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Abstract 

 

Effective malware detection remains a critical challenge in cybersecurity. In this 

study, we propose an innovative method that combines swarm intelligence through Particle 

Swarm Optimization (PSO) with the fuzzy logic of the fuzzyKNN model, resulting in an 

adaptive and efficient malware detection system. Utilization of PSO assists in the selection 

of an optimal feature set from the malware dataset improving the performance of the 

fuzzyKNN model. create a secure and controlled environment for collecting diverse 

malware samples, we employ a honeypot. This controlled setting allows us to train our 

model without posing any risks to real operational systems. Conducted extensive tests to 

evaluate the effectiveness of our proposed methodology, comparing it against standard 

detection techniques. Our findings demonstrate the PSO-fuzzyKNN approach significantly 

enhances the accuracy of malware detection, outperforming traditional 

methods.contributes to advancement of malware detection technologies, offering a robust 

solution for addressing the evolving challenges posed by malicious software. 
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1. Introduction 

In recent years, the increasing sophistication of malware has presented substantial 

challenges to cybersecurity. As cyber threats continually evolve, traditional approaches to 

malware detection struggle to keep up. To address the challenge, researchers and cybersecurity 

experts are exploring innovative methodologies to enhance detection capabilities and improve 

the resilience of security systems. The study focuses on integrating two advanced techniques, 
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Practical Swarm Optimization (PSO) and the fuzzy k-Nearest Neighbors (fuzzyKNN) model, 

in the dynamic context of a Honeypot environment. Honeypots, intentionally vulnerable 

systems designed to attract and analyze malicious activities, offer an ideal environment for 

assessing the effectiveness of advanced malware detection mechanisms. 

 

While traditional signature-based detection methods remain effective against known 

threats, they fall short when combating the rapid proliferation of polymorphic and zero-day 

malware. Consequently, there is a growing demand for adaptive and intelligent detection 

mechanisms capable of discerning subtle patterns indicative of malicious behavior. Swarm 

Optimization, inspired by collective intelligence in natural systems, and fuzzyKNN, 

incorporating fuzzy logic into the k-Nearest Neighbors algorithm, show promise in achieving 

the adaptability. The persistent advancement of malware threats has posed significant 

challenges to the cybersecurity community, prompting a shift towards machine learning 

techniques to develop more effective and adaptive malware detection solutions.[1] 

 

The integration of Practical Swarm Optimization (PSO) and the fuzzy k-Nearest Neighbor 

(fuzzyKNN) model in a honeypot environment stands out among emerging approaches as a 

promising solution for malware detection. The innovative combination harnesses swarm 

intelligence and fuzzy logic to enhance detection accuracy and efficiency, as noted by 

[1].exemplified in Figure 1, affirm the enduring relevance and efficacy of Practical Swarm 

Optimization across various domains. These works highlight the adaptability of PSO in 

optimizing diverse and dynamic systems, underscoring its practical applicability in real-world 

scenarios. Furthermore, research by [2] underscores the ongoing evolution of PSO algorithms, 

showcasing their resilience and efficiency in addressing contemporary optimization challenges. 

These recent references underscore the enduring significance of PSO as a versatile and powerful 

optimization technique inspired by collaborative principles found in nature. 
 

 
Figure 1: Particle Swarm Optimization [3] 

The extensively used instance-based classification technique, is the k-Nearest Neighbor 

(KNN) algorithm (depicted in Figure 2), functions by determining the class of an unfamiliar 

data point based on the classes of its k-nearest neighbors within the feature space. Conversely, 

the Fuzzy k-Nearest Neighbor (fuzzyKNN) augments KNN by integrating fuzzy logic. The 

integration allows data points to be associated with multiple classes, exhibiting diverse levels 

of membership. The incorporation of fuzzy logic bestows a valuable classification ability, 
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proving particularly advantageous for addressing uncertainties and inaccuracies commonly 

encountered in real-world datasets [3]. 

 

Figure 2: k-Nearest Neighbor (KNN) algorithm [3] 

 

A honeypot, designed as a deceptive system to attract and ensnare malicious actors, serves 

as a crucial tool for security analysts to observe and analyze threat behaviors without 

compromising actual production systems. The integration of the PSO-fuzzyKNN model into a 

honeypot environment becomes instrumental in enhancing detection capabilities, enabling real-

time analysis of suspicious activities, and early identification of new and emerging malware 

variants [4].Examining research on deep learning algorithms emphasizes the pivotal role of 

extensive datasets in achieving reliable outcomes. Deep learning architectures, primarily 

relying on supervised learning, necessitate a large number of labeled instances for effective 

model training [61]. The research underscores the challenge posed by small datasets, hindering 

the model's ability to grasp essential features adequately, leading to less reliable outcomes. 

Current detection mechanisms face evident limitations in dynamic environments like 

Honeypots, intentionally exposed systems designed for analyzing malicious activity. 

Traditional approaches struggle to match the evolving tactics of cyber adversaries, resulting in 

a widening detection gap. Static signature-based methods lack adaptability to handle the 

dynamic nature of modern malware, often failing against polymorphic variants and novel attack 

vectors. The prevalence of false positives inundates security teams with irrelevant alerts, while 

sophisticated threats lead to false negatives. Additionally, conventional methods lack the 

nuanced context awareness required to differentiate between normal and malicious behaviors 

in intricate Honeypot environments. As cyber threats grow in volume and diversity, scalability 

challenges further strain existing detection systems' ability to process vast amounts of real-time 

data. 

The exploration of Practical Swarm Optimization (PSO) and the fuzzy k-Nearest Neighbor 

(fuzzyKNN) model within a honeypot environment for advanced malware detection is 

motivated by the imperative need for more robust and adaptive solutions in the face of the 

continually evolving malware landscape. Traditional signature-based and heuristic detection 

methods exhibit limitations in identifying new and unknown malware variants, necessitating 

innovative approaches to effectively discern and mitigate emerging threats [19]. 

Practical Swarm Optimization (PSO), inspired by collective intelligence in social 

organisms, emerges as a promising solution for optimization in complex and ever-changing 

settings. Its fusion with the fuzzy k-Nearest Neighbor (fuzzyKNN) model equips the detection 
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system to effectively manage data uncertainty and imprecision, enhancing capabilities for 

nuanced and precise malware classification [19]. Recent references underscore the growing 

interest and research efforts directed at applying swarm intelligence and fuzzy logic-based 

approaches to overcome malware detection challenges. These studies highlight the efficacy of 

the proposed PSO-fuzzyKNN model in improving the accuracy and efficiency of malware 

detection systems, positioning it as a promising direction to address evolving cybersecurity 

threats. 

The research on Innovative Malware Detection, utilizing Practical Swarm Optimization 

(PSO) and the fuzzy k-Nearest Neighbor (fuzzyKNN) Model within a Honeypot Environment, 

is driven by several key objectives. The first goal is to craft a Hybrid PSO-fuzzyKNN Model, 

leveraging the swarm intelligence of PSO to optimize the parameters of the fuzzyKNN 

algorithm, thereby enhancing the accuracy and efficiency of malware detection [20]. 

The second objective involves the implementation of the developed PSO-fuzzyKNN model 

in a Honeypot Environment. The integration aims to enable real-time analysis of suspicious 

activities, providing a robust mechanism for the detection of previously unknown and emerging 

malware variants. Additionally, the research endeavors to evaluate and compare the 

performance of the proposed malware detection system, utilizing metrics such as detection rate, 

false positive rate, precision, and recall. A comprehensive comparison with conventional 

signature-based and heuristic techniques will highlight the superior efficacy of the PSO-

fuzzyKNN approach [21]. 

2. Literature Review  

Malicious activities have been detected, primarily through the use of malicious spam 

campaigns [4]. These campaigns commonly exploit Microsoft Office files, enticing users to 

download and open corrupted files. Once opened, the malware manipulates users into enabling 

macros or exploiting vulnerabilities. The identified malware, Hancitor, is then either fetched 

from a command and control (C2) server or delivered from within an Office file. Upon 

activation, Hancitor proceeds to download its primary payload, often a Trojan such as Pony, 

Vawtrak, or DELoader. Hancitor utilizes various techniques, including DOC attachments 

exploiting Microsoft's dynamic data exchange (DDE) mechanism [5]. The method requires 

users to download the file and deliberately activate macros, often bypassing multiple security 

alerts. To facilitate this, malware authors create convincing lures to entice users into performing 

these actions. 

 

Hackers are actively producing approximately 230,000 new malware samples each day, a 

number expected to rise in the future. Ransomware has swiftly emerged as a significant threat, 

with a staggering 4,000 ransomware attacks documented. The impact of ransomware spans 

from individual users to small businesses and large enterprises, potentially resulting in the loss 

of sensitive data, either temporarily or permanently [7]. Critical infrastructure is notably 

vulnerable, drawing the attention of those familiar with the extensive damage ransomware can 

inflict. The category of malware utilizes encryption modules to lock data, rendering it unusable 

for the victim, as emphasized by [8]. 
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Figure 3: Ransomware attack phases [8] 

The literature reveals the widespread impact of ransomware, affecting not only small 

businesses but major corporations such as FedEx, Nissan, and NHS organizations in the UK 

[9]. Kaspersky's report emphasizes the enduring prevalence of spam emails in phishing efforts. 

Symantec's Internet Security Threat Report for 2019 [10] highlights the vulnerability of supply 

chains, experiencing a 78% surge in attacks in 2019 compared to the previous year. The report 

also notes a fourfold increase in blocking 69 million cryptojacking incidents in 2018 compared 

to 2017. Small businesses face a substantial impact, with 40% falling victim to attacks in 2019, 

leading to the collapse of 60% due to economic losses. Accenture's findings indicate significant 

investments, with companies allocating $2.4 million for malware detection and defense against 

web-based attacks. Critical infrastructure has witnessed cyber turmoil, with recent instances 

involving state-sponsored attackers targeting industrial control systems. [6]. 

The contemporary threat landscape of malware is characterized by a dynamic spectrum of 

malicious software aiming to infiltrate computer systems and networks, causing harm, stealing 

sensitive information, or disrupting operations. Traditional signature-based antivirus solutions 

struggle to match the dynamic and polymorphic nature of malware, necessitating innovative 

detection techniques to stay ahead of cyber threats. 

Advanced Persistent Threats (APTs) and Advanced Evasion Techniques (AETs) represent 

sophisticated malware variants designed for prolonged undetection. They utilize encryption, 

obfuscation, and anti-analysis techniques, posing substantial challenges to traditional security 

measures [23]. Ransomware remains a prominent and lucrative threat, encrypting critical data 

and demanding ransom payments. The use of cryptocurrency and ransomware-as-a-service 

(RaaS) models facilitates large-scale ransomware campaigns, emphasizing the need for robust 

cybersecurity measures [24]. 
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Figure 4: Ransomware analysis overview [26]. 

Hybrid analysis combines static and dynamic methods to achieve precise results. In a 

mobile-based ransomware detection instance, machine learning classifiers and statistical 

assessments were used before dynamic analysis. Fileless malware, residing in memory, poses 

challenges for traditional detection. IoT-based malware exploits vulnerable smart devices, 

creating botnets. Zero-day exploits target unknown vulnerabilities. The evolving malware 

landscape demands innovative approaches, such as Practical Swarm Optimization and fuzzy k-

Nearest Neighbor models in a honeypot environment, to enhance detection and analysis 

efficiency [27-31]. 

Traditional cybersecurity methods, like signature-based and heuristic detection, encounter 

challenges against sophisticated threats, struggling with unknown or polymorphic malware and 

generating false positives [30][23][32]. Sandbox analysis aids in novel malware detection, but 

evasion by sophisticated malware is a concern [34]. Machine learning approaches, explored in 

a study [35], exhibit effectiveness against unseen threats but may suffer from false negatives or 

positives without sufficient training. 

Swarm intelligence, observed in social organisms, results in complex group behavior. 

Examples include ACO, Bird Flocking, Bee Swarming, and Fish Schooling [39-40]. PSO, 

introduced in 1995, optimizes solutions by adjusting particle positions and velocities based on 

personal and global best experiences, effectively solving dynamic problems [41]. 

2.1 Principles of Practical Swarm Optimization (PSO) 

Practical Swarm Optimization (PSO) is an optimization algorithm inspired by the 

collective intelligence observed in social organisms, such as birds flocking and fish schooling. 

Introduced by Kennedy and Eberhart in 1995, PSO has gained popularity as a robust and 

efficient optimization technique in various fields, including machine learning, engineering, and 

data mining. The principles of PSO revolve around the behavior and interactions of particles in 

a search space to find the optimal solution [42,43]. 

In PSO, a population of particles represents potential solutions to the optimization problem. 

Each particle is analogous to an individual in a swarm and is characterized by a position and 

velocity in the search space. The position of a particle corresponds to a potential solution, while 

the velocity determines the direction and magnitude of its movement in the search space.The 

fitness function evaluates the quality of each particle's position (solution) in the search space. 
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The objective is to minimize or maximize the fitness function, depending on the optimization 

problem's nature. The fitness function guides the particles to explore the search space efficiently 

and converges toward the optimal solution. 

Each particle maintains its best position (solution) found during the search process. The 

position is known as the personal best (pBest). The pBest represents the individual's best 

performance in the optimization process.In addition to the personal best, PSO keeps track of 

the best position (solution) found by any particle in the entire swarm. The position is known as 

the global best (gBest). The gBest represents the best solution achieved by any particle in the 

swarm so far [44,45]. 

2.2 PSO for Feature Selection in Malware Detection 

In malware detection, the optimization prowess of Practical Swarm Optimization (PSO) 

shines as it navigates the intricate task of feature selection. By framing feature selection as an 

optimization challenge, PSO dynamically explores varied feature combinations, iteratively 

adjusting particle positions to converge on an optimal subset. The process aims to maximize 

classification accuracy while minimizing computational complexity, [42] 

The fuzzy k-Nearest Neighbor (fuzzyKNN) model, a sophisticated evolution of the 

traditional k-Nearest Neighbor (kNN) algorithm, is tailored for cutting-edge malware detection. 

FuzzyKNN's integration of fuzzy logic effectively addresses the complexities inherent in real-

world malware scenarios, embracing uncertainties and imprecise boundaries. At its core, 

fuzzyKNN assigns a fuzzy membership function to each data point, capturing partial 

membership across multiple classes based on proximity to class prototypes. Leveraging 

distance metrics like Euclidean distance, fuzzyKNN calculates similarities during 

classification, employing a weighted voting mechanism to determine nuanced and precise class 

membership. 

Crucial to its effectiveness is data preprocessing, including tasks like handling missing 

values, normalizing data, and selecting pertinent features. During the training phase, fuzzyKNN 

constructs prototype sets for each class based on labeled data, while the classification phase 

utilizes fuzzy membership degrees to assign final class labels. By leveraging fuzzy logic's 

strengths, fuzzyKNN adeptly handles uncertainties, noise, and overlapping boundaries—

essential attributes for robust malware detection. Integration into a honeypot environment 

alongside Practical Swarm Optimization significantly amplifies the accuracy and effectiveness 

of malware detection and analysis.[43] 

A honeypot functions as a distraction system or network, intentionally designed to mimic 

vulnerable targets and attract cybercriminals. By simulating alluring yet unprotected 

environments, honeypots serve as an early warning system, detecting and diverting attackers 

before they reach critical assets. Crucially, these deceptive setups gather threat intelligence, 

offering insights into attackers' tactics and aiding in security enhancement. Honeypots enable 

the study of real-world attack scenarios, informing defense strategies. Integrating Practical 

Swarm Optimization and the fuzzy k-Nearest Neighbor model in a honeypot environment 

elevates malware detection capabilities, providing organizations with a comprehensive solution 

to analyze, defend, and neutralize cyber threats proactively. 

Honeypots, integral to innovative malware detection systems, manifest in diverse types and 

deployment strategies, each catering to specific objectives and offering distinct advantages. 
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High-Interaction Honeypots furnish realistic environments for in-depth attacker interaction, 

demanding more resources. Conversely, Low-Interaction Honeypots emulate specific services, 

capturing information with lower resource consumption. Production Honeypots fortify live 

networks, alerting administrators to potential threats, while Research Honeypots, in controlled 

environments, gather threat intelligence. Decoy Honeypots divert attackers from critical assets, 

providing a defensive layer, while High Interaction with Limited Reach Honeypots focus on 

specific network segments. The selection depends on the malware detection system's goals, 

enhancing the comprehensive approach of Practical Swarm Optimization and the fuzzy k-

Nearest Neighbor model in a honeypot environment.[44] 

The PSO-fuzzyKNN model architecture introduces an innovative paradigm for malware 

detection, amalgamating Practical Swarm Optimization (PSO) and the fuzzy k-Nearest 

Neighbor (fuzzyKNN) model within a honeypot environment. The architecture synergizes the 

unique strengths of both PSO and fuzzyKNN, optimizing feature selection, managing 

uncertainty, and elevating the accuracy and efficiency of malware detection. The 

comprehensive workflow and key components of the PSO-fuzzyKNN model architecture are 

outlined below: 

Following feature selection, a fuzzy membership function is generated for each class 

based on the selected features. These functions map data points to their degrees of membership 

in multiple classes, providing nuanced insights into the truthfulness of data point 

classifications.Leveraging the PSO-optimized feature subset and corresponding membership 

functions, the fuzzyKNN model undergoes training. Fuzzy logic-based inference allows the 

model to classify new data points, accommodating partial memberships and handling 

uncertainty during classification.Strategically placed honeypots within a controlled 

environment attract and capture malware samples. The captured data continually updates and 

refines the PSO-fuzzyKNN model, enhancing its proficiency in detecting and analyzing 

emerging malware threats. 

The training of the PSO-fuzzyKNN model using honeypot data is a pivotal stage in 

crafting an advanced malware detection system. The amalgamation of Practical Swarm 

Optimization (PSO) and the fuzzy k-Nearest Neighbor (fuzzyKNN) model within a honeypot 

environment significantly elevates the model's precision in distinguishing between malicious 

and benign activities. The training protocol encompasses strategic honeypot deployment, data 

preprocessing, PSO-driven feature selection, and fuzzy membership function generation. 

Honeypots strategically placed in controlled environments lure and capture malware 

samples, mimicking vulnerable systems to record attacker interactions. Collected honeypot data 

undergoes preprocessing to rectify noise, missing values, and irrelevant information. PSO 

optimally selects features crucial for malware classification, aiming for accuracy while 

minimizing computational complexity.Post-feature selection, fuzzy membership functions are 

generated, mapping data points to degrees of membership across classes. The PSO-optimized 

features and membership functions then train the fuzzyKNN model. Fuzzy logic-based 

inference ensures nuanced classification, accommodating partial memberships and handling 

uncertainty. 
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3. Methodology 

The model undergoes training and evaluation using preprocessed datasets for training and 

testing. Feature optimization employs Particle Swarm Optimization (PSO) to enhance the 

model's performance by iteratively improving features. PSO iterates to find the optimal feature 

combination, improving predictive accuracy. Subsequently, a fuzzyKNN model is trained on 

these optimized features, leveraging fuzzy logic for datasets with fuzzy class boundaries. Model 

evaluation utilizes metrics like ACC, PRE, REC, and F1-score, providing a comprehensive 

performance overview for identifying areas of improvement and guiding future research 

directions. 

3.1 Data Collection  

The N-BaIoT dataset, developed by [42], encompasses network traffic data from nine 

devices intentionally infected with the Mirai and BASHLITE botnets. The deliberate infection 

aimed to capture authentic malicious traffic data. Comprising 115 features, the dataset was 

gathered using port mirroring, yielding over 1.3 million samples categorized into Mirai attack, 

benign, and Gafgyt (BASHLITE) attack groups. The extensive dataset serves as a valuable asset 

for cybersecurity research, facilitating the creation of machine learning models capable of 

discerning various botnet attacks and benign traffic data, as illustrated in Figure 5. 

 

 
Figure 5: Distributing Data 

 

Honeypots were employed to capture the N-BaIoT data. Depicted in Figure 6, the testbed 

for the Bot-IoT dataset consists of a cluster of both malicious and benign virtual machines 
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(VMs) connected to LAN and WAN interfaces. The setup serves as a valuable resource for 

the analysis and modeling of security risks. 

 

 
Figure 6: Bot-IoT honeypot. 

3.2 Data Preparation 

3.2.1 Handling Missing Values 

The dataset exhibits completeness with no null or missing values, indicating a lack of 

superfluous data. The absence of missing values obviates the need for imputation or data filling. 

To further enhance the dataset, the elimination of duplicate data has been implemented. While 

the dataset is free from missing values, optimization processes, such as feature extraction, label 

encoding, and data normalization, are still required to prepare it for comprehensive analysis. 

  

3.2.2 Label Encoding 

Label encoding is employed to convert categorical data into numerical form by assigning 

unique numerical labels to categories. In the context, "benign," "gafgyt," and "mirai" are 

represented as numerical values (0, 1, and 2). The transformation facilitates the interpretation 

of categorical input as numerical data, simplifying the model fitting process. The frequencies 

of 1 and 0 are 828,783 and 506,384, respectively, indicating a dataset skew where malware 

traffic (labeled as 1) surpasses benign traffic (labeled as 0). The imbalance in the dataset may 

impact the performance of machine learning models, necessitating additional measures for 

optimal handling. 
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3.2.3 Data Balancing 

To utilize down samplings like random undersampling, oversampling, or both to fix the 

unbalanced dataset. The algorithm randomly undersampled the majority class (label 0) by 

picking 506,384 samples from the minority class (label 1). Created a balanced dataset with 

equal labels. Balancing the dataset can increase ML model performance by minimizing bias 

towards the dominant class and allowing the model to learn from both classes. To choose 

balanced data forms to train and test the FuzzyKNN classifier (illustrated in Figure. 7).  

 

 
 

Figure 7: Balanced Data Distribution. 

3.2.4 Data Normalization 

  Data normalization is an essential preprocessing step in machine learning and data 

analysis, aimed at transforming the data into a standardized format. One commonly used 

technique for normalization is called "Min Max Scaler." The method rescales the data to fit 

within a range of 0 to 1. Achieved by subtracting the minimum value of the feature and dividing 

it by the range of the feature.. 

3.2.5 Data Splitting 

Training and testing datasets were split. The test size option is set to 0.2, meaning 20% of 

the dataset will be tested and 80% trained. To eliminate ordering bias, the data was randomly 

mixed before splitting. Splitting the dataset lets us train and test our ML model. In the work, 

PSO optimizes RF Classifier hyperparameters for binary classification. Optimization reduces 

validation dataset log-loss. An objective function, maximum of 10 iterations, population size 

of 20, and minimize parameter set to True initialize the PSO algorithm. PSO iteratively updates 

particle positions and velocities to obtain the best solution. Figure 8 shows the method 

converges to the ideal solution or reaches 10 iterations.  
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Figure 8: Optimization history plot. 

 
 

To determine if 10 iterations are preferable, need additional detail and clarity regarding 

what is being optimized and how the objective value varies with iterations. Several iterations' 

"bitterness" relies on various factors:  

 

1. Objective function: The optimization objective function matters. It convex? Many local 

minima? These questions can impact the number of iterations needed to find a good 

solution.  

2. Halting criteria: The stopping criterion affects iterations. One could end if the goal function 

change is below a threshold or after a given number of iterations.  

3. Cost-quality tradeoff: Iterations frequently improve solutions, but they take more time and 

memory.  

Solution quality and computing cost usually clash. The log output shows that the objective 

value lowers and improves (smaller) with time, implying that additional iterations improve the 

solution. Improvements eventually slow down. Means that an acceptable stopping condition 

was reached, and more iterations would waste resources without enhancing the answer.  

 

4. Experimental Evaluation and Performance Metrics 

When evaluating the performance of an innovative malware detection system using 

Practical Swarm Optimization (PSO) and a fuzzyKNN (fuzzy k-nearest neighbors) model in a 

honeypot environment, several evaluation metrics can be employed to assess its effectiveness. 

Here are some commonly used metrics: 

Detection Rate (DR) or True Positive Rate (TPR): 

 Definition: The proportion of actual malware instances that are correctly identified by 

the system. 
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 Formula: DR =
𝐓𝐫𝐮𝐞 𝐏𝐨𝐬𝐢𝐭𝐢𝐯𝐞𝐬

𝐓𝐫𝐮𝐞 𝐏𝐨𝐬𝐢𝐭𝐢𝐯𝐞𝐬 + 𝐅𝐚𝐥𝐬𝐞 𝐍𝐞𝐠𝐚𝐭𝐢𝐯𝐞𝐬
   ………………………………..…….(1) 

False Positive Rate (FPR): 

 Definition: The proportion of non-malicious instances incorrectly identified as 

malware. 

 Formula: DR =
 𝐅𝐚𝐥𝐬𝐞 𝐍𝐞𝐠𝐚𝐭𝐢𝐯𝐞𝐬

𝐅𝐚𝐥𝐬𝐞 𝐍𝐞𝐠𝐚𝐭𝐢𝐯𝐞𝐬+𝐓𝐫𝐮𝐞 𝐏𝐨𝐬𝐢𝐭𝐢𝐯𝐞𝐬  
 ………………………………….……(2) 

Precision: 

 Definition: The accuracy of the system in correctly identifying malware instances 

among all instances labeled as malware. 

 Formula: Precision =
𝐓𝐫𝐮𝐞 𝐏𝐨𝐬𝐢𝐭𝐢𝐯𝐞𝐬

𝐓𝐫𝐮𝐞 𝐏𝐨𝐬𝐢𝐭𝐢𝐯𝐞𝐬 + 𝐅𝐚𝐥𝐬𝐞 𝐍𝐞𝐠𝐚𝐭𝐢𝐯𝐞𝐬
…………………………………(3) 

Recall or Sensitivity: 

 Definition: The ability of the system to identify all actual malware instances. 

 Formula: Recall =
𝐓𝐫𝐮𝐞 𝐏𝐨𝐬𝐢𝐭𝐢𝐯𝐞𝐬

𝐓𝐫𝐮𝐞 𝐏𝐨𝐬𝐢𝐭𝐢𝐯𝐞𝐬 + 𝐅𝐚𝐥𝐬𝐞 𝐍𝐞𝐠𝐚𝐭𝐢𝐯𝐞𝐬
……………………..………………(4) 

F1 Score: 

 Definition: The harmonic mean of precision and recall, providing a balanced measure 

between the two. 

 Formula  : F1 Score = 2 X 
𝐏𝐫𝐞𝐜𝐢𝐬𝐢𝐨𝐧 𝐱 𝐫𝐞𝐜𝐚𝐥𝐥

 𝐏𝐫𝐞𝐜𝐢𝐬𝐢𝐨𝐧+ 𝐫𝐞𝐜𝐚𝐥𝐥
………………………………………….(5) 

Accuracy: 

 Definition: The overall correctness of the system in classifying both malware and non-

malware instances. 

 Formula: Accuracy =
𝐓𝐫𝐮𝐞 𝐏𝐨𝐬𝐢𝐭𝐢𝐯𝐞𝐬+𝐓𝐫𝐮𝐞 𝐍𝐞𝐠𝐚𝐭𝐢𝐯𝐞𝐬

𝐓𝐨𝐭𝐚𝐥 𝐢𝐧𝐬𝐭𝐚𝐧𝐜𝐞𝐬
…………………………………..(6) 

 

The chosen metrics serve as a comprehensive yardstick for evaluating the malware detection 

system, encompassing crucial parameters like accuracy, precision, recall, and the delicate 

balance between false positives and false negatives. Metric selection hinges on aligning with 

the detection system's specific goals and priorities, considering the dataset's unique 

characteristics.The paper delineates the research methodology employed in identifying Internet 

of Things (IoT) malware, with a focus on the study's various approaches: 

 

Dataset Collection Stage: The initial phase involves acquiring the N-BaIoT dataset, a 

compilation of real traffic data infected by Mirai and BASHLITE malware. The data capture 

utilizes a honeypot design, employing multiple virtual machines (VMs) connected to a network 

cluster.Data Preprocessing Stage, The raw data undergoes meticulous preprocessing to enhance 

its suitability for machine learning algorithms. Involves Removal or imputation of incomplete 

entries, Balancing the dataset to mitigate class bias, Normalization to standardize features, 
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optimizing machine learning techniques.Label encoding to convert categorical variables into 

numerical inputs, a prerequisite for machine learning algorithms. 

5. Statistical & Performance Analysis 

5.1 Sample Size Impact: 

Throughout varying sample sizes of 60,000, 100,000, and 160,000 cases, the models 

consistently demonstrated robust performance. The accuracy (ACC) exhibited a range from 

99.95% to 99.97%, showcasing the models' reliability as the sample size increased. Precision 

(PRE), Recall (REC), and F1-score consistently achieved 96% across most sample sizes and K 

values. Notably, the models exhibited high sensitivity and specificity in detecting both malware 

and normal occurrences. Importantly, as the sample size increased, the performance did not 

exhibit a significant decline; instead, certain performance indicators showed marginal 

improvements. These findings suggest that the FuzzyKNN model has the potential to scale 

effectively, maintaining its efficacy as the dataset expands. 

5.2 Confusion Matrices Results 

Confusion matrices show model performance for varied data forms and K values. The model 

predicts TP, TN, FP, and FN in each matrix. Figures depict K-value confusion matrices.  

Dataset with 60000 samples (Figure 9.) 

 

 

Figure 9: FuzzyKNN with 60000 samples and K=2. 

5.3 Compared Times and Accuracy  

Figure 9 illustrates a discernible trend regarding the interplay of training samples and 

the choice of K in Fuzzy K-Nearest Neighbors (Fuzzy_KNN), particularly in terms of 
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accuracy and training time. Notably, an expansion in the training sample set size from 60,000 

to 100,000 correlates with enhanced accuracy and an increase in training time. Theoutcome 

aligns with expectations, as larger datasets inherently offer a more comprehensive 

representation of the problem space, bolstering prediction model accuracy. However, the 

trade-off involves heightened computational resource requirements and processing time. 

Analyzing Figure 10 reveals insightful details regarding the impact of training samples 

and K in Fuzzy_KNN. With a dataset of 60,000 training samples, accuracy consistently ranged 

between 0.9995 and 0.9996, with training time varying across different K values. Conversely, 

with 100,000 training samples, a slight improvement in accuracy (0.9997 to 0.9998) was 

accompanied by a notable increase in training time (0.082 to 0.134). These specifics illuminate 

the intricate relationship between training sample size, accuracy, and training time in the 

context of Fuzzy_KNN. 

Figure 10: Accuracy with Different  Batch Size and K Value. 

Figure 11 shows further contributes intriguing insights into the influence of different K 

values on accuracy and training time across various sample sizes. Surprisingly, higher K 

values did not uniformly result in superior accuracy or longer training times. For instance, in 

a dataset with 100,000 samples, the K=2 configuration exhibited the highest accuracy but 

required the most training time. In contrast, the K=10 configuration demonstrated slightly 

lower accuracy but necessitated less training time. These findings challenge the assumption 

that increasing K leads to improved accuracy or prolonged training times across different 

sample sizes, emphasizing the need for a judicious selection of K based on dataset 

characteristics and performance trade-offs for optimal balance between accuracy and training 

efficiency.
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Figure 11: Training Time with Different Batch Size and K Value. 

To summarize, the number of training samples and K in Fuzzy KNN interact 

complexly. More training samples provide more accurate but slower models. The optimum 

K seems problem-specific and does not follow the typical notion that bigger K values 

automatically result in more accurate models or longer training sessions.  

5.5  Compared FuzzyKNN and Fuzzy Logic Results 

In assessing the accuracy, flexibility, and noise resistance of Fuzzy Logic and Fuzzy KNN 

models: 

 Accuracy: Fuzzy KNN consistently demonstrates superior accuracy, ranging from 

99.95% to 99.97%, compared to Fuzzy Logic's 86%. highlights Fuzzy KNN's enhanced 

performance in accuracy. 

 Flexibility: Fuzzy Logic excels in handling ambiguity and vagueness in complex real-

world data. Meanwhile, Fuzzy KNN, being instance-based, adapts well to new training 

data, potentially leading to overfitting if not managed carefully. 

 Noise Resistance: Fuzzy KNN's neighborhood approach enhances robustness to noisy 

input, protecting against outliers. Properly chosen K-values and the design of fuzzy 

membership functions help minimize noise, leveraging fuzzy logic's capacity to handle 

ambiguity. 

6. Results and Discussion  

The article discusses the honeypot system's model findings for malware detection. In a 

binary classification task and categorize occurrences as malware or normal. To explore how 

hyperparameters affect classification performance, our models are tested with different 

sample sizes (60,000, 100,000, and 160,000 examples) and K values (2, 3, 5, and 10).  
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6.1 Evaluation Metrics 

These metrics can help evaluate the performance of the proposed honeypot system using 

PSO and fuzzy logic algorithms for detecting malware attackers and ensuring data privacy 

and information security. Confusion metrics: A confusion matrix is a table that summarizes a 

classification algorithm's performance. It presents the true positive (TP), true negative (TN), 

false positive (FP), and false negative (FN) predictions for each class. In a case, the matrix 

will have the following structure. 

Accuracy: classifier accuracy. It is the percentage of correctly categorized cases, and the 

Precision: is the ratio of TP predictions to classifier positive predictions. It evaluates the 

classifier's malware detection, Recall (TP rate): the ratio of TP forecasts to positive cases. It 

evaluates the classifier's malware detection, the F1-score: PRE and REC harmonic mean. It 

combines PRE and REC metrics. The  Sensitivity: REC, the ratio of TP predictions to positive 

cases. It evaluates the classifier's malware detection And Specificity: TN forecasts to total 

negative instances. It tests the classifier's usual case detection.  

 

6.2   Libraries   

The thesis extensively utilized various Python libraries to streamline machine learning 

(ML) processes in the development and optimization of models for the honeypot system. For 

preprocessing tasks, the combination of Numpy, Pandas, and Scikit-learn (sklearn) proved 

invaluable. Numpy, a scientific Python library, facilitated the manipulation of extensive 

multidimensional arrays and matrices, providing essential mathematical functions. Pandas, a 

versatile data manipulation toolkit, introduced DataFrame and Series structures, addressing 

tasks such as cleaning, modification, and analysis of data, including handling missing data 

and restructuring. Scikit-learn played a pivotal role in ML with its simplified data mining and 

analysis tools, offering preprocessing capabilities like scaling, encoding, and feature selection. 

In terms of visualization, Matplotlib and Seaborn were the chosen tools. Matplotlib, a 

widely-used 2D charting library, supported static, interactive, and animated presentations with 

an object-oriented chart API. Seaborn, built on Matplotlib, specialized in statistical data 

visualization, providing a high-level interface for creating appealing and informative 

statistical visualizations. 

For data optimization, Zoofs, a Python module with metaheuristic feature selection 

optimization, including Particle Swarm Optimization (PSO), played a crucial role. 

Theoptimization approach reduced dataset characteristics, improving both model performance 

and computational efficiency. 

Table 1 encapsulates the outcomes derived from each model across diverse data shapes 

and K values, providing a detailed analysis of performance metrics such as ACC, error rate, 

PRE, REC, F1-score, sensitivity, and specificity. The comprehensive summary below presents 

a comparative overview of model performances, facilitating a nuanced understanding of 

accuracy, precision, recall, and overall effectiveness under various configurations and 

scenarios. 
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Table 1: The FuzzyKNN classification report. 

 
Data 

shape 

K ACC Error 

rate 

PRE REC F1-

score 

Sensitivity Specificity 

 

60000 

2 99.97% 0.0003 99.97% 99.97% 99.97% 99.97% 99.97% 

3 99.95% 0.0005 99.95% 99.95% 99.98% 99.97% 99.95% 

5 99.95% 0.0007 99.96% 99.95% 99.96% 100% 99.99% 

10 99.96% 0.0008 99.96% 99.96% 99.97% 99.97% 99.99% 

100000 2 99.96% 0.0002 99.96% 100% 99.97% 100% 99.98% 

3 99.97% 0.0001 99.97% 99.97% 99.97% 100% 99.97% 

5 99.95% 0.00049 99.98% 100% 99.98% 100% 99.98% 

10 99.97% 0.00098 99.97% 99.97% 99.97% 99.96% 99.98% 

160000 2 99.97% 0.00028 99.97% 99.97% 99.97% 99.98% 99.96% 

3 99.96% 0.00028 99.96% 99.96% 99.96% 99.97% 99.97% 

5 99.97% 0.00024 99.97% 99.97% 99.97% 99.96% 99.98% 

10 99.97% 0.00021 99.97% 99.97% 99.97% 99.96% 99.98% 

200000 2 99.95% 0.00019 99.95% 100% 99.95% 99.97% 99.96% 

3 99.95% 0.00024 99.95% 99.95% 99.95% 99.96% 99.94% 

5 99.96% 0.00022 100% 100% 100% 99.96% 99.98% 

10 99.96% 0.00032 100% 99.96% 100% 99.95% 99.97% 

 

Across varied data forms and K values, the model metrics exhibit relatively marginal 

variances, as illustrated in Table 2. Notably, model performance remains stable within the 

range of 60,000 to 160,000 instances, indicating FuzzyKNN's capability to handle larger 

datasets without notable degradation. The influence of K values on model performance is 

minimal, with models demonstrating consistent effectiveness across different K 

configurations. In a dataset of 50,000 cases, K = 3 displayed slightly higher ACC and 

specificity compared to K = 2, 3, and 10. The comparison with other methods, including 

Random Forest (RF), Decision Tree (DT), and XGBoost, showcases FuzzyKNN's superior 

accuracy, recall, F1-score, sensitivity, and specificity. FuzzyKNN outperformed with 99.97 

percent accuracy and 0.0003 error rate, emphasizing its reliability and efficacy in data 

categorization. 

6.3  Discussion  

The innovative approach of combining Practical Swarm Optimization (PSO) with a fuzzy 

K-Nearest Neighbors (fuzzyKNN) model in a honeypot environment for malware detection 

presents a promising paradigm for enhancing cybersecurity. The utilization of PSO, inspired 

by social creatures' coordinated actions, introduces a dynamic and adaptive optimization 

strategy. The swarm's collective intelligence, guided by personal and collective knowledge, 

demonstrates efficacy in navigating complex solution landscapes.The synergy with the 
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fuzzyKNN model leverages the strengths of fuzzy logic and K-Nearest Neighbors, offering a 

robust framework for handling uncertainties inherent in malware patterns. Fuzzy logic enables 

a nuanced representation of uncertainties, while K-Nearest Neighbors facilitates data-driven 

classification based on similarity metrics. The hybridization of these techniques enhances the 

model's ability to discern subtle variations in malware behaviors and adapt to evolving threats. 

 

Deploying the approach within a honeypot environment is particularly significant. 

Honeypots simulate real network conditions, attracting and detecting malicious activities. The 

combined PSO and fuzzyKNN model's adaptability and precision make it well-suited for 

navigating the complexities of diverse malware behaviors encountered within such 

environments.The innovative amalgamation not only showcases the potential for improving 

malware detection accuracy but also underscores the importance of leveraging nature-inspired 

optimization techniques in conjunction with advanced machine learning models. The 

discussion emphasizes the applicability of the approach in realistic cybersecurity scenarios, 

contributing to the ongoing efforts to fortify systems against evolving cyber threats. 

7. Conclusion 

Innovative Malware Detection: Practical Swarm Optimization and fuzzyKNN Model in 

Honeypot Environment presents a novel approach to combat the ever-evolving landscape of 

cyber threats. By leveraging the power of Practical Swarm Optimization (PSO) and the fuzzy 

k-Nearest Neighbor (fuzzyKNN) model in a honeypot environment, the system provides an 

efficient, accurate, and adaptive solution for detecting and analyzing malware. The 

combination of PSO and fuzzyKNN allows the model to optimize feature selection, handle 

uncertainty, and enhance the accuracy of malware classification. 

 

The integration of honeypots into the malware detection system offers a safe and 

controlled environment for capturing real-world malware samples. The collected data from 

honeypots allows the model to continuously learn and adapt to emerging threats, making it a 

powerful defense against sophisticated cyberattacks. The PSO-fuzzyKNN model architecture, 

along with its training on honeypot data, ensures that the system is well-equipped to handle 

various malware families, including zero-day threats. 

8. Recommendations for Future Research 

As the field of cybersecurity continues to evolve, several areas of future research can 

further enhance the capabilities of the PSO-fuzzyKNN malware detection system: 

 

1. Dynamic Feature Selection: Investigate dynamic feature selection techniques that allow 

the model to adaptively adjust the feature set based on the evolving characteristics of 

malware. Could improve the system's ability to handle new types of attacks and changes 

in attacker behavior. 

 

2. Advanced Honeypot Technologies: Explore the use of advanced honeypot technologies, 

such as high-interaction honeypots with improved deception techniques, to attract more 

sophisticated attackers and capture their activities effectively. 
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3. Ensemble Techniques: Investigate the combination of the PSO-fuzzyKNN model with 

other machine learning algorithms or ensemble techniques to further enhance detection 

accuracy and robustness. 

 

4. Explainable AI for Malware Analysis: Develop explainable AI techniques that provide 

insights into how the PSO-fuzzyKNN model arrives at its classification decisions. Could 

enhance the model's transparency and trustworthiness. 
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