
Int. J. Advance Soft Compu. Appl, Vol. 10, No. 1, March 2018
ISSN 2074-8523

Code Coverage of T-way Test Suite Data on

Distributed Environment

Zainal H. C. Soh1, Syahrul A. C. Abdullah2, Mohd A. Shafie1 and

Mohammad N. Ibrahim1

1Faculty of Electrical Engineering, UiTM Pulau Pinang, Penang, Malaysia

e-mail: zainal872@ppinang.uitm.edu.my,
mohdaffandi370@ppinang.uitm.edu.my, mnizam@ppinang.uitm.edu.my

2Faculty of Electrical Engineering, UiTM Shah Alam, Selangor, Malaysia

e-mail: bekabox181343@salam.uitm.edu.my

Abstract

This paper present a code coverage analysis of a t-way test suite
data using tuple space technology on network of PCs. Prior to testing
of code coverage, the t-way test suite is generated using a distributed
t-way test suite generation strategy, called TS_OP, and the generated
test suite is parse with actual test data value into individual test case,
testfile. The software under test (SUT) source code is load by Loader
Manager along with the testfile that contain the actual test data for
executing the test coverage into their respective partition and
produces a test coverage result in term of class, method, block and
line coverage. A case study of CGPA calculator as SUT is selected to
measure the code coverage performance of t-way test suite with
varying interaction strength, t on single and multiple machine
environments. The distributed implementation analysis of distributed
test suite code coverage is also done in term of speedup gained on a
multiple machine environments. An encouraging result is obtained
on code coverage and speedup for multiple machine environments as
compared to single machine environment. Higher test coverage and
speedup are obtained in higher machine environments.

Keywords: T-way Testing, Test Suite Generation and Execution, Code Coverage,
Map and Reduce, Tuple Space Technology.

25 Code Coverage of T-way Test Suite Data on

1 Introduction

The activities involved in software testing ranges from test planning to test
conformance monitoring, with the former being the most critical activity as it
defines the analysis and design of test data. The challenge in this first phase is in
selection and production of quality test case. Lack of quality test can cause the
unwanted interaction between software component remained undetected and
could cause fatal and costly consequences in future. Many researchers have opted
for a t-way (t indicate the interaction strength) testing system that sampled out a
minimize test case and also guarantee to detect faulty interaction among t
components of software under test. However, this research work extends the t-
way testing system by considering a code coverage analysis of test case generated
using the distributed t-way testing system on highly configurable software. The
proposed distributed t-way testing system is also automated and integrate test
suite generation and code coverage within a single system. The distributed
implementation of t-way testing system approach is identified to resolve the
intense computation. The proposed distributed t-way testing system is to be design
and implement on distributed tuple space technology.

In complex and real software world, the number of interaction coverage between
software components need to be tested are large and require a lot of resources in
term of computing power and human energy to ensure safe and error free software
system. The large number of size and combination of input parameters value are
likely to be huge and can lead toward the combinatorial explosion problem.
Hence, test suite generation will require a lot of computing power and memory
resources. Therefore, a distributed test suite generation and test coverage on
multiple machine environments is important to expedite the overall testing
process.

This paper present a code coverage of distributed t-way test suite generation using
tuple space technology on network of PCs. The remainder of the paper is
organized as follows. Section 2 gives some insight on the topic and recently
published related works. Section 3 describes the Code Coverage of Distributed T-
Way Test Suite (CCDT) overall design approach. Section 4 discussed the
experimental result of the code coverage of t-way test suite on single and multiple
machine. Finally, section 5 draws our conclusions and point out the ideas for
future extension of this work.

Zainal H. C. Soh et al. 26

2 Related work

In t-way testing, a lot of research works were focused on test suite generation but
not much was found on t-way test coverage. There are a few works had been
carried out to test the interaction coverage along with the code coverage. K. Burr
and W. Young [1] uses x4002cocos to evaluate the effectiveness of AETG [2] as
well as to explain the various techniques such as code coverage, table based test
automation and t-way test generation used in their testing. Yu Lei [3] implied that
combinatorial testing is effective in terms of achieving high code coverage. J.
Czerwonka [4] applied code coverage metrics to measure effectiveness of
combinatorial test suites in their combinatorial test design. D. R. Kuhn et al [5]
describes a variety of measures of combinatorial coverage that can be used in
evaluating aspects of t-way coverage of a test suite. They also develop a
connection between (static) combinatorial coverage and (dynamic) code coverage,
such that if a specific condition is satisfied, 100 % branch coverage is assured.
Using these results, they propose practical recommendations for using
combinatorial coverage in specifying test requirements, and for improving
estimates of the fault detection capacity of a test set.

Currently, D.R Kuhn [6] suggest and describes methods for estimating the
coverage of, and ability to detect, t-way interaction faults of a test set based on a
covering array. Wang et al [7] indicate that using combinatorial coverage can
significantly reduce the number of requests need to be submitted while still
achieving effective coverage of the navigation structure as guided by t-way
coverage, with respect to code coverage, and found that the navigation structure
exploration by Tansuo, in general, results in high code coverage. M. N. Borazjany
[8] suggest that fault coverage estimation can be used for initial estimation of test
set size, using measures of combinatorial coverage that can be computed with
measurement tools and illustrate results of this computation for a variety of test
problem configurations. Results can be used in scoping the number of tests and
level of effort, and estimating residual risk from complex combinations not tested.
In [9] this paper presented the approaches that could be employed for designing
the regression test suite using combinatorial approach. They explained how the
bench marking of the regression test suite could be done using the traditional
approaches such as code coverage in addition to coverage gathered using
combinatorial coverage measurement tools.

Above works indicate the useful t-way testing should comprise of both the t-way
test suite generation and test suite execution module in term of fault detection,
interaction coverage and test coverage conformance. The generated t-way test
suite can either be manually or automatically integrated with code coverage test.
Currently, only GTWay[10] has integrated an automatic test execution within
their test generation strategy where the actual input parameter data is parsed into a
symbolic data prior to test generation. This would help to improve the

27 Code Coverage of T-way Test Suite Data on

performance of the test suite generation. Before test generation begins, the
interaction element is pre-generated and stored in a file where it is used to merge
between all possible interaction element using backtracking algorithm during test
suite generation. The test case is iteratively generated until all interaction elements
are covered. The final test suite which consists of generated test case is then
parsed into an actual test data and conveyed as the test data input for test suite
execution module. The actual test data is loaded as a stub file and executed with
software under test one at a time. After that, the test coverage result is obtained
and compared for different interaction strength.

Basically, both the G-MIPOG[11] and MC_MIPOG[12] strategies did address the
distributed test suite generation. However, a more thorough investigation revealed
a number of limitations. Firstly, both strategies also used tightly coupled
computation in generating the test suite. Therefore, any sudden failure involving
any of the connected threads could halt the computation of test suite generation
process or would produce the wrong test suite results. Secondly, both, G-MIPOG
and MC_MIPOG did not address the distributed test suite execution. Finally, MC-
MIPOG was found to be not scalable to heterogeneous multiple machine
environment for highly distributed environment as it relies on the standard Java
Threads library.

As for test suite execution support, the GTWay has integrated an automatic test
execution within their test generation strategy. However, GTWay also does not
provide distributed test suite execution on multiple machine environments.
Having determined and discussed the aforementioned limitations, this paper opted
to implement a code coverage of distributed t-way test suite generation and
automatically integrated with test suite execution using a tuple space technology
that can extend the computing work across multiple machines.

3 The CCDT Design Approach

In this section, a code coverage of distributed t-way test suite (CCDT) overall
design approach is presented. In this approach, the main server is called the
CCDT Master while the distributed processor is called the CCDT Worker. The
CCDT is integrated with a test suite generators known as TS_OP and all
generated symbolic test cases of the test suite generator are automatically routed
into all participating CCDT Worker dedicated memory spaces using the hash table
routing mechanism based on their identification (id) number.

To translate the symbolic test data into actual test data, CCDT Master initiate the
conversion of test data by sending a command parseTestData at the same time to
all the CCDT Worker to convert the symbolic value of each test case with an
actual test input data value. Each CCDT Worker parses each test case value at

Zainal H. C. Soh et al. 28

their partitions with their respective actual test input data into an actual test case
data and stored as testfile.flt. The test suite fault file, testfile.flt contains the class
information; method information and a list of test case data value information and
is stored in a dedicated partition current directory of a different physical machine.

Then the CCDT Master sends the command testCodeCoverage to the CCDT
Worker to run the testfile.flt file. Each test case from the testfile.flt is loaded using
the Loader Manager [11] to create the stubs file and then executes each stub file
with loaded source code of SUT and EMMA code coverage tool. The CCDT
Worker then iteratively executes the test case one at a time and produce a code
coverage result until all the test cases in the testfile.flt are executed. Finally, the
accumulated coverage results and then stores them into the testresult log file at
each partition of participating workstation.

The complete algorithm for code coverage of distributed t-way test suite in CCDT
Master is given below:

Algorithm CCDT Master (ActualDataSet, Final TS)

begin

1. send parseTestData command to each CCDT Processor at their respective

partition space to convert each symbolic data test case from Final TS at

their partition space into an actual data test case;

2. send testCodeCoverage command to each CCDT Processor at their

respective partition space to execute each test case in testfile.flt with code

driver to test SUT;

end

The complete algorithm code coverage of distributed t-way test suite in CCDT

Worker is given below:

Algorithm CCDT Worker(ActualDataSet, Final TS)

begin

1. receive command parseTestData from CCDT Master to parse each

symbolic data test case from Final TS at their respective partition space into

an actual data test case;

2. initialize and open testfile.flt as an empty file;

3. read symbolic TS from partition space;

4. while (Symbolic TS is not empty) do

29 Code Coverage of T-way Test Suite Data on

 begin

5. parse each test case;

6. stored parsed test case into testfile;

end

7. closed testfile;

8. receive command executeTestData from TSE Master to execute each test

case in testfile.flt with code driver to test SUT;

9. initialize and open testresult log file;

10. load a LoaderManager to create stub file for each test case and execute

them with SUT and EMMA

11. while (Test Case in testfile.flt is not empty) do

 begin

12. create stub file for all test case

13. execute each test case stub file with loaded SUT;

14. stored test result into testresult;

 end

15. closed testresult;

16. log testresult;

 end

4 Result

In this section, there are two experiments have been carried out to access the code
coverage performance of the distributed t-way test suite. The first experiment was
carried out to measure the performance of distributed t-way test suite code
coverage with varying interaction strength on single and multiple machine
environments. The second experiment was carried out to access the speedup
gained while running on multiple machine environments.

To measure all code coverage metrics and speedup gain on multiple machine
environment for the code coverage of distributed t-way test suite strategy, a
network of 6 identical and homogeneous PCs with the same operating system
(Window 7), processing power (AMD PC Pentium Core 2 2.13GHz) and main

Zainal H. C. Soh et al. 30

memory capacity (4GB of RAM) interconnected using a 2950 Cisco switch was
used with the GigaSpaces[13] middleware running on each workstation. The code
coverage tool used is an open source EMMA[14] code coverage tool from
SourceForge.

The CGPA calculator program was selected as SUT source code. The
implemented Java class object of CGPA calculator program made of 1 class, 2
methods, 17069 blocks, and 992 lines. The two methods in the program are the
main() and the calculateCGPA() methods. The calculateCGPA() method covers
eight parameters of type char that correspond to the four current subject and four
of their previous grades and one parameter of type double correspond to the
previous semester CGPA point. The input parameter setting here is mixed input
parameter as shown in Table 1. All of these experiments were carried out on
single and multiple machine environments up to 6 machines.

Table 1: Input Parameters For CGPA Calculator

Input
Parameter of
CGPA
Calculator

Parameter

Previous CGPA Current Grade Previous Grade

 C1 C2 C3 E1 C1 C2 C3 E1

Parameter
Value

2.5 A A A A D D D D

2.1 B B B B F F F F

2.0 C C C C - - - -

1.8 D D D D

1.7 F F F F

1.6 - - - -

4.1 Code Coverage with varying number of machines, n

In first experiment, the performance of code coverage of distributed t-way test
suite with varying interaction strength on single and multiple machine
environments. The result of t-way test suite code coverage for TS_OP test suite
generation strategies in single machine environment is shown in Table 2. In a
multiple machine environments, the accumulated code coverage results are shown
in Table 3. The code coverage result was obtained from the merging or
summation of all code coverage in from individual machine.

31 Code Coverage of T-way Test Suite Data on

Table 2: Code Coverage Of CCDT in Single Machine Environment Of TS_OP

In
te

ra
ct

io
n

S

tr
en

gt
h

,
t

Test
Size

CCDT_SM
 Code Coverage

Class (%)
Method
 (%)

Block
(%)

Line
(%)

2 50 100 100 61 49

3 306 100 100 80 64

4 1729 100 100 89 75

5 8307 100 100 99 93

6 32138 100 100 100 100

Table 3: Cumulative Code Coverage Percentages for CCDT in Multiple

Machine Environments Of TS_OP

In
te

ra
ct

io
n

S

tr
en

gt
h

,
t

Overall
Test
Size

Test
Size per
machine

CCDT_MM

Code Coverage

Class
(%)

Method
(%)

Block
(%)

Line
(%)

2 48 8 100 100 63 55

3 314 52 100 100 81 65

4 1735 289 100 100 92 78

5 8308 1384 100 100 99 93

6 32004 5334 100 100 100 100

Using data from Table 2 and Table 3, a graph of interaction strength versus
coverage was also plotted for code coverage comparison between single and
multiple machines as illustrated in Figure 1.

In comparison between single machine and multiple machines, the code coverage
of multiple machines was equal or higher than single machine for similar value of
interaction strength, t. The CCDT was integrated with TS_OP. For varying
interaction strength from t=2 until t=6, the code coverage consistently produced
higher code coverage for higher t. This was due to the bigger test suite size
generated for multiple machines that led to higher code coverage in both block
and line coverage. From Fig. 1, for single machine and multiple machines setting,
the graph illustrated that the line and block coverage percentages increased as the
interaction strength is increased for t=2, 3 and 4 and similar for t=5 and 6 whereas

Zainal H. C. Soh et al. 32

for class and method coverage percentages remained constant. For t=6, all test
coverage criteria recorded 100 percent coverage for software under test.

Fig. 1. The percentages of all coverage of SM and MM for CCDT of TS_OP.

For same interaction strength, t, the cumulative code coverage in a multiple
machine environment was slightly different as compared to the code coverage in a
single machine environment. For example, in interaction strength t=3, in single
machine, the line coverage is 64% as compare to 65% in multiple machine
environment. Slight difference in code coverage result was due to the non-
deterministic nature of test suite generation strategy which led to a different test
suite size and different individual test case within the generated final test suite.
Different individual test case will cover all the specified t-way interaction element
as well as different higher interaction elements, for example for t=2, other than
covering all the pairwise interaction strength, the generated test case also covered
a few interaction elements of higher t (i.e. 3, 4, etc). Thus, the coverage of
different higher t interaction element within the test suite will lead to different
code coverage. The different sets of test cases within the final test suite led to
different code coverage

4.2 Speedup Analysis of CCDT

The second experiments were carried out to access the speedup gained for CCDT
of TS_OP while running on a multiple machine environment. The input parameter
used is fixed as depicted in Table 1 with interaction strength of 4. The result for

33 Code Coverage of T-way Test Suite Data on

testing time in single and multiple machines and with test size of their respective
number of machine settings are shown in Table 4.

The overall testing time is made up of the test suite generation time and test suite
execution time. The testing time speedup was obtained by dividing the single
machine testing with multiple machine testing time. Using data in Table IV, the
testing time speedup for CCDT of TS_OP is plotted as shown in Fig. 2. From Fig.
2, it can be deduced that the testing time in multiple machine will always produce
a speedup as compared to single machine setting for TSE with TS_OP. However,
the speedup is less significant for higher number of machines and nearly identical
to other multiple machine environments.

Table 4 : Test Size Ratio and Speedup for CCDT with varying n

Number of
machine, n

CCDT CCDT(SM/MM)

Test Size Testing Time
Test Size
Ratio

Testing Time
Speedup

1 1729 2988.53 1.00 1.00

2 1729 1862.56 1.00 1.60

3 1716 1696.34 1.01 1.76

4 1729 1653.97 1.00 1.81

5 1728 1800.28 1.00 1.66

6 1728 1670.28 1.00 1.79

Fig. 2. The CCDT of TS_OP speedup vs number of machine.

Zainal H. C. Soh et al. 34

5 Conclusion

This paper present a code coverage analysis for distributed t-way test suite
evaluation with varying interaction strength from t=2 until t=6, the code coverage
consistently produced higher code coverage for higher t in multiple machine
environments. In a distributed environment setting, the cumulative code coverage
in a multiple machine environment was slightly higher and different as compared
to the code coverage in a single machine environment for the same interaction
strength, t. Slight higher in code coverage result was due to the non-deterministic
nature of test generation which led to a different test suite size and different
individual test case within that test suite. The different sets of test cases within the
test suite led to different code coverage. However, using code coverage in
multiple machine and distributed environment did not reduce the code coverage
results but instead due to the bigger size of test suite, the code coverage is
increased in both block coverage and line coverage. Although, there was small
amount of speedup in terms of the overall testing time with the increment number
of PCs, the testing is always faster in multiple machine environment. In future
works, the code coverage can be further test along with fault detection can be
implemented on virtual cluster machines with large number of CPU with high
RAM memory to minimise the network latency. This allow the system to support
higher interaction strength with large input parameter within easy and controllable
environment.

Acknowledgement

This research is partially funded by Lestari grant – “Variable Strength t-way Test
Generation Strategy with Crash Recovery Support” (File No: 600-RMI/DANA
5/3/LESTARI (102/2015)) from Institute of Research Management & Innovation
(IRMI), Universiti Teknologi MARA (UiTM), Malaysia. This research is also
partially funded by the generous EScience fund grant – “Distributed T-Way
Testing System using MapReduce Mechanism on Hadoop Cluster” from MOSTI
and UiTM.

References

[1] K. Burr and W. Young, "Combinatorial test techniques: Table-based
automation, test generation and code coverage," in Proc. of the Intl. Conf. on
Software Testing Analysis & Review, 1998.

[2] M. Cohen, et al., "The AETG system: an approach to testing based on
combinatorial design," Software Engineering, IEEE Transactions on, vol. 23,
pp. 437-444, 1997.

35 Code Coverage of T-way Test Suite Data on

[3] Y. Lei, et al., "IPOG: A General Strategy for T-Way Software Testing," in
Engineering of Computer-Based Systems, 2007. ECBS '07. 14th Annual IEEE
International Conference and Workshops on the, 2007, pp. 549-556.

[4] J. Czerwonka, "On Use of Coverage Metrics in Assessing Effectiveness of
Combinatorial Test Designs," 2013 IEEE Sixth International Conference on
Software Testing, Verification and Validation Workshops, Luxembourg,
2013, pp. 257-266.

[5] D. R. Kuhn, I. D. Mendoza, R. N. Kacker and Y. Lei, "Combinatorial
Coverage Measurement Concepts and Applications," 2013 IEEE Sixth
International Conference on Software Testing, Verification and Validation
Workshops, Luxembourg, 2013, pp. 352-361

[6] Kuhn, D. R., Kacker, R. N., & Lei, Y. (2016). Measuring and specifying
combinatorial coverage of test input configurations. Innovations in Systems
and Software Engineering, 12(4), 249-261.

[7] Wang, W., Sampath, S., Lei, Y., Kacker, R., Kuhn, R., and Lawrence, J.
(2016) Using combinatorial testing to build navigation graphs for dynamic
web applications. Softw. Test. Verif. Reliab., 26: 318–346.

[8] M. N. Borazjany, L. Yu, Y. Lei, R. Kacker and R. Kuhn, "Combinatorial
Testing of ACTS: A Case Study," 2012 IEEE Fifth International Conference
on Software Testing, Verification and Validation, Montreal, QC, 2012, pp.
591-600.D.

 [9] H. Patil, A. , Goveas, N. and Rangarajan, K. (2015) Test Suite Design
Methodology Using Combinatorial Approach for Internet of Things
Operating Systems. Journal of Software Engineering and Applications, 8,
303-312

[10] M. F. J. Klaib, et al., "G2Way A Backtracking Strategy for Pairwise Test
Data Generation," in Software Engineering Conference, 2008. APSEC '08.
15th Asia-Pacific, 2008, pp. 463-470.

[11] M. I. Younis, et al., "A strategy for Grid based t-way test data generation," in
Distributed Framework and Applications, 2008. DFmA 2008. First
International Conference on, 2008, pp. 73-78.

[12] M. I. Younis and K. Z. Zamli, "MC-MIPOG: A Parallel t-Way Test
Generation Strategy for Multicore Systems," ETRI Journal, vol. 32, pp. 73-
83, Feb 2010 2010.

[13] GigaSpaces. (2011). Website for GigaSpaces.

[14] V. Roubtsov. (2012). EMMA: a free Java code coverage tool.

