

Int. J. Advance Soft Compu. Appl, Vol.11, No. 1, March 2019

ISSN 2074-8523

Recurrent Neural Network

for Malware Detection

Mudzfirah Abdul Halim1, Azizi Abdullah2, Khairul Akram Zainol Ariffin3

1Faculty of Information Science and Technology (FTSM),
2Center for Artificial Intelligence and Technology (CAIT),

3Center for Cyber Security (Cyber),

Universiti Kebangsaan Malaysia, 43600 UKM, Bangi Selangor, Malaysia

e-mail: mudzfirahalim@gmail.com, {azizia, k.akram }@ukm.edu.my

Abstract

 Recently, an active development of network communication
technology has brought inspiration to new cyber-attack such as
malware. This possesses a massive threat to network organization,
users and security. Consequently, many researchers have developed
novel algorithms for attack detection. Nevertheless, they still face the
problem of building reliable and accurate models that are capable in
handling large quantities of data with changing patterns. The most
common technique to represent the feature of malware is bag-of-
words (BOW) where the frequency of each word is used for malware
description. However, using BOW approach will destroy the spatial
and sequence information aspects of malware patterns, resulting in
information loss and coarse indexing. Therefore, this paper presents
two combination models of Long Short-Term Memory (LSTM) and
Convolutional Neural Network (CNN) to deal with spatial and
temporal signals problem of BOW representation. Both techniques
are well known in the classification problem with LSTM being useful
in temporal modeling while CNN is good at extract spatial information
from data. After that, the Multi-Layer Perceptron (MLP) is used for
classification. The model is trained on Drebin dataset and validated,
and then the result is compared with other techniques. The experiment
shows that the both proposed models outperform common MLP, CNN
and LSTM models on a malware classification task. Our best model
(LSTM-CNN) model obtains state-of-the-art performance level of
98.53% of the Drebin dataset.

 Keywords: Deep Learning, Long Short Term Memory, Malware
Classification, Recurrent Neural Network.

mailto:mudzfirahalim@gmail.com

47 Recurrent Convolutional Network

1 Introduction

In this century, the development of network technology changes people life where

they could easily access information from around the world more effectively than

previous years. At the same time, however, a great number of cyber incidents such

as malware also actively evolving. Malicious software, commonly known as

malware is a continuous problem and has become a major threat to computer users,

businesses, corporations, and even governments. The number of malware

increasing year by year and becomes more complex and sophisticated. It is harmful

and can contribute to unwanted loss or privacy invasion as it compromises the

confidentiality, integrity and availability of private data without user’s permission.

Consequently with the rising of cyber incidents related to malwares, most

researchers have studied various techniques to detect them.

 Machine learning techniques such as Support Vector Machines (SVM), k-

Nearest Neighbor (k-NN), Naïve-Bayesian (NB), Random Forests (RF), Neural

Network (NN), are prominently explored for malware classification[1]–[4]. Several

researchers combine numerous machine learning classifiers as they claim the hybrid

of multiple classifiers [5] has better performance than single classifier. Andrew H.

Sung combined SVM with Artificial Neural Network (ANN) in his work and

reduced the number of features for better performance but the result was

undifferentiated to the result of original features [6]. Same claim from

Maheshkumar Subhnani et al. who combined Multilayer Perception (MLP), k-

Means and decision tree in his paper [7] to detect malware, also showed that the

performance improved in detection and false alarm rates. Advance machine

learning has also been applied for malware detection since it is very convenient in

extracting more information from the datasets. Even though unsupervised machine

learning such as clustering task seems to be the most preferable by researchers to

understand malware [8][9], the supervised machine learning method is also

preferable when it comes to correct labeling [10]. Dahl et al. [11] highlighted the

use of supervised machine learning to classify the labeled sample of malware by

combining random projection and NN techniques.

 In the past few years, there were noticeable work involving Deep Neural

Networks (DNN) in classifying malware [1], [11]–[13]. Saxe et al. [1] utilized feed

forward NN for static analysis. However, as the focus was on static analysis and

dealing with binaries of executable files, the satisfactory input for the classification

was not achieved. Motivated by Pascanu et al. [12] that learnt malware through

language model, Athiwaratkun et al. [14] and Kolosnjaji et al. [13] expanded the

research by using Recurrent Neural Network (RNN) to enhance malware sequence

classification. In addition, a combination of RNN with MLP was applied in [12] to

learn malware and benign files through language model and formed feature

representation. In this work, the MLP was allocated as output classifier while RNN

worked as feature extractor. The usage of temporal max pooling helped improved

and produced the best result in processing long sequence of temporal features but

Mudzfirah Abdul Halim et al.

48

RNN failed to learn the outstanding features of malware. Furthermore, RNN

produced a lower detection rate in almost every experiment, compared to Echo State

Network (ESN). Athiwaratkun & Strokes achieved 31.30% improvement in

detection rate by combining Long Short Term Memory (LSTM) with Gated

Recurrent Unit (GRU) as a language model [14].

 Nevertheless, input for machine learning and data science need to be represented

numerically and the popular technique that is commonly used to convert word input

into vector input is Bag of Word (BOW) model. This model represents the

frequency of each word as feature sequence input. However, one of the main

technical issues addressed in using BOW representation is the spatial and temporal

problem against the sequences input especially when multi-step predictions have to

be made [15]. This is because BOW model destroys the spatial relationship of

feature sequences which limit its descriptive ability. Spatial data is important as it

provides the information linkage between features and it is helpful in terms of better

understanding of the way the feature sequences of malware are related to each other.

 LSTM comes with memory cells that can solve temporal problem by learning

the temporal structure between each sequential input and then achieve a high level

abstraction of data because of its complex architecture. Kim et al. [16] applied

LSTM for intrusion detection on KDD Cup 1999 dataset and achieved a higher

detection rate compared to other machine learning classifier. Combination of

classifiers applied in [15] to deal with temporal data where CNN was used in the

first layer to reduce variance in the frequency of input and then the output was fed

to LSTM for temporal modeling. Therefore, in this paper, LSTM and CNN are

combined to detect malware more accurately and then the accuracy is compared

with other DNN classifiers. The idea of combining DNN especially LSTM and

CNN for classification has been explored before, though previous work was in

different domain field. However, layering order of algorithm plays big role in

producing the best performance in malware detection when two different

algorithms are combined. Hence, the Drebin dataset is utilized which is one of the

few public malware data that represents features with words. The words are then

transformed into feature vector dataset using BOW model. This dataset is

formulated as temporal sequence malware problem that can be solved by passing

the sequence feature input through LSTM for temporal modeling and fed into CNN

layer for feature pattern analysis. Lastly, output features are classified by MLP

classifier. It is believed that malware classification can be improved by combining

these NN as a model. This paper is organized in five sections; Section 1 is the

introduction, Section 2 reviews related work in the area, section 3 presents the

proposed malware detection model while section 4 discusses experimental results

and comparative analysis. Finally which is Section 5, concludes the paper with

summary and future work directions.

49 Recurrent Convolutional Network

2 Background

In this section, we will briefly explain the fundamental of Neural Network models.

2.1 Artificial Neural Network

Artificial NN (ANN) mimics the processes happening in real human neurons. The

neurons in brain communicate with each other by sending electrical pulses through

wiring called synapse. The input signal is first received via dendrites and after that

it is processed by soma cell. The cell turns the processed value into output via axons

and synapses. Fig. 1 illustrates the basic architecture of ANN.

𝑥𝑛 and 𝑤𝑛 represent the input and weight of input respectively. ANN model

receives input 𝑥𝑛, and next they are weighted with value 𝑤𝑛 based on their

importance and later all the input are added. The sum value is then fed through

transfer function and output is generated. The output is determined by the weighted

sum of input and weight, ∑ 𝑤𝑖𝑥𝑖𝑖 . To be precise, the equation (1) is shown as below:

Output= {
0 𝑖𝑓 ∑ 𝑤𝑖𝑥𝑖𝑖 ≤ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

1 𝑖𝑓 ∑ 𝑤𝑖𝑥𝑖𝑖 > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
 (1)

2.2 Recurrent Neural Network

Recurrent Neural Network (RNN) is a practical technique in classifying sequences.

There are a number of tasks that include the RNN in their operation such as image

captioning, speech recognition, sentiment analysis and scene labelling. RNN is an

extension of regular ANN with the purpose to enhance performance. The ANN

possesses a few drawbacks such as inability to deal with temporal data which

requires fix input and output size. This is because ANN is independent and omits

everything from previous feed-forward input. It concentrates only on particular

input and then maps them directly to output vector. Output from sequential input is

only significant when all inputs are dependent on each other because the whole

input is useful. In contrast, the RNN offers more flexibility in processing various

sizes of input and output using its memory that allows it to produce output that

function dependently based on the entire history of input.

Sum Transfer

Input

𝑥0

Weights Output

𝑥1

𝑥𝑛

𝑤1

𝑤2

𝑤𝑛

Fig. 1 The basic architecture of ANN

Mudzfirah Abdul Halim et al.

50

 The layer in RNN consists of input layer, hidden layer and output layer. Fig. 2

gives a simple example of RNN that consists of many input unit, one output unit

and hidden layer. The 𝑥𝑡 represents input, while the 𝑦𝑡 is an output and 𝑠𝑡 is the

hidden state value. All these variables are measured at time step. The hidden state

is known as the memory; computed at a particular input and is carried forward by

the network. By tracing the arrow coming towards hidden state value, there are two

variables to compute new hidden state which are input and previous hidden state

value. U, V, and W refer to the parameters for the different layers. In ANN, these

parameters varied at each layer but in RNN, the same parameter values are used for

each layer throughout to the end.

 The hidden state value (2) and output (3) are calculated as follow:

𝑠𝑡= σ(w𝑥𝑠𝑥𝑡 + w𝑠𝑠𝑠𝑡 + 𝑏𝑠 (2)
𝑦𝑡 = w𝑠𝑦𝑠𝑡 + 𝑏𝑦 (3)

 In the above formula, σ function is nonlinearity, 𝑤 is a weight matrix, and b is a

bias form. There are different types of weight matrices and each matrix has different

explanation. 𝑤𝑥𝑠 maps the input value x to hidden state value 𝑠. The 𝑤𝑠𝑠 maps the

value of hidden state 𝑠 to another hidden state value along the time axis. For

instance from 𝑠1 to 𝑠2, 𝑤𝑠𝑦 maps the hidden state value to an output value 𝑦. There

are also constant biases in RNN which are denoted as 𝑏𝑠 and 𝑏𝑦 for hidden state

and output respectively. This bias vector can vertically shift any value passing

through the activation function. However, RNN take advantages of

backpropagation called Backpropagation Through Time (BPTT). It computes the

gradient across the many time steps [17] and faces a significant gradient vanishing

problem as mentioned in [18].

𝑥𝑡 𝑥1

𝑠𝑡

𝑦𝑡

𝑠1

𝑥2 𝑥3

𝑠2 𝑠3

𝑦1

Hidden

 layer

Hidden

layer

Output

Input

Unfold

U

V

W

W W W

U U U

V

Fig. 2 Traditional RNN

51 Recurrent Convolutional Network

2.3 Long Short Term Memory

Long Short Term Memory (LSTM) [19] proposed to solve the vanishing gradient

problem addressed by RNNs. The architecture of LSTM is slightly different when

compared to RNN due to the existence of complicated mechanism named memory

cell. The memory cell learns the input in an intelligent way to enable the LSTM

network to process and store the information for short-term as well as long-term

memory. Fig. 3 illustrates a typical structure of memory cell. It receives three types

of inputs which are 𝑐𝑡−1, 𝑠𝑡−1 and 𝑥𝑡 that represents the cell state from previous

cell memory, the previous hidden state value and input respectively. These inputs

compute new cell state denoted by 𝑐𝑡which then compute the new hidden state

denoted by 𝑠𝑡.

Fig. 3 Memory cell of LSTM

 Gating concept in LSTM controls the information entering and leaving the

memory cell. The gates f, g, i and o are the forget gate, write gate, input gate and

output gate respectively. Forget gate resets the information such as hidden state

value from previous cell state which is no more used in current memory cell. Write

gate is a gate that scans and chooses the value to be added to the new information

in the cell state. The input gate is responsible to write a process where it decides the

number of information needed by gate g to be added into the cell state. The output

gate reads the cell state from memory and produces a hidden state vector. All

computations for the gates are as follow:

𝑓 = 𝜎(w𝑥𝑓𝑥𝑡 + w𝑠𝑓𝑠𝑡−1 + w𝑐𝑓𝑐𝑡−1 + 𝑏𝑓) (4)
𝑔 = tanh (w𝑥𝑔𝑥𝑡 + w𝑠𝑔𝑠𝑡−1 + 𝑏𝑔) (5)

𝑖 = 𝜎(w𝑥𝑖𝑥𝑡 + w𝑠𝑖𝑠𝑡−1 + w𝑐𝑖𝑐𝑡−1 + 𝑏𝑖 (6)
𝑜 = 𝜎(w𝑥𝑜𝑥𝑡 + w𝑠𝑜𝑠𝑡−1 + w𝑐𝑜𝑐𝑡 + 𝑏𝑜) (7)

 The σ function is the activation function, which stands for standard sigmoid

function. This function lies between zero and one. A zero value function will not

let any information pass through while a value of one means letting all information

enter the gate. Similar to hidden state in RNN, each weight in LSTM is also

descriptive; each weight represents the weight matrices that connect the peephole

between one information to another exposing the internal state. For instance in

x +

tanh

σ tanh σ σ

x

x

f i g

o

 −

 −

Mudzfirah Abdul Halim et al.

52

equation (4), 𝑤𝑥𝑓 represents the weight that map input 𝑥 to forget gate 𝑓. 𝑤𝑠𝑓𝑠𝑡−1

maps hidden state value from previous cell to forget gate while 𝑤𝑐𝑓𝑐𝑡−1 maps value

of memory cell in previous memory.

 These gates play big role in information control. Equation (8) shows the

procedure of updating the new value of cell state by forgetting the previous cell

value using gate 𝑓and inputting the current cell value through gate 𝑖 and 𝑔.

𝑐𝑡 = 𝑓 ∗ 𝑐𝑡−1 + 𝑖 ∗ 𝑔 (8)

 The activation function of new cell value will be processed through gate 𝑜, and

new amount of output will be produced which is known as the hidden state value.

This process can be formulated as in equation (9):

𝑠𝑡 = 𝑜 ∗ tanh (𝑐𝑡) (9)

2.4 Convolutional Neural Network

Convolutional Neural Network (CNN) [20] was designed initially for image

recognition.Fig. 4 illustrates simple CNN that consists of input layer, convolution

layer, max-pooling layer and output layer.

Fig. 4 Convolutional Neural Network

 CNN model has the ability to recognize local features between inputs that enable

this model to learn features regardless of the position they are placed in the input

matrix. The convolution layer will extract the features’ input and learn the pattern

by applying the convolving filters to the features’ input. The output is generated by

multiplying local input by the filters weight value. This convolution process

represents the characteristics of CNN where it allows the replication of input to be

done by sharing the same filter unit. The convoluted output will be fed into max-

pooling layer where the variability removal is carried out. This input reduction

process involves comparison between the convoluted output and maximum value

that is chosen. It partitions the convoluted output into a set of windows that searches

for the maximum values by comparing each values. This operation plays big role

to help eliminate smaller values and provide invariant output.

Input

 Output

Convolution layer Max pooling

ReLu function

53 Recurrent Convolutional Network

3 Malware Detection Model

In this section, the malware detection model for solving the spatial and temporal

problem is presented. Instead of using raw Drebin dataset, malware features with

the application of BOW representation are treated as malware classification

problem. The input of the model is the malware features, and the output is a binary

classification.

3.1 Malware features

The Drebin dataset used to train and validate proposed models. In total, this dataset

contains 129,013 samples of real world application with features. The details of the

malware features were as listed in Table 1.

Table 1 Details of features

Feature name Description

Hardware

components

This feature represents the requested hardware.

Permission to certain hardware component has few

security issues as it can reveal private data.

Requested

permissions

Permission of a system is one of the important security

mechanisms in an Android. A malicious application tends

to request for permission more often to grant access into

the system compared to normal application.

Application

components

This feature declares suspicious component that exists in

application such as activities and services provided. The

declaration helps in analysing and identifying malware as

it usually shares the same particular name of services.

Filtered intents Intents collect all the communication and information

during the inter-process and intra-process in Android.

This feature is important as malware tends to follow

specific intents.

Restricted API calls This feature lists the critical API calls that are restricted

by Android permission system. These API calls can give

a deeper understanding on the function of an application.

Used permissions The restricted API calls will be analysed to determine

which requested permission is actually used. This feature

lists the permissions that are requested and eventually

used.

Suspicious API

calls

Certain suspicious calls that are frequently requested by

the malware.

Network addresses Malware needs to establish a network connection to

collect data from a device. This feature lists all the

addresses that are used by the malware.

Mudzfirah Abdul Halim et al.

54

 Drebin dataset does not provide numerical value for both malware and benign

applications, so the pre-processing was needed. To make them available for our

model to train, we first detect the features using common tokenizer. Tokenizer splits

text into individual word. The first word for every single line in the sample were

chosen and listed. Based on the features’ list, it was found that few samples had sets

of feature; services providers and services receivers. Service provider is a feature

that declares services provider of application while service receiver feature declares

the service receivers of application. Service is a component that runs in the

background until it stop itself and does not interact with user directly. Malwares are

likely request these two feature more frequent than benign application. Thus, these

two had been chosen as additional features for malware classification model

evaluation. For feature extraction, Bag of Words (BOW) model was applied. In this

BOW model, specific list of words were retrieved and unimportant words were

removed from the document. It helps document retrieval by matching the chosen

words in the list and counts their frequency. All gathered features were stored in

.txt file for further analysis. Fig. 5 presents pseudocode for BOW model in

transforming word sequences to numerical sequences. The model read every line in

the documents and ignored characters and words that were not in the feature

dictionary. Words that matched the list of features were retrieved and frequency of

its occurrence was counted.

 In addition, due to uneven number of samples between malware and benign, new

training and test dataset were generated evenly. 2779 random samples from benign

and 2779 from malware were chosen. Then, all of the samples were combined in

new dataset.

List_feature = [Hardware components, Requested permissions, Application components,

Filtered intents, Restricted API calls, Used permissions, Suspicious API calls,

Network addresses, Services provider, Services receiver]
For each line in dataset:

If line!=null then do split word by placing a space before and after characters ::

(this is to ensure that only selected words in DREBIN dataset are extracted as
feature vector);

Read every line

Tokenize the word by splitting it on spaces
Remove tokens of space, empty string or punctuation marks

For each tokenized word:

Set id
If tokenized word=List_feature[]:

Freq[id]++;

Fig. 5 Pseudocode of BOW model

55 Recurrent Convolutional Network

3.2 CNN-LSTM

Fig. 6 shows the overview of detection model CNN-LSTM where CNN stacked on

top of LSTM. The idea behind this combination model is that the feature filtration

will be done first before the temporal modelling performed. The dataset passed

through CNN at the first layer for feature reduction and next the result of smaller

feature dimension fed into LSTM layer for data sequences learning. Lastly, output

features from LSTM are classified by MLP classifier.

3.3 LSTM-CNN

Fig. 7 shows the overview of the detection model LSTM-CNN. LSTM is put as the

first layer to learn temporal data from BOW representation data. The architecture

can be seen as a deep architecture through time steps with LSTM memory cells to

produce output sequences. This model learns end-to-end features from malware

Output

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10

 ...

 ...

...

CNN layer

LSTM

layer

Max pooling

Convolutional

layer

Flatten()

RNB layer

with

Dense (1)

Feature representation

Fig. 6 CNN-LSTM detection model

Mudzfirah Abdul Halim et al.

56

feature sequences where it is extracted layer by layer. The temporal modeling using

LSTM is performed. One layer of LSTM is used with memory cells to remember

all feature inputs. The LSTM output is then passed to the CNN to reduce the feature

variation. The architecture used is one dimension convolution layer, with 5x1

feature filters shared across the space. A 4x1 size of max-pooling is then performed

on the convoluted output.

 The MLP layer is added after the output of CNN for classification task. In this

layer, all outputs are stacked and classified using single sigmoid function. It then

sends the classified output for comparison to evaluator which receives two set of

Output

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10

...

 ...

Convolutional

layer

LSTM layer

Flatten ()

Max-pooling layer

Feature representation

MLP layer

with

Dense (1)

CNN layer

Fig. 7 LSTM-CNN detection model

57 Recurrent Convolutional Network

datasets; one from MLP and another one from feature dataset for validation.

Evaluator fully utilize dataset from MLP classifier that contains an output that is

produced based on learning algorithm and validate dataset from feature dataset to

determine the maliciousness of malware. The decision is then compared with the

label provided to check the accuracy of the model.

3.4 Training

Before designing the model development, the malware detector model is optimized

on computer with Windows 7 environment using Intel(R) Core(TM) i3-2350M

2.30GHz and 6GB RAM. The model shares almost the same optimization

parameters. Parameter gives impact to the performance of model. There are

parameters values that can be tuned such as batch size, optimizer, learning rate,

number of epochs, number and size of layer and activation function. However,

among all the parameters, researcher found that the learning rate (lr) of the

optimizer and size of neuron have the greatest impact. Therefore, the parameter

experiment is run by changing the values of lr, number of neuron and epoch. Adam

optimizer is used because it computes individual adaptive learning for different

parameters. Adam maintained the learning rate for each parameter and separately

adapts as learning unfolds. As a result, the best values for lr, number of neuron and

number of epoch for LSTM are 0.01, 90 and 60 respectively.

4 Experiment

This section presents the experimental result and evaluation of the experiment on

Drebin dataset. Before conducting the experiment, the dataset was transformed into

vector using BOW model. It contained 10 feature vectors with label 0 for benign

and 1 for malware. For the hidden layer, LSTM and CNN architecture were applied;

and sigmoid function of MLP was applied to the output layer

4.1 Drebin dataset

In this paper, the Drebin dataset [21] was utilized to evaluate the performance of

the proposed model. Since a lot of researches have applied this dataset, it is fair that

it was selected for benchmarking purpose. In general, this dataset contains 129,013

samples with eight features which were hardware component, requested

permissions, application components, filtered intents, restricted API calls, used

permissions, suspicious API calls and network addresses. 123,453 samples of this

dataset represent the benign and the rest were malware. Each of malware samples

belongs to one of 179 malware families. In our experiments, we used the frequency

of feature occurrence in the application text file. For example, a sample of

application can have feature vector of 23, 89, 90, 56, 78, 1, 0, and 22. This means

the first feature occurs 23 times and so on.

Mudzfirah Abdul Halim et al.

58

4.2 Evaluation Measures

A In order to evaluate the detection performance, evaluation metrics that were

derived from the confusion matrix were used. The following measures were derived

and applied in evaluator:

TPR = TP/ (TP+FN) (9)

FPR= FP/ (TN+FP) (10)

Accuracy = (TP+TN)/ (TP+TN+FP+FN) (11)

 TPR or True Positive Rate is the ratio of malware detected by the model. FPR

or false-positive rate is the value of benign data that is incorrectly classified as

malware. The accuracy metric is the rate of performance in detecting malware. TP

or true positive is the number of benign samples that is correctly classified by the

model. TN, or true negative, is the number of malware samples that is correctly

classified. FP, or false positive, is the number of benign samples that is wrongly

classified as malware and FN, or false negative, is the number of malware samples

that is wrongly classified as benign.

4.3 Measuring Performance

In terms of evaluation, dataset were partitioned to 10 sub dataset. In each dataset,

there were 5558 randomly selected samples that consist of equal proportion for both

malware and benign. Both training and testing dataset were randomly selected and

labelled. 10 times evaluation experiment was run for each dataset using the

optimized parameter to train the model and the result was recorded. The optimized

parameter for each model was summarized in Table 2.

Table 2 Comparison with other algorithms

 MLP CNN LSTM CNN-

LSTM

LSTM-

CNN

Learning Rate 0.01 0.01 0.01 0.01 0.01

Number of Neuron 60 50 90 40(CNN)

90(LSTM)

90(LSTM)

40(CNN)

Number of Epoch 180 130 60 110 110

 In order to evaluate performance of proposed model, focus was first set on the

optimized parameter. For number of neuron, the optimized numbers for all

algorithms were different. The neurons for MLP were set in range of 40 to 60. As

for LSTM, the neuron numbers were set to 90 as the larger the number of neuron

the better the accuracy performance of LSTM. Besides, memory structure in LSTM

learns better if the number of neuron increases. CNN on the other hand needed only

50 to create the best performance. In aspect of epoch, LSTM required smaller

59 Recurrent Convolutional Network

number than MLP and CNN, which was 60. In comparison, MLP and CNN needed

more number of epoch required by LSTM to achieve the best detection accuracy in

which MLP 180 and CNN 130. All these three algorithms acted differently to epoch

where LSTM increased almost constantly while MLP and CNN acted the opposite

way. The only identical optimized parameter used for all algorithms was the value

learning rate parameter. All algorithms prefer lr=0.01. These optimized parameters

were then used in stacking model of CNN-LSTM and LSTM-CNN. Both shared

the same parameters but differed in layer order in which CNN-LSTM model

stacked CNN on top of LSTM layer to handle spatial problem of dataset while

LSTM-CNN set LSTM in the first layer to deal with temporal data. The optimized

lr, number of neuron and number of epoch used for these combination model were

lr=0.01, 90 neuron of LSTM, 40 filter of CNN and 110 epoch respectively.

 For better evaluation, this research’s model performance was compared with

other NN model by setting each algorithm according to their optimized parameter

so that their detection performance can be observed and compared fairly. The

detection result was tabulated in Table 3 and illustrated in Fig. 8.

Table 3 Comparison accuracy detection of NN model

Neural Network Model Accuracy (%)±std

MLP 94.73±0.64

CNN 87.91±2.57

LSTM 95.90±0.34

CNN-LSTM 96.76±1.24

LSTM-CNN 98.53±0.24

Fig. 8 Accuracy of Detection Model

 It was found that among common NN model, LSTM showed the best accuracy

while CNN showed the lowest accuracy. The results were displayed as such because

of the difference architecture of each algorithm. Basic architecture of LSTM and

CNN were MLP but they were strained with special structure. Besides, both CNN

and LSTM were invented to exploit temporal invariant in detection. However, in

the context of temporal sequences, LSTM outperform MLP and CNN by accurately

detecting 95.90% of malware while MLP and CNN detect 94.73% and 87.91%

respectively. The main difference of CNN from MLP and LSTM is the layer of

80

85

90

95

100

MLP CNN LSTM CNN-
LSTM

LSTM-
CNN

Mudzfirah Abdul Halim et al.

60

convolution and pooling where it coalescing input data using learned function. This

means only selected input features by CNN were chosen to pass as new input to

LSTM classifier. LSTM used its memory cell to process and connect all information

to produce an input. However, it was not as powerful as the detection by LSTM-

CNN model that improved malware detection. The CNN-LSTM classifier depicts

higher accuracy outperforming general CNN, LSTM, and MLP. This is because of

the existence of best feature selections made by CNN algorithm at the first layer

before passing it to LSTM to learn the extracted features. The main difference

between CNN-LSTM and LSTM-CNN model was which algorithm came first at

the first layer. The detection rate using LSTM-CNN was 98.53% and CNN-LSTM

was 96.76% with both detections higher than Drebin detector scheme itself which

was 94%. In LSTM-CNN, LSTM layer was the first to receive input, process and

stores information not only for current input but also from previous input. The new

output produced by LSTM was then fed into CNN to be convoluted where the

features of input were extracted.

 T-test approach is used to measure the significant difference of the proposed

model. The p–value or probability-value for accuracy performance is calculated,

where the hypothesis null is true. Hypothesis null in this work defined as there is

no difference between the proposed detection models with existing detection model.

If the p-value less than 0.5, the hypothesis is rejected and defined as there is

significance difference between proposed models with existing models. LSTM-

CNN detection model significantly outperforms the standard MLP (p < 0.0001),

CNN (p < 0.0001) and LSTM (p < 0.0001). The result supported this study’s

motivation to combine the neural network algorithm to deal with and detect spatial

and temporal problem better. However, the order in stacking the layers played a

huge role in model detection performance. By stacking LSTM layer before CNN to

process input, better information that accumulated from all inputs were generated

before the input were sent to be extracted in CNN for better accuracy. If CNN

initiate the layer, the sequence information from the inputs were lost and LSTM

function was not fully utilized.

5 Conclusion

This paper reported the study of two malware detection models that combining

LSTM with CNN and evaluated the models on the Drebin dataset. Two additional

features from the Drebin dataset were extracted and new numerical vector dataset

was generated using BOW model that destroyed the spatial information of data.

Previous work showed that CNN was well known with its structure in extracting

the feature and LSTM was highly capable with temporal modeling. Hence, this

study decided to combine LSTM together with CNN and MLP to see if LSTM can

help in dealing with spatiotemporal data provided by BOW model representation.

61 Recurrent Convolutional Network

LSTM and CNN were combined as feature classifier and MLP as output classifier.

The effect of changing parameter values in the performance of detection was then

observed; 10 new sub datasets were generated for testing and performing

evaluation. It was found that the LSTM-CNN outperformed MLP, CNN, LSTM

and CNN-LSTM in detecting malware. This indicates that hybrid scheme for NN

was more accurate and well-suited to detect sequential data. This will be good

subject for further research to extend the combination of LSTM and observe its

effect on malware detection. In future work, more complex modifications of the

LSTM using larger number of samples and more parameters tuning can also be

planned and explored. With this modification, it is hoped that the LSTM-CNN

model may improve and accurately detect malware better.

ACKNOWLEDGEMENTS
This is a text of acknowledgements The authors would like to thank the Universiti

Kebangsaan Malaysia (UKM) and Ministry of Higher Education (MoHe) for their

support in making this project possible. This work was supported by the

Fundamental Research Grant (FRGS) with grant number FRGS/ 1/ 2016/ ICT02/

UKM/ 02/ 05.

References

[1] J. Saxe & K. Berlin. (2015). Deep neural network based malware detection

using two dimensional binary program features. In 10th International

Conference on Malicious and Unwanted Software (MALWARE), 2015

(pp.11–20).

[2] W. Huang & J. W. Stokes. (2016). MtNet: A multi-task neural network for

dynamic malware classification. In Lecture Notes in Computer Science

(including subseries Lecture Notes in Artificial Intelligence and Lecture

Notes in Bioinformatics). 2016, (vol. 9721, pp. 399–418).

[3] Wei Wang, Ming Zhu, Xuewen Zeng, Xiaozhou Ye, & Yiqiang Sheng.

(2017). Malware traffic classification using convolutional neural network

for representation learning. In 2017 International Conference on

Information Networking (ICOIN), 2017 (pp. 712–717).

[4] Y. Liao & V. R. Vemuri. (2002). Use of k-nearest neighbor classifier for

intrusion detection. 2002 Comput. Secur. (vol. 21, no. 5, pp. 439–448).

[5] Y. Deng & Y. Zhong. (2013). Keystroke Dynamics User Authentication

Based on Gaussian Mixture Model and Deep Belief Nets. 2013 ISRN

Signal Process (vol. 2013, pp. 1–7).

[6] A. H. Sung & S. Mukkamala. (2003). Identifying Important Features for

Intrusion Detection Using Support Vector Machines and Neural Networks.

Mudzfirah Abdul Halim et al.

62

In 2003 Proceeding. Symp. Appl. Internet, on (Vol. 1, no. 1, pp. 209–216).

[7] M. Sabhnani, G. Serpen, & K. K. More. (2003). Application of Machine

Learning Algorithms to KDD Intrusion Detection Dataset within Misuse

Detection Context. In 2003 Proceedings. Int. Conf. Mach. Learn. Model.

Technol. Appl. (pp. 209–215).

[8] M. Bailey, J. Oberheide, J. Andersen, Z. M. Mao, F. Jahanian, & J.

Nazario. (2007). Automated Classification and Analysis of Internet

Malware. In 2007 Proceedings of the 10th International Conference on

Recent Advances in Intrusion Detection on (pp. 178–197).

[9] U. Bayer, P. M. Comparetti, C. Hlauschek, C. Kruegel, & E. Kirda (2009).

Scalable , Behavior-Based Malware Clustering. Sophia (vol. 272, no. 3, pp.

51–88).

[10] . S. Pirscoveanu, T. M. T. Hansen, S.S. Larsen, J. M. Stevanovic, M.

Pedersen, & A. . Czech. (2015). Analysis of Malware Behavior: Type

Classification using Machine Learning. In Int. Conf. Cyber Situational

Awareness, Data Anal. Assess. on (pp. 1–7).

[11] G. E. Dahl, J. W. Stokes, L. Deng, & D. Yu,. (2013). Large-scale malware

classification using random projections and neural networks. In 2013 IEEE

International Conference on Acoustics, Speech and Signal Processing on

(pp. 3422–3426)

[12] R. Pascanu, J. W. Stokes, H. Sanossian, M. Marinescu, & A. Thomas,.

(2015). Malware classification with recurrent networks. In ICASSP, IEEE

Int. Conf. Acoust. Speech Signal Process. - Proc. on (vol. 2015–Augus, pp.

1916–1920).

[13] B. Kolosnjaji, A. Zarras, G. Webster, & C. Eckert,. (2016). Deep learning

for classification of malware system call sequences. In Lect. Notes Comput.

Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics)

on (vol. 9992 LNAI, pp. 137–149).

[14] B. Athiwaratkun & J. W. Stokes, . (2017). Malware classification with

LSTM and GRU language models and a character-level CNN. In ICASSP,

IEEE Int. Conf. Acoust. Speech Signal Process Proc. on (pp. 2482–2486).

[15] T. N. Sainath, O. Vinyals, A. Senior, & H. Sak. (2015). Convolutional,

Long Short-Term Memory, fully connected Deep Neural Networks. In

ICASSP, IEEE International Conference on Acoustics, Speech and Signal

Processing - Proceedings, 2015 on (vol. 2015 August, pp. 4580–4584)

[16] J. J. Kim, J. J. Kim, H. L. T. Thu, & H. Kim. (2016). Long Short Term

Memory Recurrent Neural Network Classifier for Intrusion Detection. In

63 Recurrent Convolutional Network

2016 Int. Conf. Platf. Technol. Serv.(pp. 1–5).

[17] P. J. Werbos. (1990). Backpropagation Through Time: What It Does and

How to Do It. In Proc. IEEE on (vol. 78, no. 10, pp. 1550–1560).

[18] Y. Bengio, P. Simard, & P. Frasconi. (1994). Learning Long Term

Dependencies with Gradient Descent is Difficult. In Trans. Neural

Networks on (vol. 5, no. 2, pp. 157–166). IEEE.

[19] S. Hochreiter & J. Schmidhuber. (1997). Long Short-Term Memory. In

Neural Computer on (vol. 9, no. 8, pp. 1735–1780).

[20] Y. LeCun & Y. Bengio. (1995). Convolutional networks for images,

speech, and time series. In Handb. brain theory neural networks (vol. 3361,

no. April 2016, pp. 255–258).

[21] D. Arp, M. Spreitzenbarth, M. Hübner, H. Gascon, & K. Rieck. (2014).

Drebin: Effective and Explainable Detection of Android Malware in Your

Pocket. In Proceedings 2014 Network and Distributed System Security

Symposium.

