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Abstract 

 

Noise affects Magnetic Resonance (MR) images, due to which the 

problem of inaccurate medical diagnosis occurs. Therefore noise 

removal is an important task while dealing MR images. In this paper, 

the discrete total variation method has been discussed and analysed 

for removing noise from Magnetic Resonance Images. The effect of 

regularization parameter lambda has been studied for denoising. 

This method has been extensively experimented with MR images by 

varying the parameter lambda. The evaluation metrics are Peak 

Signal to Noise Ratio (PSNR) and Mean Square Error (MSE). The 

experiment demonstrated that the value of PSNR decreases and 

MSE increases as the value of lambda increases from 0.01 to 1.0. 

The noise is reduced and contrast is improved. 
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1.      Introduction 

 
The total variation (TV) regularization method was originally introduced by 

Rudin, Osher and Fatemi [1]. It is effective in removing noise, recovering sharp 

images by preserving sharp discontinuities [2, 3, 4]. It can be used in graphs, 

segmentation and clustering problems as well [5, 6]. Convex optimization 

methods with primal dual splitting techniques have proved to be useful in 

implementing TV minimization in an effective manner [3, 7, 8-19]. TV is the l1 

norm of the gradient amplitude for 2-D functions. Condat [20] proposed a new 

technique as the gradient cannot be defined properly in discrete images. This 

method, known as discrete TV, preserves edges efficiently. The image is 

associated with a gradient field on a twice finer grid. The  norm of the gradient 

amplitude is found out for calculating the TV. TV method is now used in many 

applications like regularizing parallel imaging [21, 22], reduction of truncation 

artefacts in MR images [23], process of inpainting on sensitivity maps [24], 

regularizing undersampled imaging methods [25] and reconstructing and sampling  

of radial MRI data [26, 27].  

 

In this paper, the effect of regularization parameter on discrete TV method 

discussed by Condat [20], has been studied and used particularly for removing 

noise from MR images. In Sec. 2 we discuss the existing definitions of discrete 

TV along with the new definition proposed by Condat [20] with its primal and 

dual formulation. In Sec. 3, the TV minimization algorithm used for MR images is 

discussed. Sec. 4 deals with the noise in MR images. In Sec. 5, the experiment has 

been performed and its effects have been studied on varying the regularization 

parameter. The conclusion has been stated in Sec.6. 

 

2. Theory 
 

2.1 Various definitions of discrete TV 

 
A function defined in the plane  possesses a gradient field  

 also in the plane . Thus TV is defined as the 

 norm of the gradient and is given as  

 

                                                                                   (1)         

 

The TV is isotropic in nature. 

In the entire paper,  is a grayscale discrete image of size  and having pixel 

values , defined at pixel location  and lying in the domain 

, where  and  represent the row and column 
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indices. The anisotropic TV is a kind of discrete TV and is defined as follows, 

assuming the boundary conditions to be Neumann, i.e. symmetric in nature and 

any finite difference over the boundary is zero. 

 

                               (2)                                                                                  

 

This definition of anisotropic TV is inefficient as it results in metrication artefacts. 

To avoid this, one uses isotropic TV, defined as follows 

 

                       (3)                  

 

This definition of isotropic TV also uses Neumann boundary conditions. 

 

The TV of the image should remain unaltered on a rotation of ±90º, or on flipping 

horizontally or vertically. Condat in [20] shows that this does not happen with 

isotropic TV and a change factor of  occurs with a horizontal flip. But still it 

has been seen that the isotropic TV is largely used because of its simplicity. To 

maintain the four-fold symmetry, the image is rotated by 0 º, ±90º and 180 º and 

then  is applied on the rotated images, and henceforth the average is taken of 

all the four  results respectively. But still in this case too, the oblique edges get 

blurred and any checkerboard pattern or an isolated pixel gives very low value. 

 

A more isotropic TV has been discussed in [28] , called the upwind TV and is 

defined as follows 

 

                   (4)                                                                                 

 

Where  denotes . Although this upwind TV demonstrates more 

isotropic nature and does not blur the oblique edges, it varies on taking the 

negative of the image. 

 

Abergel [29] proposed the Shanon total variation. In this method, the Shanon 

interpolate of the image is found and then its continuous total variation is 

estimated. This is performed by using Riemann sum approximation. This method 

removes aliasing but at the same time blurriness is introduced in the image. 
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2.2. Dual and Primal formulation of discrete TV by Condat 
 

2.2.1 Dual Formulation  
 

The dual formulation of TV of a function  can be defined in continuous domain 

as 

 

                                (5)                                      

 

Where  denotes the divergence operator,  denotes the set of 

continuously differentiable function ranging from  to  and having a compact 

support, and. The amplitude of the dual variable  is bounded by 1 all over. 

 

Similarly the dual formulation of TV can be defined in the discrete domain also. 

In the discrete domain, a discrete operator  is defined which maps the image 

 to the vector field . The discrete operator  is defined 

as the forward finite differences of the image , and is given as  

 

                                                                          (6)       

                            

                                                                          (7)                   

                                                                    

for every  and having the Neumann boundary conditions. 

 

For convenience it is considered that all the images under consideration and the 

vector fields have similar size  and are indexed by , 

considering that some of the last row or column value is zero and are constant, i.e. 

 for every . So   can be defined as 

 where the  norm denotes the sum over the indices  of the 

2-norm  

 

Thus the dual formulation of the isotropic TV of image  is defined as 

 

                         (8)                   

                                                                         

and having Euclidean inner product. 

 

Condat proposed to correct the pixel shift in the isotropic TV by using 

interpolation. The pixel shift is taken to be of half pixel. The dual images  and 

 having values  and  are located at pixel edges  
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and  respectively, so that when the pixels are interpolated, the 

constraint  is satisfied at the pixel edges as well as at the pixel 

centres. Thus the dual formulation of TV as proposed by Condat is  

 

                   

                                                                                                                            

                                                                                                                               (9)                                          

                                                   

Where , , and  are the bilinear interpolation operators applied on the 

image pair  on the grids , , , for 

 respectively. The interpolation operators as defined by Condat in [20] 

are as follows: 

 

                                                                              (10) 

   (11)                                                                                          

       (12)                                                                                       

                                                                              (13)                                                                                                                                                                                                                                                                                                                                                                                                             

                     (14)                                                                 



For all  

 

Combining the three operators ,  and  by the linear operator L, and taking 

the  norm  of a field as the maximum value among the three 

components and the pixels of the 2-norm of its vectors. Thus eq. (8) can be 

rewritten as 

 

                                                      (16)                                                                                                    

 

2.2.2 Primal Formulation 
 

Condat proposed the primal formulation of the discrete TV equivalent to the dual 

formulation in eq. (9)  

 

                                                                                                                                                                       

 

                                                                                                                             (17) 

Where  represents the adjoint operator.  denote the vector field.  
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The above equation (17) can be redefined more compactly by combining the three 

vector fields  and replacing by vector field . The sum of the  norm 

of the three components  can be denoted by  norm of . There exists 

Then Eq. (17) can be rewritten as  

 

                                                         (18)                                                                                                                  

 

Given an image , y is the vector field which is the combination of . For 

the image , having indices , its elements 

 are vectors of , located at the positions 

.Then y is the gradient field of . Thus, the 

definition of discrete TV proposed by Condat in eq.(16), is the  norm of the 

gradient field y of the image .                                                                     

 

3. Discrete TV used for denoising MRI  
 

The discrete TV proposed by Condat in [20] in the above section can be applied 

on MR images and used for denoising MRI. 

The regularization parameter  is varied keeping the value of . The algorithm 

used for MR images is discussed below. 

 

3.1 TV Minimization Algorithm 
 

The general convex optimization problem says 

     

Find                                                                         (19) 

 

Where the image  is of size N1 X N2 and  is the regularization parameter such 

that . F is a convex function which is semi continuous. 

When image is given, we can solve  

 

Find                                                         (20) 

 

where the norm function denotes the Euclidean norm.  

Given an image  and a linear operator A, many inverse problems can be written 

as  

 

Find                                                                   (21) 
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Many primal-dual algorithms exists which efficiently solve the problems of the 

form of eq.(18); see, e.g.[3, 17, 18]. Condat has used the over relaxed version [30] 

of the algorithm in [3]. The convex optimization problem in eq.(19)can be drafted 

as  

 

Find                   (22)                                                                                                                

 

The image  as well as its gradient field  has to be found. 

Eq.(22) can be generalised as  

 

Find                                  (23)                      

 

where the function  and , C being a linear operator. 

 

As discussed in [31, 32, 33], proximity operator can be applied for any parameter 

. For performing denoising using eq. (20), the proximity operator 

is: . Algorithm 1 can be used to solve eq.(22)  

 

Algorithm 1 

1. Select the parameters ,  and  such that  

and the initial estimates  

2. Repeat for p=0, 1….. 

 

 

 
 

 

It is assumed that the solution to eq.(22) exists when the minimizer of function F 

exists and algorithm 1 converges [33, 34]; the variables  converge to 

some . 

 

The gradient field  of the image  (solving eq.(17)), can be computed by 

Algorithm 2  

 

Algorithm 2 

1. Select the parameters  and  such that  and ; and the initial 

estimates  

2. Repeat for p=0, 1….. 
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To solve eq.(21) which is a regularized least-square problem, Algorithm 1 needs 

to be modified because it is difficult to find the proximity operator of the 

quadratic term. A fully split algorithm has to be obtained. So considering a 

general problem 

 

Find                                                    (24)                                                                                         

 

or equivalently the above eq.(24) can be expressed as 

 

Find         

                                                                                                                            (25)      

                                                                                                                                                                 

Where  and                 

 

Algorithm 3 is used to find the solution of (24) and its dual. 

 

Algorithm 3 

1. Select the parameters , such that 

and the initial estimates  

2. Repeat, for p=0,1….. 

 

 

 
 

 

4. Noise in MR images 
 

Noise in MR images is a great obstruction in the correct diagnoses. The MR 

images are often corrupted by the signal dependent white Gaussian noise. The 

noise in MR images generally gets added at the time of image acquisition. In 

addition to the patient’s thermal noise, noise also gets added through the 

frequency coils and preamplifiers. Image analysis such as registration and 

segmentation is greatly affected by noise. Thus the noise introduced should be 

minimized with the least alteration in the original signal. It is considered that the 

noise is complex Additive White Gaussian Noise (AWGN), has zero mean and is 
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independent of the signal [35]. The Gaussian distribution is bell-shaped with a 

single peak (Fig.1) [36], and is symmetric in nature. Considering a random 

variable , with mean , and variance , it follows a Gaussian distribution  

given below in eq.(26) [36]. 

 

 on                                                                  (26) 

 

For reconstructing the MR image, the raw data is firstly altered by applying 2-D 

Fourier transform on it, which retains the shape of the raw data. The absolute 

value  is found for each pixel as given below in eq.(27). 

                                        (27)                                                                                    

 
Fig.1 The probability function of the Gaussian distribution [37] 

 

 
Fig.2 Corresponding cumulative function of Gaussian Distribution [37] 

 

where  denotes the magnitude signal of pixel  ,  is the 

original signal having phase angle  and  represents the noise that gets added 

into the real (RE) and imaginary (IM) part of the pixel . The original 

signals as well as noise contribute in the formulation of the magnitude image. 
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Bayesian approaches [38], wavelet thresholding [40, 41], anisotropic diffusion 

filter [39], total variation minimization [43] and adaptive smoothing [42] and are 

some of the popular techniques used for denoising. 

 

4.1 Noise Characteristics in MR images  
 

During the scanning process of MRI, the tissue of the specific area undergo 

magnetization distribution. Its Fourier transform is the actual data obtained in 

scanning. It is complex in nature. Inverse Fourier transform is used to reconstruct 

this data so that it has its magnitude component, phase and frequency component. 

Taking into account the property of fourier transform such as linearity and 

orthogonality, the noise that is present in the MR data is assumed to be Gaussian 

noise, whose  real and imaginary parts have equal variance and zero mean [44, 

45]. The MRI systems with single coil have a Rician distribution modelling of 

their magnitude data, thereby changing the PDF of the MR data, and making it 

signal dependent [45].  

 

The noise estimation in MR image tells about the quality of MR image. The PDF 

of the MR signal is given as 

 

                                  (28) 

 

Where T denotes the noise free signal level,  denotes the Bessel function of first 

kind, magnitude variable of MR image is ,  is the noise variance and  

depicts the Heaviside step function . 

With SNR having high values, the Rician distribution tends to a Gaussian 

distribution, having mean  and variance   and is given as   

 

                                                       (29)   

           

In the MRI scanners which have multiple coil system and have parallel imaging, 

the noise which is present is inhomogeneous in nature. It may be considered that 

the complex additive white Gaussian noise, having zero mean, corrupts the 

original signal. The method of sum of squares (SoS) [46] can be used to obtain the 

magnitude image if sub-sampling is not carried out.  

 

When the noise components are distributed identically and are independent in 

nature, non central Chi distribution is followed by the magnitude signal  and 

the PDF [46] is given as: 
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                                                   (30) 

  

Where the number of coils is denoted by . For value of  , the above Eq.(30) 

reduces to the Rician distribution and having central Chi distribution, given below 

[46]  

 

                                                                          (31)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            

 

5. Experiment and Results 
 

In this section the discrete TV given by Condat is evaluated for varying values of  

the regularizing parameter lambda. 

 

5.1 Data 
 

MR images of a patient suffering from grade 2 prostate cancer were taken. Fast 

spin echo T2 weighted axial and coronal images of pelvis were obtained on a 

dedicated phased array body coil using 3 Tesla high gradient system and 

correlated with T1 weighted axial images. The images were acquired on an ultra-

high Philips Achieva 3.0T TX system which delivers faster scans with high 

resolutions. The images were viewed on a Philips Dicom Viewer 3. Post contrast 

T1 W images were acquired in axial, coronal and sagittal plains. The prostatic 

lesion encountered in the MRI was small and faint in nature. 

 

The first measurement was a T1 weighted echo scan of the pelvis. The contrast 

agent was injected. Repetition time TR and echo time TE were the sequence 

parameters. TR=583.1 ms. and TE = 8 ms. for T1 weighted scan and TR=3000 ms. 

and TE=110 ms. for T2 weighted scan. 

 

5.2 Experiment 

 

The discrete TV method was experimented on the above mentioned T1 and T2 

weighted MR images and the behaviour of lambda was noted. The value of 

lambda was varied from 0.01 to 1. Algorithm 1 was used with 1000 iterations and 

the value of  =1. The value of  was set to 0.123 and that of  to 0.33. The code 

was run on MATLAB 2016a. The performance of Algorithm 1 has been evaluated 

on the PSNR and MSE measures. 

 

5.3 Findings 

 

The PSNR value decreases and MSE increases as the lambda value increases from 

0.01 to 16. The image gets blurred when the value of lambda further increases 
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from 0.16. This can be seen from Table 1 and Table 2, as well as from Fig.3 and 

Fig. 4. It was observed that for lambda ranging from 0.01 to 1.0, the PSNR values 

remains the same as for of . The value of  experimented were 0.5, 1, 1.5, 2, 

4, 8, 10. Similar is the case with MSE. Moreover the image gets blurred as the 

value of  is increased from 1. 

 

 

Table 1: Effect of Varying Lambda Values for =1 for T1 weighted MR Image  
 

S. No. lambda PSNR MSE 

1 0.01 88.08 0.0001 

2 0.02 84.37 0.0002 

3 0.03 83.36 0.0003 

4 0.05 82.43 0.0004 

5 0.04 81.73 0.0004 

6 0.07 80.67 0.0006 

7 0.10 79.53 0.0007 

8 0.12 78.94 0.0008 

9 0.16 77.98 0.001 

10 0.20 77.23 0.001 

11 0.25 74.82 0.002 

12 1.0 73.43 0.003 
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Original Image 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

Fig.3. Denoising performed on T1 weighted scans of pelvis for various values of  
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Table 2: Effect of Varying Lambda Values for =1 for T2 weighted MR Image  

 

S. No. lambda PSNR MSE 

1 0.01 92.23 0.0001 

2 0.02 87.89 0.0001 

3 0.03 85.63 0.0002 

4 0.05 84.10 0.0003 

5 0.04 82.97 0.0003 

6 0.07 81.36 0.0005 

7 0.10 79.77 0.0007 

8 0.12 79.09 0.0008 

9 0.16 77.90 0.0011 

10 0.20 77.10 0.0013 

11 0.25 76.35 0.0015 

12 1.0 72.16 0.0004 

 

 

Original Image 
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Fig.4. Denoising performed on T2 weighted scans of pelvis for various values of . 

 

6. Conclusion 
 

The effect of regularization parameter lambda on the discrete TV method has been 

discussed in the paper, and has been used for removing noise from T1 and T2 

weighted MR images of pelvis. The procedure was evaluated on measures like 

PSNR and MSE. It has been observed that the value of PSNR increases and MSE 

decreases as the value of lambda decreases from 1 to 0.01. Noise is significantly 

removed for lower values of lambda. This method can also be applied to 

multichannel images or colour images. 
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