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Abstract 

     The dendritic cell algorithm is an effective technique to detect 
anomalies in time series applications.  However, the algorithm is less 
effective when it mines a general classification dataset because the 
items are not organized in an orderly event-driven manner. Ideally, 
for they need to be arranged in sequence by sorting them according 
to decision class. However, it is not practicable to apply this step 
because the decision classes for real datasets is unknown. Therefore, 
an integrated model that combines the dendritic cell algorithm and 
the k-means algorithm is proposed as an alternative to the existing 
sorting function based on decision class. The proposed model is 
evaluated by applying it to eight universal classification datasets and 
assessing its performance according to four evaluation metrics: 
detection rate, specificity, false detection rate, and accuracy. The 
results show that the proposed clustered dendritic cell algorithm is 
more effective than the non-clustered version. When applied to a 
benchmark dataset, the clustered dendritic cell algorithm 
demonstrates significant improvement in performance on the 
unordered version of the dataset and generates a comparable result 
to that of its competitor. For the other seven datasets, the proposed 
algorithm generates better specificity, false detection rate, and 
accuracy. The findings indicate that item–centroid distance within a 
cluster can be adopted to transform an unordered dataset into a 
sequential dataset, thus fulfilling the dendritic cell algorithm 
requirement for ordered data.  

     Keywords: Artificial immune system, clustering, dendritic cell algorithm, k-
means 
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1      Introduction 

The dendritic cell algorithm (DCA) is a biologically-inspired algorithm that 

belongs to the artificial immune system (AIS) category of heuristics. This 

essentially means that it is modelled based on the concept of danger theory, which 

posits that the human immune system is triggered when a dendritic cell recognizes 

a danger signal released by an unexpected cell death due to pathogenic infection. 

In the same way as it is the responsibility of the dendritic cell to recognize an 

intruder (bacteria, virus, parasite) that enters the body, the DCA is modelled to 

detect anomalies in the computer context.  The first DCA prototype was initially 

developed in the field of computer network security, where the dendritic cell was 

employed to act as an agent to detect suspicious network intruders [1].  

Subsequently, Greensmith et al [2] implemented a fully functioning real-time 

network intrusion detection system. Since this successful implementation, the 

algorithm has been widely applied in various areas, mainly to time series anomaly 

detection-based problems including intrusion [3], fault [4], fraud [5], and outbreak 

[6] detection. The published results of these applications demonstrate that DCA 

performs well in terms of producing a high detection rate and lower false 

detection rate in comparison to other systems.  Besides this good detection output, 

the DCA has distinct advantages over other data mining approaches in 

recognizing anomalies because it employs the dangerousness of an antigen, 

known as the multi-context antigen value (MCAV), rather than a pattern-matching 

approach. Moreover, the algorithm does not require an extensive training phase 

and can be implemented in real-time applications with very low CPU processing 

requirements.  

The DCA is designed for use with time series applications; in other words it is 

suitable for a problem with a time-dependent component. This algorithm 

demonstrates good detection performance when each item in the dataset is 

organized in an orderly event-driven manner in relation to its neighbouring item. 

However, the DCA is less effective in mining static and unordered datasets 

because of the nature of its design, which is characterized by a crisp separation 

between normality (semi-mature) and abnormality (mature) [7]. The experimental 

results of Greensmith [8] show that DCA has impeded performance with a higher 

detection error rate when it mines an unordered dataset. The result of his 

experiment is shown in Table 1, from which it can be seen that DCA generates 

more detection errors (FN=320, FP=78) for the unordered Wisconsin Breast 

Cancer (WBC) than the ordered WBC dataset. The TN, FP, TP, FN headings in 

the table denote true negative, false positive, true positive, and false negative. 

 

Table 1: Number of errors for ordered and unordered WBC [8] 

TN FP TP FN 

Ordered 240 0 403 57 

Unordered 162 78 140 320 
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The sensitivity of the DCA to data order means that it is less suitable for 

application to a general classification dataset because this type of dataset is not 

organized in time order. To overcome this problem, the facility to read an 

unordered dataset in an event-driven manner is needed. One proposed solution is 

to sort the data according to decision class [8]. By sorting the data in this way, 

items of a similar class are arranged in a sequential manner and therefore any 

changes that occur to the sequence can be recognized by the DCA because it is 

sensitive to changes in context.  However, this approach is not practical because 

the decision classes in most real-world datasets are unknown. 

To date, research on methods to handle unordered data for the DCA has been 

limited, particularly in relation to the general classification dataset. One of the 

notable recent approaches is the Multiplying and Merging Algorithm (MMDCA) 

[9].  In the MMDCA, two steps are applied. First, the n instances of each antigen 

are multiplied several times during the antigen sampling stage. After that, the 

MCAV of each antigen is determined based on two options: (1) comparing each 

MCAV with the anomaly threshold and adopting the majority or (2) calculating 

the average of each of n MCAV and comparing it with the anomaly threshold. 

The authors tested their algorithm on benchmark data and found that when applied 

to the unordered WBC it achieved better classification accuracy than the original 

DCA. However, the effectiveness of the performance of the MMDCA for other 

general classification data is as yet unknown.             

In this paper, we propose integrating the DCA with a k-means clustering 

algorithm to handle the unordered dataset. The two algorithms are integrated 

during the data preparation phase, before the dataset is presented to a specific 

DCA signal normalization algorithm. The aim of this approach is to group similar 

items into similar clusters so that they can be sorted accordingly, and thus to 

replace the existing sorting method that uses the decision class as the sorting 

criterion. The proposed integration model is tested on a benchmark dataset, 

namely the WBC dataset. It is also tested on seven other universal classification 

datasets; six from the UCI Machine Learning Repository [10] and one the StatLib 

Archive [11]. The performance of the proposed modification to the DCA is 

compared with the standard DCA [8] and the MMDCA [9] on unordered data. 

The model is evaluated with respect to four criteria: detection rate, specificity, 

false detection rate, and accuracy. 

The remainder of the paper is organized as follows: Section 2 outlines the concept 

of the DCA. Section 3 presents the proposed model and explains how the DCA is 

integrated with the k-means algorithm. Section 4 describes the experimental setup. 

Then Section 5 presents the main results and Section 6 contains a discussion of 

the results. The final section, Section 7, concludes this work. 
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2      The Dendritic Cell Algorithm 

A DCA is an abstraction model of the AIS paradigm that draws on danger theory 

[1]. It utilizes the role of the dendritic cell (DC) as an agent that monitors the 

antigens’ life cycle until their death. In a biological immune system, danger theory 

views all cells in the human body as antigens that have a similar possibility of 

being infected by harmful pathogens. At the beginning of the detection process, 

the DCs, which are born as immature cells, observe the progress of the body’s 

cells. Termed as input, the DC collects the body cell protein paired with its three 

signals; pathogen associated molecular patterns (PAMP), danger (DS), and safe 

signal (SS). Based on the collected input throughout its life span, the DC will 

evolve from being immature into one of two maturation states; either semi-mature 

(apoptotic death) or mature (necrotic death).  Reaching a mature state indicates 

that the cell has experienced more danger signals throughout its life span that have 

been caused by foreign antigens, wounds, etc. If this happen, it indicates that an 

antigen has been detected and a danger zone will be released. A semi-mature state 

indicates that apoptotic death has occurred and this is seen as part of normal cell 

function and is tolerized to the presented antigen.  

Analogized from danger theory, the DCA is formalized as depicted in Fig. 1. In 

the DCA, each data item in the monitored system is viewed as an antigen such 

that they can similarly be infected by a harmful pathogen. As the DCA is a 

population-based algorithm, DCs perform multiple input signal and antigens 

sampling. The DCA collects three input signals (PAMP, DS, and SS) tailored to 

antigens, calculates the changes and then determines which antigen is causing the 

changes. Using the accumulative function in Equation 1, all input signals are 

transformed into three cumulative output signals: co-stimulatory molecules 

(CSM), mature, and semi-mature [8]:  

 

 

 

(1) 

where  is the weight matrix,  is the input signal,  is the output signal,  is 

the input signal categories, and  is the output signal categories. The weight 

equation as applied in Equation 1 is presented in Table 2. The  is user defined; 

however, the relative interaction between the input signals and output signal must 

remain constant. 
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Fig 1:  Dendritic cell algorithm. 

 

Table 2: The weights used in the cumulative function [8]. 
wij PAMP (i=1) DS (i=2) SS (i=3) 

CSM (j=1) W1 W1/2 W1 

Semi-mature (j=2) 0 0 1 

Mature (j=3) W2 * (1.5) W2/2 W2 * (-1.5) 

 

When monitoring begins, all DCs are in the immature state [12]. Throughout 

multiple antigen-signal sampling, DCs collect various experiences which may 

influence and change their maturity level. The maturation information is recorded 

via CSM ( ), mature ( ), and semi-mature ( ) as output signals. As soon 

as a DC exceeds the maturation level, the sampling process being undertaken by 

that cell stops. This occurs when the DC has a value greater than the 

migration threshold and, as a result, the DC is migrated from the population for 

antigen presentation. After that, the output values  and  are compared in 

order to derive a context for the presented item. The antigen is termed as mature if 

>  or semi-mature if < . Then the migrated DC is replaced with a 

new cell to restart sampling and return to the population. This process is iterated 

several times.  

When learning ends, antigens appear in different contexts. In the last step, the 

potential anomalous antigen is determined based on the collected context. Termed 

as the mature context antigen value (MCAV), the anomalous antigen is 

determined as [8]:   

 

 

(2) 

where   refers to the antigen type,   refers to the total number of mature 

antigens of antigen type ,  is the total number of mature antigens, and 
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 refers to the total number of semi-mature antigens. Those antigens with a 

 greater than the anomaly threshold are classified into the anomalous group 

while the others are classified into the normal category. 

3      Integration of DCA with K-Means 

In the proposed model, the k-means algorithm is integrated with the original DCA 

process as part of the data preparation phase; after the most relevant attributes 

have been selected and assigned into appropriate PAMP, DS, and SS. The reason 

for this integration is to utilize k-means as a sorting function to group similar data 

items into similar clusters and sort them according to their distance from the 

cluster centroid. The steps in Fig. 2 show how k-means is integrated into the data 

preparation process.  

 

 
Fig. 2 Integration of k-means into DCA. 

 

K-means clustering is a well-known data mining technique. It is a partition-based 

type of clustering [13], where a dataset is partitioned into k clusters. Categorized 

as an unsupervised learning approach, it relies on the concept that any items 

within a cluster inherit similar characteristics and that they are distinct from other 

items in other clusters. The algorithm finds the best clusters based on two general 

steps. First, data items are assigned to clusters based on the current centroids. 

After that, new centroids are updated based on the current assignment of data 

items to clusters until the process converges. Throughout this process, an item is 

placed in a particular cluster if it is closer to that cluster's centroid than any other 

centroid.  

Based on this assumption, the clustering output is adopted for the use of DCA to 

transform the unordered dataset into an event-driven dataset by organizing the 

data items according to item–centroid distance. The clustering mechanism for the 

DCA follows the standard k-means activities except for an amendment to the final 

stage. In k-means, first the number of clusters k has to be determined. As anomaly 
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detection in the DCA is a two class classification, the default k number is set to 

two; representing the normal and abnormal group. When the clustering processes 

end, one of the clusters is selected and all the items are then sorted according to 

the distance between the data points and cluster’s centroid. The k-means 

clustering for DCA is shown in Fig. 3.   

 

Select Attributes & 

Allocate Signals

Determine 

Number of 

Centriods, K

Cluster Data 

According to K

Sorting Attributes 

According Mean 

Distance 

Normalize Signal

 
Fig. 3 Clustering mechanism based on k-means for DCA. 

 

In this study, the items are sorted in ascending order starting with the shortest 

distance to the centroid, as shown in Table 2. Table 3(a) indicates a sample of the 

distance of each data point (#) from two clusters (C1, C2) while Table 3(b) shows 

the result after all data points have been sorted according to C1.  Table 3(b), most 

of the records are arranged according to an accurate decision class (CLASS) 

except for two records; #519 and #52, which are inaccurately clustered into the 

wrong group. For the DCA, the accurateness of the cluster is vital to ensure the 

dataset can be sorted accurately into a time-based order. Fig. 4 depicts the 

integration of DCA and k-means to create the proposed clustered DCA.  

 

Table 3: The distance between data item (#) and each cluster (C1, C2) of the WBC. 

# C1 C2 CLASS 

1 225.48 5.75 2 

2 36.53 216.66 2 

3 157.24 29.26 2 

4 169.22 5.48 2 

5 101.45 72.17 1 

6 63.31 414.89 1 

7 197.51 2.53 2 

# C1 C2 CLASS 

239 10.36 188.53 1 

633 13.11 266.41 1 

530 16.21 251.55 1 

400 17.86 242.14 1 

155 19.78 162.75 1 

678 20.96 139.10 1 

500 21.57 284.27 1 
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8 204.83 1.60 2 

9 138.59 7.48 2 

10 24.58 128.03 1 

11 196.29 2.03 2 

12 128.57 337.67 1 

13 188.86 10.38 2 

14 214.16 2.67 2 

15 169.45 19.24 2 

16 171.42 5.87 2 

17 212.04 0.79 2 

18 180.51 6.89 2 

19 161.04 5.74 2 

20 33.15 162.85 1 

(a) Before sorting 

685 23.01 281.70 1 

263 24.07 291.06 1 

268 24.21 250.37 1 

90 24.28 286.61 1 

10 24.58 128.03 1 

160 25.04 212.16 1 

519 25.19 155.63 2 

52 25.56 266.69 2 

571 26.75 166.58 1 

234 26.86 209.83 1 

286 27.18 265.91 1 

465 30.02 256.24 1 

395 30.05 239.22 1 

(b) After sorting 

 

Input: Raw Data; Number of Clusters, K 

Output: Sorted Data 

0  START    

1    Get input from Attribute-Signal Mapping Algorithm  

2    Initialize cluster centroids;      

4    Repeat until convergence      

5       Calculate distance between data point and each centroids , Ck 

6     (re)assign each data point to the cluster to which the point is the most similar  

7        Update the cluster means 

8    Select one cluster  

9    SORT data according distance between data point and centroids  

10 END       

11 Normalize input signal 

Fig. 4 Proposed clustered DCA.  

 

4      Experiment Setup 

To test the validity of the proposed model, we apply it to eight universal 

classification datasets; seven from UCI Machine Learning Respiratory [10] and 

one from the StatLib Archive [11], as described in Table 4. The aim of the 

experiment is twofold: first, to evaluate the performance of the proposed 

integrated DCA with k-means on WBC (the benchmark dataset for DCA before 

and after integration with k-means) with that of the original (non-clustered) DCA 

and the MMDCA; second, to investigate the effect of different cluster numbers on 

the accurateness of the proposed clustered DCA by testing it on seven other 

datasets.  
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For the experiment, the datasets are prepared in three forms: ordered dataset, 

unordered dataset, and clustered dataset. The term ‘ordered’ is where the dataset is 

sorted by decision class, ‘unordered’ is where the data is randomly unsorted, and 

‘clustered’ means the dataset is random but then sorted by k-means. All datasets 

need to have two decision classes: abnormal and normal. For the datasets with 

more than two decision classes, namely IRIS and WINE, the decision class 

attribute is restructured so that one of the decision classes is set as the abnormal 

group while the rest are labelled as the normal group.   

 

Table 4: Description of the datasets. 

Dataset 

(* Benchmark dataset) 

Origin Attributes 

# 

Records 

# 

Class 

# 

Indian Pima Diabetic (DBC)  

 

 

 [10] 

9 768 2 

Wisconsin Breast Cancer (WBC)* 10 699 2 

Iris (IRIS) 4 150 3 

BUPA Liver Disorder (LDR) 7 345 2 

Parkinson (PKN) 24 195 2 

German Credit (GCD) 25 1000 2 

Wine (WINE) 14 178 3 

Biomedical (BIO) [11] 6 209 2 

 

The initial parameter setting is formalized as follows: in all experiments, a 

population of 100 cells is created and the total cycle cell update is set to 20. In 

every cycle, DCs are allowed to perform antigen sampling 10 times. The weight 

for the accumulative function is set to W1=1 and W2=2. The experiment is 

repeated 100 times and the average of each evaluation metric is recorded for 

analysis.  

For attribute selection, the standard deviation of each attribute is retrieved and 

they are ranked according the highest standard deviation [8]. Based on the highest 

ranking, four attributes are chosen for mining, where the attributes at rank 1 and 

rank 2 are set as DS and PAMP, respectively, and the rest of the attributes are set 

as DS. After that, the attributes are normalized according to the DCA signal. The 

cumulative sum normalization technique is used to normalize the DCA signal, as 

depicted in Equation 3 and Equation 4 [6]: 

 

 (3) 

 (4) 
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where  is the cumulative sum value. If  is greater than or equal to 0, 

the cumulative sum value is taken as the normalized value. The is used to 

normalize the PAMP while the DS and SS are normalized with . 

To evaluate the performance of the proposed model we examine the algorithms’ 

results using four evaluation metrics: detection rate (DR), false detection rate 

(FDR), specificity (SPS), and accuracy (ACC): DR measures the accurateness of 

the model to detect an abnormal class as an abnormal class DR=TP/(TP+FN); SPS 

measures the ability of the model to detect a normal class as a normal class 

SPS=TN/(TN+FP); FDR measures the amount of false detections of an abnormal 

class as a  normal class FDR= FP/(TN+FP); and ACC measures the accurateness 

of the model in classifying both classes correctly ACC= 

(TP+TN)/( TP+TN+FN+FP). For DR, SPS, and ACC, the highest value indicates 

the best result while for FDR the best result is the lowest value. 

5      Results and Findings 

This section aims to show that the proposed integration of the DCA and k-means 

can improve the DCA’s detection capability for unordered datasets. First, an 

experiment is carried out on the benchmark dataset, the WBC dataset. The results 

of the performance of the proposed integration model are presented in Table 5, 

which shows a comparison of the full results for DCA when WBC is presented to 

it in different input presentations; ordered WBC, unordered WBC, and clustered 

WBC. The ordered and unordered WBC is presented to the original (non-

clustered) DCA (DCA_OR) model and their result published in Table 5 are taken 

from Greensmith [8]. Meanwhile, the proposed integrated model (DCA_KM) 

mines the clustered WBC and the dataset is clustered into two groups (k=2) before 

it is presented to the DCA. 

 

Table 5: Comparison between ordered, unordered, and clustered WBC presented in DCA. 

TN FP TP FN 

DCA_OR (Ordered WBC) 240 0 403 57 

DCA_OR (Unordered WBC) 162 78 140 320 

DCA_KM (Clustered WBC) 237 4 429 29 

 

From Table 5, the DCA_OR generates higher false detection errors (FN) for 

unordered WBC than the ordered WBC such that 320 anomalous records are 

incorrectly detected as normal. This is similar to the result for the number of false 

negatives (FP=78), which is again higher for the unordered WBC than the ordered 

WBC. However, in the case of the proposed model, the DCA_KM, there is a 

significant improvement in the handling of the unordered dataset. In comparison 

to the DCA_OR for unordered WBC, the DCA_KM generates a lower number of 

FNs (4) and FPs (29) as well as maintains the number of TNs and TPs.  Moreover, 
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the proposed DCA’s result for clustered WBC is comparable to that of the 

DCA_OR for ordered WBC version. This shows that k-means in DCA_KM can 

sort WBC items as accurately as ordered WBC that pre-sorted its items 

accordingly to decision class.  

Next, the proposed DCA_KM model is compared with MMDCA [9]. The 

comparison of the results is shown in Table 6, from which it can be seen that both 

models exhibit a comparable ability when dealing with the unordered WBC 

dataset.  From Table 6, the DR of DCA_KM is slightly lower than that of 

MMDCA; however, the results for DR are not significantly different. In spite of 

that, the DCA_KM produces higher SPS, higher ACC, and lower FDR than 

MMDCA, which shows that the proposed model has the ability to classify normal 

records more accurately than MMDCA. Nevertheless, the results for SPS, FDR, 

and ACC are not significantly different. 

 

Table 6: Results of DCA_KM and MMDCA for unordered WBC. 

DR SPS FDR ACC 

DCA_KM 0.936747 0.982404 0.017593 0.952488 

MMDCA 0.97236 0.97893 0.02107 0.95129 

Difference (-0.035613) 0.003474 0.003477 0.001198 

 

In the second part of the experiment we examine whether the number of clusters 

affects the detection performance of the proposed model. For this analysis, seven 

unordered datasets are presented to the DCA_KM and there are five different 

numbers of clusters, k. The results are shown in Table 7, which consists of four 

sub-tables, one for each evaluation metric (DR, SPS, FDR, and ACC). Each row 

represents the result for each dataset (BIO, GCD, IRIS, PKN, DBC, WINE, and 

LDR) while each column represents one of the five k assessed in the study (2, 3, 

4, 5, and 10).  

 

Table 7: The effect of number of clusters on the efficacy of the proposed model. 
Cluster, k Cluster, k 

2 3 4 5 10 2 3 4 5 10 

BIO 0.855 0.781 0.775 0.747 0.716 0.721 0.661 0.702 0.712 0.712 

GCD 0.332 0.306 0.313 0.320 0.316 0.806 0.805 0.803 0.789 0.804 

IRIS 0.936 0.777 0.764 0.821 0.853 0.747 0.735 0.746 0.723 0.712 

PKN 0.739 0.731 0.726 0.693 0.730 0.433 0.367 0.418 0.411 0.431 

DBC 0.324 0.329 0.326 0.333 0.329 0.779 0.663 0.672 0.661 0.667 

WINE 0.758 0.605 0.546 0.538 0.539 0.640 0.578 0.564 0.579 0.609 

LDR 0.550 0.535 0.529 0.520 0.468 0.463 0.469 0.530 0.553 0.590 

DR SPS 
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Cluster, k Cluster, k 

2 3 4 5 10 2 3 4 5 10 

BIO 0.279 0.339 0.298 0.288 0.248 0.721 0.661 0.702 0.712 0.712 

GCD 0.194 0.191 0.197 0.211 0.194 0.806 0.805 0.803 0.789 0.804 

IRIS 0.253 0.265 0.254 0.277 0.289 0.747 0.735 0.746 0.723 0.712 

PKN 0.567 0.633 0.582 0.589 0.571 0.433 0.367 0.418 0.411 0.431 

DBC 0.221 0.337 0.328 0.339 0.333 0.779 0.663 0.672 0.661 0.667 

WINE 0.360 0.422 0.436 0.421 0.391 0.640 0.578 0.564 0.579 0.609 

LDR 0.537 0.531 0.470 0.447 0.410 0.463 0.469 0.530 0.553 0.590 

FDR   ACC    

 

From Table 7, DCA generally generates good detection results when k is set to 2. 

However, the value of each evaluation metric (DR, SPS, ACC) slightly drops 

(increases for FDR) when the number of clusters increases; in other words, 

performance declines. The best k are summarized in Table 8. It is evident from 

Table 8 that for most datasets k=2 is the best because it contributes to a higher 

detection result. The one exception is the LDR dataset, where the proposed model 

requires a higher number of clusters to detect anomalous data well. 

 

Table 8: The best number of clusters to use with the proposed method. 

 
BIO GCD IRIS PKN DBC WINE LDR 

DR 2 2 2 2 4 2 2 

SPS 2 2 2 2 2 2 10 

FDR 2 2 2 2 2 2 10 

ACC 2 2 2 2 2 3 10 

Best Cluster 2 2 2 2 2 2 10 

 

The above results are further analysed by comparing the performance of the 

proposed integrated DCA_KM and DCA_OR on seven unordered datasets. To 

represent the DCA_KM, we choose the best model with the best k cluster, as 

summarized in Table 8. The full results of our additional analysis are illustrated in 

Table 9, which indicates the comparative result DCA_OR and DCA_KM and the 

two rows above the last row summarize (1) the average values of each 

performance metric and (2) the results for all datasets in term of wins, ties, and 

losses (indicated by W/T/L) at the 5% level (p<0.05). The W/T/L measurement is 

considered in addition to the average measurement because the average criteria 

would be susceptible to outliers. The p value (p_val) represents the Wilcoxon test 

result, where the value of the DCA_KM must be less than 0.05 to make it 

statistically significant compared to the DCA_OR. The last row totals the 

significant (+) and not significant (-) datasets.   
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Table 9: Comparative results of DCA_KM and DCA_OR for seven datasets 

  DR SPS 

  
DCA_ 

OR 

DCA_ 

KM Diff p_val 

DCA_ 

OR 

DCA_ 

KM Diff p_val 

BIO 0.4753 0.855 0.379
W

 0.000
 +

 0.685 0.721 0.036
 W

 0.001
+
 

GCD 0.3774 0.332 -0.045
L
 0.000

+
 0.722 0.806 0.084

 W
 0.000

+
 

IRIS 0.6582 0.936 0.278
W

 0.000
+
 0.721 0.747 0.026

 W
 0.022

+
 

PKN 0.7406 0.739 -0.002
L
 0.010

+
 0.398 0.433 0.035

 W
 0.000

+
 

DBC 0.0197 0.324 0.304
W

 0.000
+
 0.04 0.779 0.739

 W
 0.000

+
 

WINE 0.3542 0.758 0.404
W

 0.000
+
 0.724 0.64 -0.083

 L
 0.000

+
 

LDR 0.4734 0.468 -0.005
L
 0.202

-
 0.553 0.59 0.036

 W
 0.464

-
 

AVG. 0.443 0.630 0.549 0.674 

W/T/L 4/0/3 6/0/1 

+/- 6/1 6/1 

 

  FDR ACC 

  
DCA_ 

OR 

DCA_ 

KM Diff p_val 

DCA_ 

OR 

DCA_ 

KM Diff p_val 

BIO 0.3151 0.279 0.036
 W

 0.001
+
 0.61 0.769 0.159

 W
 0.000

+
 

GCD 0.2785 0.194 0.084
 W

 0.000
+
 0.618 0.664 0.045

 W
 0.000

+
 

IRIS 0.2791 0.253 0.026
 W

 0.022
+
 0.7 0.786 0.086

 W
 0.001

+
 

PKN 0.6018 0.567 0.035
 W

 0.000
+
 0.483 0.507 0.024

 W
 0.000

+
 

DBC 0.9605 0.221 0.739
 W

 0.000
+
 0.033 0.62 0.587

 W
 0.000

+
 

WINE 0.2762 0.36 -0.083
 L

 0.000
+
 0.624 0.672 0.048

 W
 0.000

+
 

LDR 0.4467 0.41 0.036
 W

 0.464
-
 0.507 0.519 0.012

 W
 0.029

+
 

AVG. 0.451 0.326 0.511 0.648 

W/T/L 6/0/1 7/0/0 

+/- 6/1 7/0 

 

From Table 9, the overall results indicate that there is a clear improvement in 

performance after the integration of DCA and k-means. In the case of the BIO 

dataset, the DR, SPS, FDR, and ACC in DCA_KM demonstrate a significant 

improvement in comparison with the DCA_OR. This result is also similar to other 

datasets IRIS, DBN, and WINE, where the DCA_KM generates a significant 

improvement for all evaluation metrics. Moreover, the DCA_KM seems to have 

better ability in discriminating both normal and abnormal items after it has been 

integrated with k-means. For example, in the case of the DBC dataset, the original 

DCA fails to classify normal items well because a high FDR is recorded, but the 

result improves significantly after integration with k-means. The results for SPS 

and ACC in the case of the DCA_KM also demonstrate a similar pattern. The 
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W/T/L analysis is in line with this result because it can be seen that the DCA_KM 

has the highest winning score over the unordered DCA in all measurements. In 

terms of significance, the DCA_KM exhibits a significant difference in most 

datasets when p_val <0.05, mainly in terms of ACC.    

The results generated for every evaluation metric are different in that if the 

algorithm has a good score for DR and ACC it performs less well in terms of SPS 

and FDR. This causes difficulty in determining whether the proposed model has 

performed well overall in the case of certain datasets. For a model to be a good 

detection model, it must have the ability to generate a balanced result in terms of 

DR, FDR, and SPS when detecting anomalies [14]. Therefore, to simplify the 

evaluation of the effectiveness of the proposed model, a preference matrix 

approach is implemented to calculate the accumulative score of each of the 

performance metrics [15]. The score is given based on the priority of each metric; 

highest (DR, SPS, ACC) or lowest priority (FDR). A score of 1 is given for the 

best mining result and a score of 2 for the worst result according to the priority 

metric. The ∑ Score DCA_OR column and ∑ Score DCA_KM column of the 

preference matrix represent the total scores of all priorities. The lowest score 

indicates the best model.  

Table 10 contains the preference matrix for BIO, GCD, IRIS, PKN, WINE, and 

LDR.  From the table, the proposed DCA_KM has the lowest accumulative score 

for all datasets except GCD and IRIS. This indicates the applicability of the 

proposed model that integrates k-means with DCA.  In the case of the IRIS 

dataset, both DCA_KM and DCA_OR have as similar ability such that DCA_KM 

has better DR and ACC while DCA_OR has good SPS and FDR.  

 

Table 10: The preference matrix. 

  

  

DCA_OR ∑ 

Score 

DCA_

OR 

DCA_KM  ∑ 

Score 

DCA_

KM 

Best 

Model 

(DCA..) DR 

SP

S 

FD

R 

AC

C DR 

SP

S 

FD

R 

AC

C 

BIO 2 2 2 2 8 1 1 1 1 4 _KM 

GCD 2 1 1 1 5 1 2 2 2 7 _OR 

IRIS 2 1 1 2 6 1 2 2 1 6 = 

PKN 2 2 2 2 8 1 1 1 1 4 _KM 

DBC 2 3 3 1 9 1 1 1 1 4 _KM 

WINE 2 2 2 2 8 1 1 1 1 4 _KM 

LDR 2 2 2 2 8 1 1 1 1 4 _KM 
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6     Discussion  

The aim of using k-means is to group items with similar characteristics into one 

cluster instead of resorting to sorting by decision class. In this process, each item 

in the cluster is sorted according to its distance from the cluster centre to make 

them have a time-dependent relation with each other. This sorting of the items 

allows the DCA to easily detect the change of item context. The results of the 

experiment on the benchmark dataset (WBC) show that the integration of DCA 

with k-means can transform unordered data into sequential data effectively 

because fewer false detection errors are generated than original DCA. The result 

of DCA_KM over unordered WBC is comparable with the DCA_OR, which was 

initially sorted according to decision class. Also, the results achieved by the 

proposed model are comparable to those of MMDCA; however, MMDCA still 

generates a more balanced result between DR and FDR. The main difference 

between the DCA_KM and the MMDCA is that the MMDCA handles the 

unordered data during the mining phase while the clustered DCA deals with it by 

k-means during data preparation, i.e. before mining starts.  

Moreover, a similar result was achieved when the DCA_KM was applied to 

several general classification datasets. For example, in the case of certain datasets 

such BIO and IRIS, the performance of initial clustering leads to a significant 

improvement in the DCA detection result.  Based on an evaluation of four 

separate evaluation metrics (DR, SPS, FDR, and ACC), the DCA_KM 

outperformed the DCA_OR in terms of SPS and FDR while ACC in certain 

datasets. However, if we consider all four evaluation metrics together, the 

DCA_KM performs significantly better than DCA_OR. The proposed clustered 

DCA will produces better detection accuracy when there are fewer clusters and 

the best number of clusters is two. A possible explanation for this finding is that 

the datasets used in this study were set to have two decision classes, normal and 

abnormal. 

Furthermore, DCA performance depends on how good the clustering algorithm is 

at clustering the data into similar groups because it is only after that step that all 

the items can be arranged into the appropriate sequence. Therefore, any rules that 

are applied to achieve a good cluster must be considered carefully before 

clustering the data for the proposed DCA. The information in Table 11 shows the 

relationship between the state of the art k-means algorithm and DCA_KM based 

on classification accuracy.  Apart from the GCD and IRIS datasets, all the results 

demonstrate that the DCA_KM requires a good cluster result in order to generate 

better DR, SPS, FDR, and ACC.     
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Table 11: The relationship between the accurateness of k-means and the DCA_KM. 

K-means DCA_KM 

ACC DR SPS FDR ACC 

BIO 0.959 0.855 0.721 0.279 0.769 

GCD 0.708 0.332 0.806 0.194 0.664 

IRIS 0.325 0.936 0.747 0.253 0.786 

PKN 0.687 0.739 0.433 0.567 0.507 

DBC 0.687 0.324 0.779 0.221 0.62 

WINE 0.660 0.758 0.64 0.36 0.672 

LDR 0.567 0.468 0.59 0.41 0.519 
 

 

7      Conclusion 

In this study, the k-means clustering algorithm is integrated with the DCA with 

the aim of creating a DCA-based model that can mine unordered datasets as well 

as it can mine ordered datasets. In the proposed model, k-means is integrated into 

a standard DCA as a part of data preparation phase before the dataset is 

normalized into appropriate DCA signals. In the experiments performed on eight 

universal datasets, the proposed DCA with k-means was found to be more 

effective than original DCA. In the case of the benchmark dataset (WBC), the 

DCA_KM demonstrated a significant improvement in comparison to DCA_OR 

and achieved a comparable result to that of MMDCA. In the case of the seven 

other datasets tested, based on an evaluation of four separate performance metrics, 

the DCA_KM outperformed the DCA_OR in terms of SPS and FDR while ACC 

in certain datasets. Also, considering all the performance metrics together, the 

proposed model achieved the highest accumulative score for five of the seven 

datasets. The findings indicate that the k-means output can be utilized to 

transform an unordered dataset into sequential data by sorting the items according 

item–centroid distance, thus fulfilling the DCA requirement that data be organized 

in an orderly event-driven manner. To further evaluate the effectiveness of the 

proposed approach, further analysis will be conducted on different types of 

clustering algorithm such c-means clustering, hierarchical clustering, and density-

based clustering. Furthermore, the proposed clustered DCA will also be tested by 

applying it to time series datasets. 
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