥) = 𝑥𝑥 + 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐. 
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(a)  

    (b)  

Figs 3.1: (a) Plot of exact and approximate solution and (b) Plot of the absolute error for Example 𝟑𝟑.𝟏𝟏 

Table 3.1: Numerical examples for example 𝟑𝟑.𝟏𝟏 
x Exact Solution ADM Absolute Error  

0.0   00000 1.00000000  
0.2 1.18006658 1.18006658 4.44 × 10−16 
0.4 1.32106099 1.32106099 1.02 × 10−12 
0.6 1.42533561 1.42533561 8.64 × 10−11 
0.8 1.49670671 1.49670671 2.01 × 10−9 
1.0 1.54030231 1.54030232 2.30 × 10−8 

 

Example 3.3.2: Consider the following Volterra integral differential equation taken 
from Wazwaz 2010 [31]. 

     u′′(x) = 1 + ∫ (x − t)u(t)dt.x
0   u(0) = 1, u′(0) = 0.                 (3.3.14)                                                    

   To obtain approximate solution of the above problem using ADM procedure, we ap-
ply the integral operator 𝐿𝐿−1 =  ∫ ∫ (. )𝑥𝑥

0 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑥𝑥
0  to both sides of Eq. (3.4.14), which 

yields to  

              𝑢𝑢(𝑥𝑥) = 1 + 𝑥𝑥3

6
+ 𝐿𝐿−1(∫ ∫ (𝑥𝑥 − 𝑡𝑡)𝑥𝑥

0 𝑑𝑑𝑑𝑑).𝑥𝑥
0                     (3.3.15) 

Based on ADM procedure, we have  

               𝑢𝑢0(𝑥𝑥) = 1 + 𝑥𝑥2

2
,                                                      (3.3.16)  

0.0 0.2 0.4 0.6 0.8 1.0
0

1.1010

2.1010

3.1010

4.1010

5.1010
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 and     

                    𝑢𝑢𝑛𝑛+1 (𝑥𝑥) =  𝐿𝐿−1(∫ 𝑢𝑢𝑛𝑛(𝑡𝑡)𝑑𝑑𝑑𝑑).𝑥𝑥
0                                 (3.3.17)  

Which gives  

   𝑢𝑢1(𝑥𝑥) =
𝑥𝑥4

24
+

𝑥𝑥6

720
,                                                          (3.4.18) 

 𝑢𝑢2(𝑥𝑥) =
𝑥𝑥8

40320
+

𝑥𝑥10

3628800
,                                         (3.4.19) 

      𝑢𝑢3(𝑥𝑥) =
𝑥𝑥12

479001600
+

𝑥𝑥14

87178291200
,                           (3.4.20) 

           𝑢𝑢4(𝑥𝑥) =
𝑥𝑥16

20922789888000
+

𝑥𝑥18

6402373705728000
,    (3.4.21) 

 𝑢𝑢5(𝑥𝑥) = 𝑥𝑥20

2432902008176640000
+ 𝑥𝑥22

1124000727777607680000
,       (3.3.22)  

Consequently, the solution of (3.3.14) in a series form given by  

𝑢𝑢(𝑥𝑥) = 1 +
𝑥𝑥2

2
+
𝑥𝑥4

24
+

𝑥𝑥6

720
+

𝑥𝑥8

40320
+

𝑥𝑥10

3628800
+

𝑥𝑥12

479001600
+

𝑥𝑥14

87178291200

+
𝑥𝑥16

20922789888000
+

𝑥𝑥18

6402373705728000

+
𝑥𝑥20

2432902008176640000

+
𝑥𝑥22

1124000727777607680000
.                                                   ( 3.3.23) 

 
         And this in the limit of infinitely many terms converge to the exact solution 
𝑢𝑢(𝑥𝑥) = 𝐶𝐶𝐶𝐶𝐶𝐶ℎ𝑥𝑥. Table (3.2) present numerical results for example 3.2, while Fig (3.2) 
represent graphically the plot of the exact and approximate solution. In order to im-
prove the accuracy of ADM approximate solution, we will modify the ADM solution 
by applying the Laplace transformation on the truncated series solution of the ADM 
approximate solution (3.3.23) and the employing the Pade approximate and finally us-
ing the invers of the Laplace transform to get accurate results in most cases closed exact 
form, as follows:  

𝐿𝐿�𝑢𝑢(𝑡𝑡)� = 1
𝑠𝑠9

+ 1
𝑠𝑠7

+ 1
𝑠𝑠5

+ 1
𝑠𝑠3

+ 1
𝑠𝑠

+..                         (3.3.24) 

For the simplicity, let = 1
𝑧𝑧
 , then  

𝐿𝐿�𝑢𝑢(𝑡𝑡)� = 𝑧𝑧 + 𝑧𝑧3 + 𝑧𝑧5 + 𝑧𝑧7 + 𝑧𝑧9 + ⋯                            (3.3.25) 

The Pade approximate �4
4
� = 𝑧𝑧

1−𝑧𝑧2
.   

Recalling = 1
𝑠𝑠
 , we obtain Pade approximate of �2

2
� in terms of s  

�4
4
� = 𝑠𝑠

−1+𝑠𝑠2
.                                                   (3.3.26) 

By using the inverse Laplace transform to the �2
2
� Pade approximate, we obtain the 

modified approximate solution 𝑢𝑢(𝑥𝑥) = 𝐶𝐶𝐶𝐶𝐶𝐶ℎ𝑥𝑥. 
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  (a)      

 (b)  

Figs 3. 2: (a) Plot of exact and approximate solution and (b) Plot of the absolute error for Example 
3.2. 

Table 3.2 Numerical examples for example 3.2 
x Exact Solution ADM Absolute Error  

0.0   00000 1.00000000       0   
0.2 1.02006676 1.02006676  0 
0.4 1.081072371 1.081072371 2.22 × 10−16 
0.6 1.18546522 1.18546522 2.22 × 10−16 
0.8 1.33743495 1.33743495 0.00 
1.0 1.54308063 1.54308063 2.22 × 10−16 

 

 
Example 3.3: In this problem, we consider the following nonlinear Volterra integro-
differential equation Wazwaz 2010 [31]. 

  𝑢𝑢′(𝑥𝑥) =  
1
2

+ 𝑒𝑒𝑥𝑥 −
1
2
𝑒𝑒2𝑥𝑥 + � 𝑢𝑢2(𝑡𝑡)𝑑𝑑𝑑𝑑,   𝑢𝑢(0) = 1.       

𝑥𝑥

0
 (3.3.27) 

The exact solution for this problem is given by 𝑢𝑢(𝑥𝑥) =  𝑒𝑒𝑥𝑥. The approximate solution 
using ADM procedure can be obtained by applying the 𝐿𝐿−1 =  ∫ (. )𝑑𝑑𝑑𝑑 𝑥𝑥

0  operators on 
both sides of Eq. (3.4.27) as follows: 
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      𝑢𝑢(𝑥𝑥) = 𝐿𝐿−1�𝑓𝑓(𝑥𝑥)� + 𝐿𝐿−1(∫ 𝑢𝑢2(𝑡𝑡)𝑥𝑥
0 𝑑𝑑𝑑𝑑).                                         (3.3.28) 

Then by using the decomposition series 𝑢𝑢(𝑥𝑥) =  ∑ 𝑢𝑢𝑛𝑛(𝑥𝑥)∞
𝑛𝑛=0   and the concept of the 

Adomian polynomial on the nonlinear term 𝑢𝑢2(𝑡𝑡), yields  

          𝑢𝑢𝑛𝑛(𝑥𝑥) = 𝐿𝐿−1�𝑓𝑓(𝑥𝑥)� + 𝐿𝐿−1(∑ 𝐴𝐴𝑛𝑛(𝑥𝑥)∞
𝑛𝑛=0 ),                     (3.3.29) 

According to ADM procedure, the following iterative terms are given by      𝑢𝑢0(𝑥𝑥) =
1 + 𝑥𝑥 − 𝑥𝑥3

6
− 𝑥𝑥4

8
− 7𝑥𝑥5

120
− 𝑥𝑥6

48
− 31𝑥𝑥7

5040
− 𝑥𝑥8

640
− 127𝑥𝑥9

362880
,        (3.3.30)                                            

and  

 𝑢𝑢𝑛𝑛(𝑥𝑥) = 𝐿𝐿−1(�𝐴𝐴𝑛𝑛(𝑥𝑥))
∞

𝑛𝑛=0

,                                          (3.3.31) 

which gives 𝑢𝑢0(𝑥𝑥),𝑢𝑢1(𝑥𝑥), …and so on. Consequently, combined the obtained results up 
to order four, yields the ADM series solution  

𝑢𝑢(𝑥𝑥) =  1 + 𝑥𝑥 + 𝑥𝑥2

2
+ 𝑥𝑥3

6
+ 𝑥𝑥4

24
+ 𝑥𝑥5

120
+ 𝑥𝑥6

720
+ 𝑥𝑥7

5040
+ 𝑥𝑥8

40320
+ 𝑥𝑥9

362880
− 31𝑥𝑥10

151200
−

89𝑥𝑥11

207900
− 81733𝑥𝑥12

239500800
− 26023𝑥𝑥13

155675520
− 82651𝑥𝑥14

1614412800
− 782477𝑥𝑥15

163459296000
+ 1226893𝑥𝑥16

232475443200
+

182919973𝑥𝑥17

44460928512000
+ 833719𝑥𝑥18

456855552000
+ 6508739𝑥𝑥19

11467298304000
+ ⋯                                                                                                   

       (3.3.32) 

and this in the limit of infinitely many terms converge to the exact  solution 𝑢𝑢(𝑥𝑥) = 𝑒𝑒𝑥𝑥. 
Table (3. 3) present numerical results for example 3, while Fig (3. 3) represent graph-
ically the plot of the exact and the ADM approximate  solution of order five. In order 
to improve the accuracy of ADM approximate solution, we will modify the ADM so-
lution by applying the Laplace transformation on the truncated series solution of the 
ADM approximate solution (3.3.32) and the employing the Pade approximate and fi-
nally using to invers of the Laplace transform to get accurate results in most cases 
closed exact form, as follows:  

𝐿𝐿�𝑢𝑢(𝑡𝑡)� = 1
𝑠𝑠

+ 1
𝑠𝑠2

+ 1
𝑠𝑠3

+ 1
𝑠𝑠4

+ ⋯                            (3.3.33) 

for the simplicity, let 𝑠𝑠 = 1
𝑧𝑧
 , then  

  𝐿𝐿�𝑢𝑢(𝑡𝑡)� = 𝑧𝑧 + 𝑧𝑧2 + 𝑧𝑧3 + 𝑧𝑧4 + ⋯                         (3.3.34) 

The Pade approximate �2
2
� = 𝑧𝑧

1−𝑧𝑧
 . 

Recalling 𝑧𝑧 = 1
𝑠𝑠
 , we obtain Pade approximate of �2

2
� in terms of s  

�2
2
� = 1

−1+𝑠𝑠
.                                                       (3.3.35) 

By using the inverse Laplace transform to the �2
2
� Pade approximate, we obtain the 

modified approximate solution 𝑢𝑢(𝑥𝑥) = 𝑒𝑒𝑥𝑥. 
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Fig 3. 3:  (a) Plot of exact and approximate solution and (b) Plot of the absolute error for Example 

3.3. 
 

Table 3.3 Numerical examples for example 3.3 
x Exact Solution ADM Absolute Error  

0.0 1.00000000 1.00000000       0   
0.2 1.22140276 1.22140276 3.13 × 10−11 
0.4 1.49182470 1.49182465 4.65 × 10−8 
0.6 1.82211880 1.82211500 3.80 × 10−6 
0.8 2.22554093 2.22544733 9.36 × 10−5 
1.0 2.71828183 2.71709586 1.19 × 10−3 

 
Example 3.4: The following nonlinear fourth-order Volterra integro-differential equa-
tion is considered Wazwaz 2010 [31]. 

𝑢𝑢(4)(𝑥𝑥) = −
1
4
𝑥𝑥2 + sin(𝑥𝑥) +

1
4
𝑠𝑠𝑠𝑠𝑠𝑠2(𝑥𝑥) + � (𝑥𝑥 − 𝑡𝑡)𝑢𝑢2(𝑡𝑡)𝑑𝑑𝑑𝑑,

𝑥𝑥

0
 

                                                                                  (3.3.36)  

with it is conditions 𝑢𝑢(0) = 𝑢𝑢′′(0) = 0, 𝑢𝑢′(0) = 1,  and 𝑢𝑢′′′(0) = −1.  

The approximate solution using ADM procedure can be obtained by applying the 𝐿𝐿−1 =
 ∫ ∫  𝑥𝑥0 ∫ ∫ (. )𝑑𝑑𝑑𝑑 𝑥𝑥

0
𝑥𝑥
0

𝑥𝑥
0  operators on both sides of Eq. (3.4.36) with it is initial conditions 

as follows: 

ExactSolution
ADMApproximate Solution of Order 4

ADMApproximate Solution of Order 1

0.0 0.2 0.4 0.6 0.8 1.0
1.0

1.5

2.0

2.5

0.0 0.2 0.4 0.6 0.8 1.0
0.00000

0.00005

0.00010

0.00015

0.00020

0.00025

0.00030
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      𝑢𝑢(𝑥𝑥) = 𝐿𝐿−1�𝑓𝑓(𝑥𝑥)� + 𝐿𝐿−1(∫ 𝑢𝑢2(𝑡𝑡)𝑥𝑥
0 𝑑𝑑𝑑𝑑),                                          .                                        

(3.3.37) 

where 𝑢𝑢0(𝑥𝑥) = 𝐿𝐿−1�𝑓𝑓(𝑥𝑥)�, and this yields to  

𝑢𝑢0(𝑥𝑥) = 𝑥𝑥 − 𝑥𝑥3

6
+ 𝑥𝑥5

120
− 𝑥𝑥7

5040
− 𝑥𝑥8

20160
+ 𝑥𝑥9

362880
+ 𝑥𝑥10

453600
− 𝑥𝑥12

17107200
+ 𝑥𝑥14

1383782400
,                                                                                        

(3.3.38) 

           

𝑢𝑢𝑛𝑛+1(𝑥𝑥) = 𝐿𝐿−1(�𝐴𝐴𝑛𝑛(𝑥𝑥))
∞

𝑛𝑛=0

,                                                  (3.3.39)  

Which gives    
 

𝑢𝑢1(𝑥𝑥) =  
𝑥𝑥12

47900160
−

𝑥𝑥14

2179457280
+

𝑥𝑥16

130767436800
−

𝑥𝑥18

10003708915200
 

 
         

−
𝑥𝑥19

675806113382400
+

𝑥𝑥20

950352346944000
+

𝑥𝑥21

12222713438208000
 

     
    

−
23𝑥𝑥22

2554547108585472000
−

67𝑥𝑥23

33143611203698688000
+ ⋯ 

                
  (3.3.40) 

         and 𝑢𝑢2(𝑥𝑥),𝑢𝑢3(𝑥𝑥), … and so on of the components, Consequently, combined the 
obtained results up to order four, yields the ADM series solution  

𝑢𝑢(𝑥𝑥) = 𝑥𝑥 −
𝑥𝑥3

6
+

𝑥𝑥5

120
−

𝑥𝑥7

5040
−

𝑥𝑥8

20160
+

𝑥𝑥9

362880
+

𝑥𝑥10

453600
−

𝑥𝑥12

26611200

+
23𝑥𝑥14

87178291200
+

𝑥𝑥16

130767436800
−

𝑥𝑥18

10003708915200

+
𝑥𝑥19

108611696793600
+ ⋯ 

  (3.3.41) 

Table 3.4 Numerical examples for example 3.3 
x Exact Solution ADM Absolute Error  

0.0 0.00000000 0.00000000       0   
0.2 0.19866933 0.19866933 1.27 × 10−10 
0.4 0.38941834 0.38941831 3.23 × 10−8 
0.6 0.56464247 0.56464165 8.20 × 10−7 
0.8 0.71735609 0.71734800 8.09× 10−6 
1.0 0.84147098 0.84142357 4.74 × 10−6 
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(a) 

 
(b) 

Fig 3.4: (a) Plot of exact and approximate solution and (b) Plot of the absolute error for Example 3.4. 

And this in the limit of infinitely many terms converge to the exact  solution 𝑢𝑢(𝑥𝑥) =
sin (𝑥𝑥). Table (3.4) present numerical results for example 3, while Fig (3.4) represent 
graphically the plot of the exact and the ADM approximate  solution of order five. In 
order to improve the accuracy of ADM approximate solution, we will modify the ADM 
solution by applying the Laplace transformation on the truncated series solution of the 
ADM approximate solution (3.3.41) and the employing the Pade approximate and fi-
nally using to invers of the Laplace transform to get accurate results in most cases 
closed exact form, as follows:  

𝐿𝐿�𝑢𝑢(𝑡𝑡)� = 1
𝑠𝑠2
− 1

𝑠𝑠4
+ 1

𝑠𝑠6
− 1

𝑠𝑠8
+ ⋯                       (3.4.42) 

for the simplicity, let 𝑠𝑠 = 1
𝑧𝑧
 , then  

𝐿𝐿�𝑢𝑢(𝑡𝑡)� = 𝑧𝑧2 − 𝑧𝑧4 + 𝑧𝑧6 − 𝑧𝑧8 + ⋯                      (3.3.43) 

The Pade approximate �2
2
� = 𝑧𝑧2

1+𝑧𝑧2
.  

Recalling = 1
𝑠𝑠
 , we obtain Pade approximate of �2

2
� in terms of s  

Exact Solution
ADM Approxmate Solution

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

0.0 0.2 0.4 0.6 0.8 1.0
0

5.106

0.00001

0.000015

0.00002
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�2
2
� = 1

(1+ 1
𝑠𝑠2

)𝑠𝑠2
.                                                      (3.3.44) 

By using the inverse Laplace transform to the �2
2
� Pade approximate, we obtain the 

modified approximate solution 𝑢𝑢(𝑥𝑥) = sin (𝑥𝑥). 

𝟒𝟒. Results and Dissections  
   Numerical results that are obtained using the ADM procedure are formulated in tables 
and graphically plotted in figures. From that, we observed that the ADM is a powerful 
and effective procedure for solving this kind of differential equation in the form of a 
series that converges to the exact solutions in the limit of infinity terms. In this regard, 
instead of using many terms of the ADM approximate solution, we improve the accu-
racy of the ADM by using an alternative technique based on the ADM approximate 
solution, employing the Laplace transform on the truncated ADM series solution, then 
using the Pade approximants, and finally applying the invers of the Laplace transform 
to get an accurate solution that is close to the exact form. 

5. Conclusion 
   In this research paper, The ADM procedure, the Laplace transform, and the Pade 
approximants are used and employed successfully to obtain the exact solution for sev-
eral examples of linear and nonlinear integral equations of Volterra type. The capability 
of this algorithm was verified via several examples carried out in this manuscript. The 
graphs for each example lead us to conclude that the proposed algorithm was quite 
close to the exact solution. It was noticed that the presented algorithm was very simple, 
attractive, and straightforward. 
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