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Abstract 

     Genomic repeat, which is to find repeating base pairs in 
Deoxyribonucleic Acid (DNA) sequences, can be used to detect 
genetic disease by analyzing the overload or over normal limits of the 
repetition. Since it takes very high computation cost, this research 
builds a parallel-computing model and its implementation to solve it. 
It can be achieved by modifying and implementing the Knuth-
Morris-Pratt algorithm (KMP) on the R High-Performance-
Computing Package, namely ‘pbdMPI’. It contains the following 
steps: preprocessing and splitting DNA sequence, KMP on parallel 
computing with ‘pbdMPI’, combining all indices, and calculating 
genomic repeats. To validate the model and implementation, 114 
experiments involving human DNA sequences are conducted on the 
standalone and parallel-computing scenarios. The results show that 
the proposed system can reduce the computation cost, which is more 
than 100 times faster than the standalone computing. Some 
comparisons of the computation cost in term of the numbers of 
batches and numbers of cores are presented along with the existing 
researches. In summary, the proposed model provides the significant 
improvement on the computational cost.    

     Keywords: DNA, human genom, genomic repeats, string matching, Knuth-
Morris-Pratt, high-performance computing. 



 

 

 

 

 

95                                                                                  Genomic Repeat Detection             

1      Introduction 

Genome sequencing of many species allows scientists to study all gene devices 

and their interactions [1]. In the last decade scientists had to conduct laboratory 

research for 3 years to analyze DNA (i.e., Deoxyribonucleic Acid) [2]. One of the 

cases of DNA analysis that requires time and effort on such a large scale is to 

analyze diseases caused by repeated genomic patterns, called genomic repeats [3], 

such as three recurrent base pairs that can cause disease in the trinucleotide 

category repeat disorders [4]. 

Efforts from sequencing have generated enormous amount of data so that it also 

gave birth to a new field called bioinformatics. With the resulting sequence data, 

scientists can analyze biological interests by applying computational methods that 

allow for much more efficient analysis of time and energy than many research 

laboratories do today [5]. 

In analyzing the genomic repeats problem, a string matching or pattern matching 

analysis will be searched for in a large text. The basic algorithm for searching 

strings or patterns is to match all possibilities contained in the data from the first 

index in the text until it runs out. This algorithm is known as the brute force 

(Naïve) algorithm which has complexity with the worst possible is O (mn), which 

will take very long if more text will be used as string or pattern search object [6]. 

The need for searching strings or patterns in large data allows scientists to make 

algorithms more efficient than brute-force algorithms. Therefore, some string 

matching algorithms were developed such as the Knut-Morris-Pratt algorithm [7]. 

This most famous string search algorithm ultimately inspires other scientists to 

continue to develop more efficient algorithms. One of the development algorithms 

of Knuth-Morris-Pratt is the Ukkonen algorithm [8] and the Fast Hybrid Pattern-

Matching Algorithm [9]. However, along with the development of the times and 

the increasing number of data generated in sequence, scientists should be able to 

solve computing problems with greater data [5].  

Thus, computer scientists create a concept of parallel computing or distributed 

systems that enable a computing job to be completed by multiple cores, nodes or 

computers simultaneously. One of them is the MapReduce concept [10], which is 

the basis of Google's search technology on a large scale and allows scientists to 

also apply the MapReduce concept to various research cases. Another example is 

the Package High-Performance Computing in R programming languages, such as 

‘Rmpi’ [11] and ‘pbdMPI’ [12] that develop parallel computing with MPI 

(Message Passing Interface) in the R programming language. Other examples are 

‘randomForestSRC’ [13], ‘dclone’ [14], and etc. Moreover, the ‘foreach’ package 

in R (at https://cran.r-project.org/package=foreach) has been also implemented in 

many areas, such as parallel particle swarm optimization [15] and parallel 

exponential smoothing [16].  



 

 

 

 

 

 

 

 

Riza et al.                                                                                                     96 

Various packages have their own procedures in their use as they need to be 

compiled at the prompt/terminal or can be done inside the console R itself. Also 

with the concept of programming such as data splitting to be analyzed, and so on. 

This research will modify and implement the Knuth-Morris-Pratt algorithm as the 

best string matching algorithm [17] on R Package High-Performance Computing 

‘pbdMPI’ to be used for large datasets. 

 

2      Genomic Repeats and Its Techniques 

2.1 DNA and Genomic Repeats 

The human genome has a size of approximately 3 billion base pairs out of a total 

of 23 chromosomes whose research begins with the Human Genome Project 

(HGP) beginning in 1990 [18], while the history for DNA sequencing was started 

by Sanger since 1997 [19]. DNA in humans is the same as the animal which is 

located in the nucleus of cells and mitochondria, in contrast to plants that also 

have DNA located on the chloroplast. DNA is a double-stranded, helical-shaped 

nucleic acid molecule composed of nucleotide monomers with deoxyribose sugar 

[1]. Most of the DNA lies in the nucleus cells but can also be found in 

mitochondria. DNA information is stored as code and into four chemical bases: 

adenine (“A”), guanine (“G”), cytosine (“C”), and thymne (“T”). The DNA bases 

have their respective pairs, “A” with “T” while “C” with “G”. Each base is also 

attached to sugar molecules and phosphate molecules. Simultaneously, they are 

called nucleotide [20]. 

Genomic Repeats or repeated sequences are patterns of recurrent nucleic acids in 

the genome. Based on the sequence, the genomic repeats are divided into 

minisatellite and microsatellite as explained below: 

a. Minisatellite: It is a recurrence of a nucleic acid pattern with 10-60 pairs of 

repeating bases approximately 5-50 times in a sequence [20]. In humans, 

the first minisatellite was discovered in 1980 [21]. 

b. Microsatellite: It is a recurrence of a nucleic acid pattern with 2-5 pairs of 

bases repeating about 5-50 times in a sequence [22]. This type is also often 

referred to as simple sequence repeats (SSR) by genetic scientists in 

plants. Patterns such as “TATATATATATA” are called dinucleotide 

microsatellite, whereas a pattern like “GTCGTCGTCGTC” is called 

trinucleotide microsatellite. 

Moreover, the looping of short (microsatellite) patterns overload or over normal 

limits can cause genetic diseases. The study conducted by [23] explained that the 

three most important pairs of triplets/trinucleotides in human diseases are “CGG”, 

“CCG”, “CTG”, “CAG”, “GAA” and “TTC” in addition to the other 58 

trinucleotides. The disease caused by these three repetitive bases is also called 

trinucleotide repeat disorders. 
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Basically, trinucleotide repeat disorders are divided into two groups based on 

recurrent base pairs: “CGG” or “CCG” loops as alternatives and “CAG” or 

“CTG” loops as alternatives [24]. Now both groups of trinucleotide repeat 

disorders are divided into Polyglutamine (PolyQ) Diseases and Nonpolyglutamine 

Diseases. Group of diseases caused by “CAG” bases (polyglutamine) is largely 

due to toxic protein mutant expansion function [25] as illustrated in Table 1. 

 

Table 1: Trinucleotide repeat disorders included in Polyglutamine [25]  

Disease 
CAG Repeat Size 

Normal Disease 

Spinobulbar Muscular Atrophy (Kennedy Disease) 9-36 38-62 

Huntington’s Disease 6-35 36-121 

Dentatorubral-pallidoluysian Atrophy (Haw-River Syndrome) 6-35 49-88 

Spinocerebellar Ataxia Type 1 6-44 49-82 

Spinocerebellar Ataxia Type 2 15-31 36-63 

Spinocerebellar Ataxia Type 3 (Machado-Joseph Disease) 12-40 55-84 

Spinocerebellar Ataxia Type 6 4-18 21-33 

Spinocerebellar Ataxia Type 7 4-35 37-306 

 

Table 1 shows some examples of trinucleotide repeat disorders that belong to the 

Polyglutamine group. An example of Huntington's Disease (HD) has a detectable 

repetition of disease in 36-121 which means there are loops containing 

“CAGCAGCAGCAGCAG” at least 36 times. Huntington's Disease which can 

furthermore be abbreviated as HD is usually a disease carried by offspring that 

can affect children's age even though. This disease is due to repetition of “CAG” 

located on N-terminus with the number of repetitions 36-121 times where it 

should have a normal repetition of 6-34 times [4].  

 

2.2 Techniques on Genomic Repeats 

String matching or also commonly called pattern matching or pattern searching is 

a technique that is included in the information retrieval. The use of current string 

matching techniques is used for many reasons, especially in information security, 

bioinformatics, plagiarism detection, text processing and document matching [17]. 

The use of string matching helps in real-time HTTP packet data rectification 

which inevitably results in the need for efficient string matching algorithms to be 

very important [26]. Another area that is not less popular for the use of string 

matching techniques is bioinformatics. Analyzing DNA sequences using string 

matching techniques can provide the information needed quickly. This is what 

causes string matching to be an interesting and important research topic in the 

field of computer science [27]. 
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The Knuth-Morris-Pratt algorithm [7] was invented by three scientists, named 

Knuth, Morris and Pratt, to find the given string positions for text-editing 

programs. This algorithm provides prefix information on the string or pattern to 

search before searching. The Knuth-Morris-Pratt algorithm is very different from 

brute force in terms of the algorithm complexity of pattern matching. Meanwhile, 

the brute force algorithm (i.e., naïve algorithms) has the complexity of O (mn) 

because it matches all possibilities of each character in the text [28]. The 

complexity of the KMP-Prefix algorithm is O (m) where the variable 'm' is the 

sequence length of the pattern to be searched. The complexity for KMP-Search is 

O (n) where the variable 'n' is the sequence length of the text that becomes the 

search object. Therefore the overall complexity of the Knuth-Morris-Pratt 

algorithm is O (m + n). It means that the Knuth-Morris-Pratt algorithm is much 

faster than the brute force algorithm. 

 

3      Parallel Computing in R 

R is a programming language used for statistical analysis and graphics [29]. R was 

created by Ross Ihaka and Robert Gentlemen at Auckland University, New 

Zealand. Currently R language is developed by R Development Core Team. The 

R language has become the de facto standard among statisticians for the 

development of statistical software and is widely used for the development of 

statistical software.  

The R programming language has many packages for parallel computing. One of 

them is the 'snow' which stands for Simple Network of Workstation [30] that can 

be used for simple parallel computing in the R programming language. The other 

package developed continuously is ‘snowFT’ or ‘snowfall’ [31]. The most 

striking difference of any package is ‘Rmpi’ using MPI, ‘rpvm’ using PVM, 

‘pnmath’ using OpenMP, and ‘biopora’ using sockets. The package ‘pbdMPI’ is 

one of package for programming with Big Data in R (called ‘pbdR’) [12]. The 

significant difference between ‘pbdR’ and the usual R code is that ‘pbdR’ focuses 

on distributing memory systems, where data is distributed across multiple 

processors and analyzed at each branch by communication performed by MPI 

which makes it easier to use HPC. 

There are two implementations of R on MPI, namely ‘Rmpi’ and ‘pbdMPI’. 

‘Rmpi’ uses manager/workers parallelism where one main processor becomes 

control for the workers while ‘pbdMPI’ uses Single Program Multi Data 

parallelism (SPMD), where each processor is a worker and has a piece of data. 

This concept allows each processor to do the same job on different pieces of data 

for very large data [32].  

 



 

 

 

 

 

99                                                                                  Genomic Repeat Detection             

4      Knuth-Moris-Pratt with the pbdMPI Package 

In the implementation of the Knuth-Morris-Pratt algorithm on ‘pbdMPI’, we 

design a model to run the concept of parallel computing as shown in Fig 1. 

Detailed explanation can be found in the next subsections.  

 

 

Fig. 1: The proposed model involving the Knutt-Morris-Pratt Algorithm in 

parallel computing with ‘pbdMPI’ 

 

4.1     Data Pre-processing 
First, the data file to be used goes through the preprocessing stage to generate a 

clean string. Previously, the contents of the file has a lot of data information while 

in this study will only require sequences in it. The sequence in question is the data 

of base pairs “A”, “C”, “G”, “T” beginning after the word 'ORIGIN' and before 

the '//' symbol on the contents of the file as illustrated in Fig 2. 
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<……………> 

COMMENT     All the exons and transcripts in Ensembl are confirmed by similarity to 

either protein or cDNA sequences. 

ORIGIN 

        1 CTACTGCTGC TACATCTGCT 

       11 GTCGAT 

// 

Fig. 2: Original file containing DNA sequence 

 

After preprocessing as described previously, the pre-processing results from the 

above data will be a string ready for use in the next stage, which is 

“CTACTGCTGCTACATCTGCTGTCGAT”.  

 

4.2 Splitting DNA Sequence 

Generally, it is an important step in parallel computing since in this phase we have 

to split the datasets into some batches that are processed by each core. In this case, 

the datasets is in sequences of DNA. It should be noted that the objective is to find 

indices of the sequences that are matched with the pattern, which usually is much 

shorter sequence than the datasets. So, it can be seen that cutting or splitting the 

datasets could divide matched patterns inside the sequence so that the patterns are 

not recognized as the matched patterns. For example, we have a sequence 

containing 26 characters that will be divided into three batches/iterators. So, we 

can divide the data into 8 characters on the first and second batches and 10 

characters for the last one as illustrated in Fig 3.  

 

Fig. 3: Splitting DNA sequencing according to the number of batches 

If the case is to find the pattern of “TCT” or “ATCT”, we can see that the pattern 

cannot be found on every batch, even though the pattern is found in the 

complete/long sequence.  

Therefore, we makes a mathematical formula of cutting in order to avoid missing 

patterns as mentioned earlier as follows: 

                                               (1) 
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where , , , and   are length of subsequence on each 

batch, length of sequence, length of pattern, and numbers of batches, respectively. 

For example, we try to find the same pattern as pervious, which is “ATCT”. By 

following the equation, we obtain the batches as illustrated in Fig 4. 

 

Fig. 4: The new rule on splitting DNA sequence in the proposed model 

Now, it can be seen that by defining the new rule to generate each batch, we can 

find indices of the match pattern on all the batches, which are the same as the 

complete DNA sequence.  

 

4.3 KMP Algorithm on Parallel Computing with pbdMPI 

Basically, in this step we just perform KMP algorithm into the parallel computing 

with the ‘pbdMPI’ package. It should be noted that each core perform KMP over 

each batch. So, the output of the algorithm is a vector of indices of each batch. 

Moreover, we should increment the values of the indices so that along with the 

simulation the output of the KMP algorithm are not always begun from 1. 

Therefore, the authors create a model to change the index on the 2nd cut to the nth 

piece with the actual index pattern when the string state intact by creating an 

adder. The variables will participate in the search for the pattern on the string by 

using the Knuth-Morris-Pratt algorithm and used as the resulting index enhancer. 

The number of adders required is as many as 1-piece. The adder value itself is the 

value of the number of characters used in the calculation as shown in Fig 5 

multiplied by the order of each of the pieces that can be formulated as follows:  

                                                                    (2) 

where, i is incremental number (i.e., 1, 2, …). So, for example, the output of each 

piece is as shown in Fig 5. 
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Fig. 5: Calculating indices on the match pattern 

 

4.4 Combining All Indices 

After the output of each string searching process using the Knuth-Morris-Pratt 

algorithm has produced the correct indices, the next step is to combine the result 

of each slice performed by each core into a list which in the next step will be 

searched on the indices to obtain how many patterns in the longest sequence 

occurs. 

 

4.5 Calculating Genomic Repeats 

In this final stage we take a look for patterns that appear side by side such as the 

problem of this research to look for repeating patterns of genetic diseases. In the 

indices of patterns that are closed are traced. If there is nothing adjacent at all, 

then the result of this stage will output 0. If it has one repetition sequence of any 

number, then the indices of patterns will be the result of this stage. If there are 

more than one, then this stage will release the results of index patterns with the 

largest number of pattern repetitions. For example on the previous DNA sequence, 

we obtain the indices of the match pattern with “CTG” are 16, 19, and 22. So the 

longest loop, which is three times of the repetition pattern “CTG”, is 

“CTGCTGCTG”. 

 

5      Experimental Design  

5.1 Data Gathering 

The data used in this study is human DNA sequences that can be downloaded 

freely on the page ftp://ftp.ensembl.org/pub/release-88/fasta/homo_sapiens/dna/. 

The data are examples of human DNA sequences in publication number 88 

provided on the File Transfer Protocol (FTP) Ensembl site. In this experiments, 

there are 24 DNA chromosome sequence files that can be seen in Table 2. 
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Table 2: Files of DNA sequence from FTP Ensembl 

File Names 

File 

Capacity 

(KB) 

Length of 

Sequence 

Homo_sapiens.GRCh38.88.chromosome.1.dat 356.015 248.956.422 

Homo_sapiens.GRCh38.88.chromosome.2.dat 339.136 242.193.529 

… … … 

Homo_sapiens.GRCh38.88.chromosome.22.dat 77.049 50.818.468 

Homo_sapiens.GRCh38.88.chromosome.X.dat 213.977 156.040.895 

Homo_sapiens.GRCh38.88.chromosome.Y.dat 69.038 541.06.423 

Total 4.028.943 3.085.148.840 

 

The data in Table 2 show an example of a human DNA sequence comprising 24 

chromosomes (chromosomes 1-22, X and Y) along with their size in KB and the 

number of base pairs present in it. The contents of the .dat file are composed of 

some information and the DNA sequence as the main data.  

 

5.2 Scenarios of Experimentations 

In conducting the experiments, we firstly need to design the scenario for the 

experiment. We perform two experiments. The first is to look for a string pattern 

using the Knuth-Morris-Pratt algorithm with standalone, then we take a look for 

patterns on the string using the Knuth-Morris-Pratt algorithm in parallel with the 

program created with some change of iterator variables and the number of cores 

used. 

The pattern to be used is “CCG”, which is if found repeated as much as 200-900 

times then it can be concluded that humans have Fagile XE Syndrome disease 

where in normal pattern “CCG” only repeated 4-39 times. Furthermore there is a 

pattern “CAG” which is the cause of the disease that belongs to the category 

polyglutamine. The differences in the “CCG” and “CAG” patterns lie not only on 

the difference of one character in the middle, but also have differences in the 

resulting prefix. The prefix for “CCG” is “0 1 0”, while the prefix for “CAG” is 

“0 0 0”. So, we investigate the computational cost caused by these different 

prefixes. Then, there is a pattern “TTAGGG” which is a telomere or the very end 

of linear DNA. The search “TTAGGG” is intended to see the effect of the pattern 

length on the difference in computational speed performed. In addition the 

selection of “TTAGGG” is also because it certainly exists in every human DNA 

sequence. 
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5.2.1 Scenario 1: Experiments in Standalone/Single Core 

In the first scenario, we perform some experiments on standalone strings with 

pattern “CCG”, “CAG” and “TTAGGG” as seen in Table 3. It shows the 

experiments will search for “CCG”, “CAG” and “TTAGGG” patterns on 

chromosome 1, chromosome 4, and chromosome 14 files on single 

core/standalone. 

Table 3: The first scenario using single core/standalone 

No Patterns Filenames 

1 CCG Homo_sapiens.GRCh38.88.chromosome.1.dat 

2 CCG Homo_sapiens.GRCh38.88.chromosome.4.dat 

3 CCG Homo_sapiens.GRCh38.88.chromosome.14.dat 

4 CAG Homo_sapiens.GRCh38.88.chromosome.1.dat 

5 CAG Homo_sapiens.GRCh38.88.chromosome.4.dat 

6 CAG Homo_sapiens.GRCh38.88.chromosome.14.dat 

7 TTAGGG Homo_sapiens.GRCh38.88.chromosome.1.dat 

8 TTAGGG Homo_sapiens.GRCh38.88.chromosome.4.dat 

9 TTAGGG Homo_sapiens.GRCh38.88.chromosome.14.dat 

 

5.2.2 Scenario 2: Experiments in parallel computing/multicores 

In the second scenario, we conduct 108 attempts with regard to searching three 

patterns (i.e., “CCG”, “CAG”, and “TTAGGG”) on three files with four different 

batches performed by three cores: 2 cores, 4 cores and 8 cores as shown in Table 

4. 

Table 4: The second scenario using parallel computing/multicores 

No Pattern File 

Number of 

Batches Core 

1 CCG Chromosome 1 50 2 

2 CCG Chromosome 1 50 4 

3 CCG Chromosome 1 50 8 

… … … … … 

21 CCG Chromosome 4 500 8 

22 CCG Chromosome 4 2.500 2 

23 CCG Chromosome 4 2.500 4 

… …. … … … 

28 CCG Chromosome 14 100 2 

29 CCG Chromosome 14 100 4 

30 CCG Chromosome 14 100 8 

… … … … … 

107 TTAGGG Chromosome 14 2.500 4 

108 TTAGGG Chromosome 14 2.500 8 
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6      Results and Discussion 

After doing two experimental scenarios, the author gets the results that will be 

presented in the following subsections. 

 

6.1  Results on the 1st Scenario (Standalone) 

The results of the standalone experiments can be seen in Table 5. The 'Total 

Pattern' column shows the number of patterns found in the DNA sequence, while 

'Longest Pattern Repeats' indicates the longest recurrence of the pattern in the 

DNA sequence. The 'time' column shows the amount of time to complete each 

computation in seconds. 

 

Table 5: Results of experiments with standalone 

No Patterns Files 
Total 

Patterns 

Longest 

Pattern 

Repeats 

Time (s) 

1 CCG Chromosome 1 669.612 12 1821,48 

2 CCG Chromosome 4 386.822 10 667,84 

3 CCG Chromosome 14 243.060 9 340,31 

4 CAG Chromosome 1 4.852.390 12 81.439,60 

5 CAG Chromosome 4 3.456.386 19 42.836,94 

6 CAG Chromosome 14 1847242 11 11.931,92 

7 TTAGGG Chromosome 1 43.719 10 344,02 

8 TTAGGG Chromosome 4 35.503 11 302,90 

9 TTAGGG Chromosome 14 17.018 4 207,00 

 

6.2  Results on the 2nd Scenario (Parallel Computing/Multicore) 

Results from the second scenario, which is in parallel computing, can be seen in 

Table 6. It can be seen that the 'Total Pattern' column shows the number of 

patterns in the file/DNA sequence. While 'Longest Pattern Repeats' indicates the 

longest recurrence of the pattern in the file followed by 'Index Pattern Repeats' is 

the index of the pattern referred to in 'Longest Pattern Repeats'. The 'time' column 

shows the amount of time to complete each computation in seconds. 

 

 

 



 

 

 

 

 

 

 

 

Riza et al.                                                                                                     106 

Table 6: Results of experiments with parallel computing  

No Patterns Files 

The 

numbers 

of  

Batches 

Cores 
Total 

Patterns 

Longest 

Pattern 

Repeats 

Time (s) 

1 CCG Chromosome 1 50 2 669.612 12 130,10 

2 CCG Chromosome 1 50 4 669.612 12 48,42 

3 CCG Chromosome 1 50 8 669.612 12 36,01 

4 CCG Chromosome 1 100 2 669.612 12 161,11 

5 CCG Chromosome 1 100 4 669.612 12 43,48 

6 CCG Chromosome 1 100 8 669.612 12 32,39 

… … … … … … … … 

105 TTAGGG Chromosome 14 500 8 17.018 4 12,57 

106 TTAGGG Chromosome 14 2.500 2 17.018 4 105,49 

107 TTAGGG Chromosome 14 2.500 4 17.018 4 26,78 

108 TTAGGG Chromosome 14 2.500 8 17.018 4 17,26 

 

6.3   Discussion 

From the experimental results obtained, we are able to analyze some aspects that 

will be presented in the following sections. 

 

6.3.1 Comparison of Computation Cost among the Numbers of Batches 

In this part, we attempt to analyze the effect of the numbers of batches on the 

computation cost. To provide better illustration, we only take into account the 

simulation with 8 cores. As illustrated in Fig 6, it can be seen that basically the 

computation costs of all simulations are not linear along with the batch numbers. 

Intuitively, we can state that the optimal batch number is 500 since in the average 

the computation time becomes small for all simulations.  

 

6.3.2 Comparison of Computation Cost among the Numbers of Cores  

Furthermore, we analyze the computation times in term of the numbers of cores as 

seen in Fig 7. It should be noted that Fig 7 was generated when the number of 

batches is 500. It can be seen that all simulations involving three different patterns 

(i.e., “CCG”, “CAG”, and “TTAGGG”) and three different cores (i.e., 2, 4, and 8) 

have the same trend. It shows that the higher number of cores have the faster 

computation. It means that the proposed model and its implementation have been 

successful to reduce the computation cost. 

Moreover, we can also compare standalone with parallel computing. For example, 

the pattern matching of “CCG” on the file of the chromosome 1 took 1,821.48 
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seconds, which was more than 10, 37, and 50 times on parallel computing using 2, 

4, and 8 cores in the average (i.e., 166.21, 48.78, and 35.30 seconds), respectively. 

In matching on “CAG”, the comparisons of the standalone experiments with all 

the results of parallel computing experiments are very significant. In the 

chromosome 1, the standalone scenario took time more than 184, 528, and 809 

times on the average time on 2, 4, and 8 cores. As for the search “TTAGGG”, the 

experimental results of standalone and parallel computing are not too significant 

as the experiments for two previous patterns. The parallel-computing experiments 

using 8 cores had only ten times faster than the standalone in the average.  

 

  
  

 
Fig. 6: Profiles of computation cost along with some batch numbers on the pattern 

matching of “CGG” (on the top left), “CAG” (on the top right), and “TTAGGG” 

(on the bottom) on the following chromosome 1 (orange line), 4 (yellow line), and 

14 (green line). 

 

 6.3.3 Comparisons with the Previous Research 

First, the previous research conducted by [33] used the suffix of patterns, unlike in 

this study which used prefix in the Knuth-Morris-Pratt algorithm itself. The 

research used data from DNA Data Bank Japan (DDBJ) at random. The results 

with two computers that run in parallel need to spend more than 100 seconds just 

to process a DNA sequence that has 1,000 base pairs while in this research using 2 

cores only takes 86.99 seconds to search the sequence which has 107,043,718 
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base pairs. It means that this research can give a very good contribution on the 

computational cost.  

In addition, the research by [34] performed a search pattern on DNA sequences 

and English text using ‘OpenMPI’. The algorithm used in the research was the 

Boyer Moore string search algorithm. The study revealed that experiments using 

DNA data gave more stable results than English text. However, according to the 

research, the ratio of the computing time between standalone and parallel 

computing is 1:3. It means that the proposed model and its implementation in this 

research are better since it obtained the best ratio of 1:809.  

 

  
  

 
Fig. 7: Profiles of computation cost along with numbers of cores on the pattern 

matching of “CGG” (on the top left), “CAG” (on the top right), and “TTAGGG” 

(on the bottom) on the following chromosome 1 (orange line), 4 (yellow line), and 

14 (green line). 

 

7 Conclusions 

After performing the research on genomic repeats detection program with Knuth-

Morris-Pratt algorithm implementation on R package high-performance 

computing ‘pbdMPI’, we draw some conclusions as follows: 

1. The proposed model has the concept of cutting the string so that no miss 

occurs. The model also introduces adder variables as an addition of the 

index value on the parallel computing.  
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2. The research has conducted 117 experiments divided into the standalone 

scenario (i.e., 9 simulations) and the parallel-computing scenario 

containing 108 simulations.  

3. Analysis of experimental results has been presented. For example on 

matching on “CAG”, the comparisons of the standalone experiments with 

all the results of parallel-computing experiments are very significant. In 

the chromosome 1, the standalone scenario took 184, 528, and 809 times 

slower than on the average time on 2, 4, and 8 cores. 
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