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Abstract 

     Recently, an active development of network communication 
technology has brought inspiration to new cyber-attack such as 
malware. This possesses a massive threat to network organization, 
users and security. Consequently, many researchers have developed 
novel algorithms for attack detection. Nevertheless, they still face the 
problem of building reliable and accurate models that are capable in 
handling large quantities of data with changing patterns. The most 
common technique to represent the feature of malware is bag-of-
words (BOW) where the frequency of each word is used for malware 
description. However, using BOW approach will destroy the spatial 
and sequence information aspects of malware patterns, resulting in 
information loss and coarse indexing. Therefore, this paper presents 
two combination models of Long Short-Term Memory (LSTM) and 
Convolutional Neural Network (CNN) to deal with spatial and 
temporal signals problem of BOW representation. Both techniques 
are well known in the classification problem with LSTM being useful 
in temporal modeling while CNN is good at extract spatial information 
from data. After that, the Multi-Layer Perceptron (MLP) is used for 
classification. The model is trained on Drebin dataset and validated, 
and then the result is compared with other techniques. The experiment 
shows that the both proposed models outperform common MLP, CNN 
and LSTM models on a malware classification task. Our best model 
(LSTM-CNN) model obtains state-of-the-art performance level of 
98.53% of the Drebin dataset. 

     Keywords: Deep Learning, Long Short Term Memory, Malware 
Classification, Recurrent Neural Network. 
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1      Introduction 

In this century, the development of network technology changes people life where 

they could easily access information from around the world more effectively than 

previous years. At the same time, however, a great number of cyber incidents such 

as malware also actively evolving. Malicious software, commonly known as 

malware is a continuous problem and has become a major threat to computer users, 

businesses, corporations, and even governments. The number of malware 

increasing year by year and becomes more complex and sophisticated. It is harmful 

and can contribute to unwanted loss or privacy invasion as it compromises the 

confidentiality, integrity and availability of private data without user’s permission. 

Consequently with the rising of cyber incidents related to malwares, most 

researchers have studied various techniques to detect them. 

     Machine learning techniques such as Support Vector Machines (SVM), k-

Nearest Neighbor (k-NN), Naïve-Bayesian (NB), Random Forests (RF), Neural 

Network (NN), are prominently explored for malware classification[1]–[4]. Several 

researchers combine numerous machine learning classifiers as they claim the hybrid 

of multiple classifiers [5] has better performance than single classifier. Andrew H. 

Sung combined SVM with Artificial Neural Network (ANN) in his work and 

reduced the number of features for better performance but the result was 

undifferentiated to the result of original features [6]. Same claim from 

Maheshkumar Subhnani et al. who combined Multilayer Perception (MLP), k-

Means and decision tree in his paper [7] to detect malware, also showed that the 

performance improved in detection and false alarm rates. Advance machine 

learning has also been applied for malware detection since it is very convenient in 

extracting more information from the datasets. Even though unsupervised machine 

learning such as clustering task seems to be the most preferable by researchers to 

understand malware [8][9], the supervised machine learning method is also 

preferable when it comes to correct labeling [10]. Dahl et al. [11] highlighted the 

use of supervised machine learning to classify the labeled sample of malware by 

combining random projection and NN techniques. 

     In the past few years, there were noticeable work involving Deep Neural 

Networks (DNN) in classifying malware [1], [11]–[13]. Saxe et al. [1] utilized feed 

forward NN for static analysis. However, as the focus was on static analysis and 

dealing with binaries of executable files, the satisfactory input for the classification 

was not achieved. Motivated by Pascanu et al. [12] that learnt malware through 

language model, Athiwaratkun et al. [14] and Kolosnjaji et al. [13] expanded the 

research by using Recurrent Neural Network (RNN) to enhance malware sequence 

classification. In addition, a combination of RNN with MLP was applied in [12] to 

learn malware and benign files through language model and formed feature 

representation. In this work, the MLP was allocated as output classifier while RNN 

worked as feature extractor. The usage of temporal max pooling helped improved 

and produced the best result in processing long sequence of temporal features but 
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RNN failed to learn the outstanding features of malware. Furthermore, RNN 

produced a lower detection rate in almost every experiment, compared to Echo State 

Network (ESN). Athiwaratkun & Strokes achieved 31.30% improvement in 

detection rate by combining Long Short Term Memory (LSTM) with Gated 

Recurrent Unit (GRU) as a language model [14]. 

     Nevertheless, input for machine learning and data science need to be represented 

numerically and the popular technique that is commonly used to convert word input 

into vector input is Bag of Word (BOW) model. This model represents the 

frequency of each word as feature sequence input. However, one of the main 

technical issues addressed in using BOW representation is the spatial and temporal 

problem against the sequences input especially when multi-step predictions have to 

be made [15]. This is because BOW model destroys the spatial relationship of 

feature sequences which limit its descriptive ability. Spatial data is important as it 

provides the information linkage between features and it is helpful in terms of better 

understanding of the way the feature sequences of malware are related to each other. 

     LSTM comes with memory cells that can solve temporal problem by learning 

the temporal structure between each sequential input and then achieve a high level 

abstraction of data because of its complex architecture. Kim et al. [16] applied 

LSTM for intrusion detection on KDD Cup 1999 dataset and achieved a higher 

detection rate compared to other machine learning classifier. Combination of 

classifiers applied in [15] to deal with temporal data where CNN was used in the 

first layer to reduce variance in the frequency of input and then the output was fed 

to LSTM for temporal modeling. Therefore, in this paper, LSTM and CNN are 

combined to detect malware more accurately and then the accuracy is compared 

with other DNN classifiers. The idea of combining DNN especially LSTM and 

CNN for classification has been explored before, though previous work was in 

different domain field. However, layering order of algorithm plays big role in 

producing the best performance in malware detection when two different 

algorithms are combined. Hence, the Drebin dataset is utilized which is one of the 

few public malware data that represents features with words. The words are then 

transformed into feature vector dataset using BOW model. This dataset is 

formulated as temporal sequence malware problem that can be solved by passing 

the sequence feature input through LSTM for temporal modeling and fed into CNN 

layer for feature pattern analysis. Lastly, output features are classified by MLP 

classifier. It is believed that malware classification can be improved by combining 

these NN as a model. This paper is organized in five sections; Section 1 is the 

introduction, Section 2 reviews related work in the area, section 3 presents the 

proposed malware detection model while section 4 discusses experimental results 

and comparative analysis. Finally which is Section 5, concludes the paper with 

summary and future work directions. 
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2      Background 

In this section, we will briefly explain the fundamental of Neural Network models. 

2.1      Artificial Neural Network 

Artificial NN (ANN) mimics the processes happening in real human neurons. The 

neurons in brain communicate with each other by sending electrical pulses through 

wiring called synapse. The input signal is first received via dendrites and after that 

it is processed by soma cell. The cell turns the processed value into output via axons 

and synapses. Fig. 1 illustrates the basic architecture of ANN. 

 

 

𝑥𝑛 and 𝑤𝑛 represent the input and weight of input respectively. ANN model 

receives input 𝑥𝑛, and next they are weighted with value 𝑤𝑛 based on their 

importance and later all the input are added. The sum value is then fed through 

transfer function and output is generated. The output is determined by the weighted 

sum of input and weight, ∑ 𝑤𝑖𝑥𝑖𝑖 . To be precise, the equation (1) is shown as below: 

Output= {
0 𝑖𝑓 ∑ 𝑤𝑖𝑥𝑖𝑖 ≤ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

1 𝑖𝑓 ∑ 𝑤𝑖𝑥𝑖𝑖  > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
 (1) 

2.2      Recurrent Neural Network 

Recurrent Neural Network (RNN) is a practical technique in classifying sequences. 

There are a number of tasks that include the RNN in their operation such as image 

captioning, speech recognition, sentiment analysis and scene labelling. RNN is an 

extension of regular ANN with the purpose to enhance performance. The ANN 

possesses a few drawbacks such as inability to deal with temporal data which 

requires fix input and output size. This is because ANN is independent and omits 

everything from previous feed-forward input. It concentrates only on particular 

input and then maps them directly to output vector. Output from sequential input is 

only significant when all inputs are dependent on each other because the whole 

input is useful. In contrast, the RNN offers more flexibility in processing various 

sizes of input and output using its memory that allows it to produce output that 

function dependently based on the entire history of input. 
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Fig. 1 The basic architecture of ANN 
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     The layer in RNN consists of input layer, hidden layer and output layer. Fig. 2 

gives a simple example of RNN that consists of many input unit, one output unit 

and hidden layer. The 𝑥𝑡  represents input, while the 𝑦𝑡 is an output and 𝑠𝑡 is the 

hidden state value. All these variables are measured at time step. The hidden state 

is known as the memory; computed at a particular input and is carried forward by 

the network. By tracing the arrow coming towards hidden state value, there are two 

variables to compute new hidden state which are input and previous hidden state 

value. U, V, and W refer to the parameters for the different layers. In ANN, these 

parameters varied at each layer but in RNN, the same parameter values are used for 

each layer throughout to the end.  

     The hidden state value (2) and output (3) are calculated as follow: 

𝑠𝑡= σ(w𝑥𝑠𝑥𝑡 +  w𝑠𝑠𝑠𝑡 + 𝑏𝑠 (2) 
𝑦𝑡 =  w𝑠𝑦𝑠𝑡 +  𝑏𝑦 (3) 

     In the above formula, σ function is nonlinearity, 𝑤 is a weight matrix, and b is a 

bias form. There are different types of weight matrices and each matrix has different 

explanation. 𝑤𝑥𝑠 maps the input value x to hidden state value 𝑠. The 𝑤𝑠𝑠 maps the 

value of hidden state 𝑠 to another hidden state value along the time axis. For 

instance from 𝑠1 to 𝑠2, 𝑤𝑠𝑦 maps the hidden state value to an output value 𝑦. There 

are also constant biases in RNN which are denoted as 𝑏𝑠 and 𝑏𝑦 for hidden state 

and output respectively. This bias vector can vertically shift any value passing 

through the activation function. However, RNN take advantages of 

backpropagation called Backpropagation Through Time (BPTT). It computes the 

gradient across the many time steps [17] and faces a significant gradient vanishing 

problem as mentioned in [18]. 
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Fig. 2 Traditional RNN 
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2.3      Long Short Term Memory 

Long Short Term Memory (LSTM) [19] proposed to solve the vanishing gradient 

problem addressed by RNNs. The architecture of LSTM is slightly different when 

compared to RNN due to the existence of complicated mechanism named memory 

cell. The memory cell learns the input in an intelligent way to enable the LSTM 

network to process and store the information for short-term as well as long-term 

memory. Fig. 3 illustrates a typical structure of memory cell. It receives three types 

of inputs which are  𝑐𝑡−1, 𝑠𝑡−1 and 𝑥𝑡 that represents the cell state from previous 

cell memory, the previous hidden state value and input respectively. These inputs 

compute new cell state denoted by 𝑐𝑡which then compute the new hidden state 

denoted by 𝑠𝑡. 

 

Fig. 3 Memory cell of LSTM 

     Gating concept in LSTM controls the information entering and leaving the 

memory cell. The gates f, g, i and o are the forget gate, write gate, input gate and 

output gate respectively. Forget gate resets the information such as hidden state 

value from previous cell state which is no more used in current memory cell. Write 

gate is a gate that scans and chooses the value to be added to the new information 

in the cell state. The input gate is responsible to write a process where it decides the 

number of information needed by gate g to be added into the cell state. The output 

gate reads the cell state from memory and produces a hidden state vector. All 

computations for the gates are as follow: 

𝑓 = 𝜎(w𝑥𝑓𝑥𝑡 + w𝑠𝑓𝑠𝑡−1 + w𝑐𝑓𝑐𝑡−1 + 𝑏𝑓) (4) 
𝑔 = tanh (w𝑥𝑔𝑥𝑡 + w𝑠𝑔𝑠𝑡−1 + 𝑏𝑔) (5) 

𝑖 = 𝜎(w𝑥𝑖𝑥𝑡 + w𝑠𝑖𝑠𝑡−1 + w𝑐𝑖𝑐𝑡−1 + 𝑏𝑖 (6) 
𝑜 = 𝜎(w𝑥𝑜𝑥𝑡 + w𝑠𝑜𝑠𝑡−1 + w𝑐𝑜𝑐𝑡 + 𝑏𝑜) (7) 

     The σ function is the activation function, which stands for standard sigmoid 

function. This function lies between zero and one. A zero value function will not 

let any information pass through while a value of one means letting all information 

enter the gate. Similar to hidden state in RNN, each weight in LSTM is also 

descriptive; each weight represents the weight matrices that connect the peephole 

between one information to another exposing the internal state. For instance in 
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equation (4), 𝑤𝑥𝑓 represents the weight that map input 𝑥 to forget gate 𝑓. 𝑤𝑠𝑓𝑠𝑡−1 

maps hidden state value from previous cell to forget gate while 𝑤𝑐𝑓𝑐𝑡−1 maps value 

of memory cell in previous memory. 

     These gates play big role in information control. Equation (8) shows the 

procedure of updating the new value of cell state by forgetting the previous cell 

value using gate 𝑓and inputting the current cell value through gate 𝑖 and 𝑔. 

𝑐𝑡 = 𝑓 ∗ 𝑐𝑡−1 + 𝑖 ∗  𝑔 (8) 

     The activation function of new cell value will be processed through gate 𝑜, and 

new amount of output will be produced which is known as the hidden state value. 

This process can be formulated as in equation (9): 

𝑠𝑡 = 𝑜 ∗ tanh (𝑐𝑡) (9) 

2.4      Convolutional Neural Network 

Convolutional Neural Network (CNN) [20] was designed initially for image 

recognition.Fig. 4 illustrates simple CNN that consists of input layer, convolution 

layer, max-pooling layer and output layer. 

 

Fig. 4 Convolutional Neural Network 

     CNN model has the ability to recognize local features between inputs that enable 

this model to learn features regardless of the position they are placed in the input 

matrix. The convolution layer will extract the features’ input and learn the pattern 

by applying the convolving filters to the features’ input. The output is generated by 

multiplying local input by the filters weight value. This convolution process 

represents the characteristics of CNN where it allows the replication of input to be 

done by sharing the same filter unit. The convoluted output will be fed into max-

pooling layer where the variability removal is carried out. This input reduction 

process involves comparison between the convoluted output and maximum value 

that is chosen. It partitions the convoluted output into a set of windows that searches 

for the maximum values by comparing each values. This operation plays big role 

to help eliminate smaller values and provide invariant output. 
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3      Malware Detection Model 

In this section, the malware detection model for solving the spatial and temporal 

problem is presented. Instead of using raw Drebin dataset, malware features with 

the application of BOW representation are treated as malware classification 

problem. The input of the model is the malware features, and the output is a binary 

classification.  

3.1      Malware features 

The Drebin dataset used to train and validate proposed models. In total, this dataset 

contains 129,013 samples of real world application with features. The details of the 

malware features were as listed in Table 1. 

Table 1 Details of features 

Feature name Description 

Hardware 

components 

This feature represents the requested hardware. 

Permission to certain hardware component has few 

security issues as it can reveal private data. 

Requested 

permissions 

Permission of a system is one of the important security 

mechanisms in an Android. A malicious application tends 

to request for permission more often to grant access into 

the system compared to normal application. 

Application 

components 

This feature declares suspicious component that exists in 

application such as activities and services provided. The 

declaration helps in analysing and identifying malware as 

it usually shares the same particular name of services.  

Filtered intents Intents collect all the communication and information 

during the inter-process and intra-process in Android. 

This feature is important as malware tends to follow 

specific intents. 

Restricted API calls This feature lists the critical API calls that are restricted 

by Android permission system. These API calls can give 

a deeper understanding on the function of an application. 

Used permissions The restricted API calls will be analysed to determine 

which requested permission is actually used. This feature 

lists the permissions that are requested and eventually 

used. 

Suspicious API 

calls 

Certain suspicious calls that are frequently requested by 

the malware. 

Network addresses Malware needs to establish a network connection to 

collect data from a device. This feature lists all the 

addresses that are used by the malware. 
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     Drebin dataset does not provide numerical value for both malware and benign 

applications, so the pre-processing was needed. To make them available for our 

model to train, we first detect the features using common tokenizer. Tokenizer splits 

text into individual word. The first word for every single line in the sample were 

chosen and listed. Based on the features’ list, it was found that few samples had sets 

of feature; services providers and services receivers. Service provider is a feature 

that declares services provider of application while service receiver feature declares 

the service receivers of application. Service is a component that runs in the 

background until it stop itself and does not interact with user directly. Malwares are 

likely request these two feature more frequent than benign application. Thus, these 

two had been chosen as additional features for malware classification model 

evaluation. For feature extraction, Bag of Words (BOW) model was applied. In this 

BOW model, specific list of words were retrieved and unimportant words were 

removed from the document. It helps document retrieval by matching the chosen 

words in the list and counts their frequency. All gathered features were stored in 

.txt file for further analysis. Fig. 5 presents pseudocode for BOW model in 

transforming word sequences to numerical sequences. The model read every line in 

the documents and ignored characters and words that were not in the feature 

dictionary. Words that matched the list of features were retrieved and frequency of 

its occurrence was counted. 

 

 

 

 

     In addition, due to uneven number of samples between malware and benign, new 

training and test dataset were generated evenly. 2779 random samples from benign 

and 2779 from malware were chosen. Then, all of the samples were combined in 

new dataset. 

List_feature = [Hardware components, Requested permissions, Application components, 

Filtered intents, Restricted API calls, Used permissions, Suspicious API calls, 

Network addresses, Services provider, Services receiver] 
For each line in dataset: 

If line!=null then do split word by placing a space before and after characters :: 

(this is to ensure that only selected words in DREBIN dataset are extracted as 
feature vector); 

Read every line 

Tokenize the word by splitting it on spaces 
Remove tokens of space, empty string or punctuation marks 

For each tokenized word: 

Set id 
If tokenized word=List_feature[]: 

Freq[id]++; 

Fig. 5 Pseudocode of BOW model 
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3.2      CNN-LSTM 

Fig. 6 shows the overview of detection model CNN-LSTM where CNN stacked on 

top of LSTM. The idea behind this combination model is that the feature filtration 

will be done first before the temporal modelling performed. The dataset passed 

through CNN at the first layer for feature reduction and next the result of smaller 

feature dimension fed into LSTM layer for data sequences learning. Lastly, output 

features from LSTM are classified by MLP classifier. 

 

 

3.3      LSTM-CNN 

Fig. 7 shows the overview of the detection model LSTM-CNN. LSTM is put as the 

first layer to learn temporal data from BOW representation data. The architecture 

can be seen as a deep architecture through time steps with LSTM memory cells to 

produce output sequences. This model learns end-to-end features from malware 
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feature sequences where it is extracted layer by layer. The temporal modeling using 

LSTM is performed. One layer of LSTM is used with memory cells to remember 

all feature inputs. The LSTM output is then passed to the CNN to reduce the feature 

variation. The architecture used is one dimension convolution layer, with 5x1 

feature filters shared across the space. A 4x1 size of max-pooling is then performed 

on the convoluted output. 

 

 

     The MLP layer is added after the output of CNN for classification task. In this 

layer, all outputs are stacked and classified using single sigmoid function. It then 

sends the classified output for comparison to evaluator which receives two set of 
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datasets; one from MLP and another one from feature dataset for validation. 

Evaluator fully utilize dataset from MLP classifier that contains an output that is 

produced based on learning algorithm and validate dataset from feature dataset to 

determine the maliciousness of malware. The decision is then compared with the 

label provided to check the accuracy of the model. 

3.4      Training 

Before designing the model development, the malware detector model is optimized 

on computer with Windows 7 environment using Intel(R) Core(TM) i3-2350M 

2.30GHz and 6GB RAM. The model shares almost the same optimization 

parameters. Parameter gives impact to the performance of model. There are 

parameters values that can be tuned such as batch size, optimizer, learning rate, 

number of epochs, number and size of layer and activation function. However, 

among all the parameters, researcher found that the learning rate (lr) of the 

optimizer and size of neuron have the greatest impact. Therefore, the parameter 

experiment is run by changing the values of lr, number of neuron and epoch. Adam 

optimizer is used because it computes individual adaptive learning for different 

parameters. Adam maintained the learning rate for each parameter and separately 

adapts as learning unfolds. As a result, the best values for lr, number of neuron and 

number of epoch for LSTM are 0.01, 90 and 60 respectively. 

4      Experiment 

This section presents the experimental result and evaluation of the experiment on 

Drebin dataset. Before conducting the experiment, the dataset was transformed into 

vector using BOW model. It contained 10 feature vectors with label 0 for benign 

and 1 for malware. For the hidden layer, LSTM and CNN architecture were applied; 

and sigmoid function of MLP was applied to the output layer 

4.1      Drebin dataset 

In this paper, the Drebin dataset [21] was utilized to evaluate the performance of 

the proposed model. Since a lot of researches have applied this dataset, it is fair that 

it was selected for benchmarking purpose. In general, this dataset contains 129,013 

samples with eight features which were hardware component, requested 

permissions, application components, filtered intents, restricted API calls, used 

permissions, suspicious API calls and network addresses. 123,453 samples of this 

dataset represent the benign and the rest were malware. Each of malware samples 

belongs to one of 179 malware families. In our experiments, we used the frequency 

of feature occurrence in the application text file. For example, a sample of 

application can have feature vector of 23, 89, 90, 56, 78, 1, 0, and 22. This means 

the first feature occurs 23 times and so on. 
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4.2      Evaluation Measures 

A In order to evaluate the detection performance, evaluation metrics that were 

derived from the confusion matrix were used. The following measures were derived 

and applied in evaluator: 

TPR = TP/ (TP+FN) (9) 

FPR= FP/ (TN+FP) (10) 

Accuracy = (TP+TN)/ (TP+TN+FP+FN) (11) 

     TPR or True Positive Rate is the ratio of malware detected by the model. FPR 

or false-positive rate is the value of benign data that is incorrectly classified as 

malware. The accuracy metric is the rate of performance in detecting malware. TP 

or true positive is the number of benign samples that is correctly classified by the 

model. TN, or true negative, is the number of malware samples that is correctly 

classified. FP, or false positive, is the number of benign samples that is wrongly 

classified as malware and FN, or false negative, is the number of malware samples 

that is wrongly classified as benign. 

4.3      Measuring Performance 

In terms of evaluation, dataset were partitioned to 10 sub dataset. In each dataset, 

there were 5558 randomly selected samples that consist of equal proportion for both 

malware and benign. Both training and testing dataset were randomly selected and 

labelled. 10 times evaluation experiment was run for each dataset using the 

optimized parameter to train the model and the result was recorded. The optimized 

parameter for each model was summarized in Table 2. 

Table 2 Comparison with other algorithms 

 MLP CNN LSTM CNN-

LSTM 

LSTM-

CNN 

Learning Rate 0.01 0.01 0.01 0.01 0.01 

Number of Neuron 60 50 90 40(CNN) 

90(LSTM) 

90(LSTM) 

40(CNN) 

Number of Epoch 180 130 60 110 110 

 

     In order to evaluate performance of proposed model, focus was first set on the 

optimized parameter. For number of neuron, the optimized numbers for all 

algorithms were different. The neurons for MLP were set in range of 40 to 60. As 

for LSTM, the neuron numbers were set to 90 as the larger the number of neuron 

the better the accuracy performance of LSTM. Besides, memory structure in LSTM 

learns better if the number of neuron increases. CNN on the other hand needed only 

50 to create the best performance. In aspect of epoch, LSTM required smaller 
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number than MLP and CNN, which was 60. In comparison, MLP and CNN needed 

more number of epoch required by LSTM to achieve the best detection accuracy in 

which MLP 180 and CNN 130. All these three algorithms acted differently to epoch 

where LSTM increased almost constantly while MLP and CNN acted the opposite 

way. The only identical optimized parameter used for all algorithms was the value 

learning rate parameter. All algorithms prefer lr=0.01. These optimized parameters 

were then used in stacking model of CNN-LSTM and LSTM-CNN. Both shared 

the same parameters but differed in layer order in which CNN-LSTM model 

stacked CNN on top of LSTM layer to handle spatial problem of dataset while 

LSTM-CNN set LSTM in the first layer to deal with temporal data. The optimized 

lr, number of neuron and number of epoch used for these combination model were 

lr=0.01, 90 neuron of LSTM, 40 filter of CNN and 110 epoch respectively. 

     For better evaluation, this research’s model performance was compared with 

other NN model by setting each algorithm according to their optimized parameter 

so that their detection performance can be observed and compared fairly. The 

detection result was tabulated in Table 3 and illustrated in Fig. 8. 

Table 3 Comparison accuracy detection of NN model 

Neural Network Model Accuracy (%)±std 

MLP 94.73±0.64 

CNN 87.91±2.57 

LSTM 95.90±0.34 

CNN-LSTM 96.76±1.24 

LSTM-CNN 98.53±0.24 

 

 
Fig. 8 Accuracy of Detection Model 

 

     It was found that among common NN model, LSTM showed the best accuracy 

while CNN showed the lowest accuracy. The results were displayed as such because 

of the difference architecture of each algorithm. Basic architecture of LSTM and 

CNN were MLP but they were strained with special structure. Besides, both CNN 

and LSTM were invented to exploit temporal invariant in detection. However, in 

the context of temporal sequences, LSTM outperform MLP and CNN by accurately 

detecting 95.90% of malware while MLP and CNN detect 94.73% and 87.91% 

respectively. The main difference of CNN from MLP and LSTM is the layer of 
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convolution and pooling where it coalescing input data using learned function. This 

means only selected input features by CNN were chosen to pass as new input to 

LSTM classifier. LSTM used its memory cell to process and connect all information 

to produce an input. However, it was not as powerful as the detection by LSTM-

CNN model that improved malware detection. The CNN-LSTM classifier depicts 

higher accuracy outperforming general CNN, LSTM, and MLP. This is because of 

the existence of best feature selections made by CNN algorithm at the first layer 

before passing it to LSTM to learn the extracted features. The main difference 

between CNN-LSTM and LSTM-CNN model was which algorithm came first at 

the first layer. The detection rate using LSTM-CNN was 98.53% and CNN-LSTM 

was 96.76% with both detections higher than Drebin detector scheme itself which 

was 94%. In LSTM-CNN, LSTM layer was the first to receive input, process and 

stores information not only for current input but also from previous input. The new 

output produced by LSTM was then fed into CNN to be convoluted where the 

features of input were extracted.  

     T-test approach is used to measure the significant difference of the proposed 

model. The p–value or probability-value for accuracy performance is calculated, 

where the hypothesis null is true. Hypothesis null in this work defined as there is 

no difference between the proposed detection models with existing detection model. 

If the p-value less than 0.5, the hypothesis is rejected and defined as there is 

significance difference between proposed models with existing models. LSTM-

CNN detection model significantly outperforms the standard MLP (p < 0.0001), 

CNN (p < 0.0001) and LSTM (p < 0.0001). The result supported this study’s 

motivation to combine the neural network algorithm to deal with and detect spatial 

and temporal problem better. However, the order in stacking the layers played a 

huge role in model detection performance. By stacking LSTM layer before CNN to 

process input, better information that accumulated from all inputs were generated 

before the input were sent to be extracted in CNN for better accuracy. If CNN 

initiate the layer, the sequence information from the inputs were lost and LSTM 

function was not fully utilized. 

5      Conclusion  

This paper reported the study of two malware detection models that combining 

LSTM with CNN and evaluated the models on the Drebin dataset. Two additional 

features from the Drebin dataset were extracted and new numerical vector dataset 

was generated using BOW model that destroyed the spatial information of data. 

Previous work showed that CNN was well known with its structure in extracting 

the feature and LSTM was highly capable with temporal modeling. Hence, this 

study decided to combine LSTM together with CNN and MLP to see if LSTM can 

help in dealing with spatiotemporal data provided by BOW model representation. 
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LSTM and CNN were combined as feature classifier and MLP as output classifier. 

The effect of changing parameter values in the performance of detection was then 

observed; 10 new sub datasets were generated for testing and performing 

evaluation. It was found that the LSTM-CNN outperformed MLP, CNN, LSTM 

and CNN-LSTM in detecting malware. This indicates that hybrid scheme for NN 

was more accurate and well-suited to detect sequential data. This will be good 

subject for further research to extend the combination of LSTM and observe its 

effect on malware detection. In future work, more complex modifications of the 

LSTM using larger number of samples and more parameters tuning can also be 

planned and explored. With this modification, it is hoped that the LSTM-CNN 

model may improve and accurately detect malware better. 
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