

Int. J. Advance Soft Compu. Appl, Vol. 11, No. 1, March 2019

ISSN 2074-8523

Genomic Repeat Detection

Using the Knuth-Morris-Pratt Algorithm on

R High-Performance-Computing Package

Lala Septem Riza1, Achmad Banyu Rachmat1, Munir1, Topik Hidayat2, Shah

Nazir3

1Department of Computer Science Education, Universitas Pendidikan Indonesia,

Indonesia

e-mail: lala.s.riza@upi, banyurachman95@gmail.com, munir@upi.edu
2Department of Biology Education, Universitas Pendidikan Indonesia, Indonesia

e-mail: topikhidayat@upi.edu
3Department of Computer Science, University of Swabi, Swabi, Pakistan

e-mail: snshahnzr@gmail.com

Abstract

 Genomic repeat, which is to find repeating base pairs in
Deoxyribonucleic Acid (DNA) sequences, can be used to detect
genetic disease by analyzing the overload or over normal limits of the
repetition. Since it takes very high computation cost, this research
builds a parallel-computing model and its implementation to solve it.
It can be achieved by modifying and implementing the Knuth-
Morris-Pratt algorithm (KMP) on the R High-Performance-
Computing Package, namely ‘pbdMPI’. It contains the following
steps: preprocessing and splitting DNA sequence, KMP on parallel
computing with ‘pbdMPI’, combining all indices, and calculating
genomic repeats. To validate the model and implementation, 114
experiments involving human DNA sequences are conducted on the
standalone and parallel-computing scenarios. The results show that
the proposed system can reduce the computation cost, which is more
than 100 times faster than the standalone computing. Some
comparisons of the computation cost in term of the numbers of
batches and numbers of cores are presented along with the existing
researches. In summary, the proposed model provides the significant
improvement on the computational cost.

 Keywords: DNA, human genom, genomic repeats, string matching, Knuth-
Morris-Pratt, high-performance computing.

95 Genomic Repeat Detection

1 Introduction

Genome sequencing of many species allows scientists to study all gene devices

and their interactions [1]. In the last decade scientists had to conduct laboratory

research for 3 years to analyze DNA (i.e., Deoxyribonucleic Acid) [2]. One of the

cases of DNA analysis that requires time and effort on such a large scale is to

analyze diseases caused by repeated genomic patterns, called genomic repeats [3],

such as three recurrent base pairs that can cause disease in the trinucleotide

category repeat disorders [4].

Efforts from sequencing have generated enormous amount of data so that it also

gave birth to a new field called bioinformatics. With the resulting sequence data,

scientists can analyze biological interests by applying computational methods that

allow for much more efficient analysis of time and energy than many research

laboratories do today [5].

In analyzing the genomic repeats problem, a string matching or pattern matching

analysis will be searched for in a large text. The basic algorithm for searching

strings or patterns is to match all possibilities contained in the data from the first

index in the text until it runs out. This algorithm is known as the brute force

(Naïve) algorithm which has complexity with the worst possible is O (mn), which

will take very long if more text will be used as string or pattern search object [6].

The need for searching strings or patterns in large data allows scientists to make

algorithms more efficient than brute-force algorithms. Therefore, some string

matching algorithms were developed such as the Knut-Morris-Pratt algorithm [7].

This most famous string search algorithm ultimately inspires other scientists to

continue to develop more efficient algorithms. One of the development algorithms

of Knuth-Morris-Pratt is the Ukkonen algorithm [8] and the Fast Hybrid Pattern-

Matching Algorithm [9]. However, along with the development of the times and

the increasing number of data generated in sequence, scientists should be able to

solve computing problems with greater data [5].

Thus, computer scientists create a concept of parallel computing or distributed

systems that enable a computing job to be completed by multiple cores, nodes or

computers simultaneously. One of them is the MapReduce concept [10], which is

the basis of Google's search technology on a large scale and allows scientists to

also apply the MapReduce concept to various research cases. Another example is

the Package High-Performance Computing in R programming languages, such as

‘Rmpi’ [11] and ‘pbdMPI’ [12] that develop parallel computing with MPI

(Message Passing Interface) in the R programming language. Other examples are

‘randomForestSRC’ [13], ‘dclone’ [14], and etc. Moreover, the ‘foreach’ package

in R (at https://cran.r-project.org/package=foreach) has been also implemented in

many areas, such as parallel particle swarm optimization [15] and parallel

exponential smoothing [16].

Riza et al. 96

Various packages have their own procedures in their use as they need to be

compiled at the prompt/terminal or can be done inside the console R itself. Also

with the concept of programming such as data splitting to be analyzed, and so on.

This research will modify and implement the Knuth-Morris-Pratt algorithm as the

best string matching algorithm [17] on R Package High-Performance Computing

‘pbdMPI’ to be used for large datasets.

2 Genomic Repeats and Its Techniques

2.1 DNA and Genomic Repeats

The human genome has a size of approximately 3 billion base pairs out of a total

of 23 chromosomes whose research begins with the Human Genome Project

(HGP) beginning in 1990 [18], while the history for DNA sequencing was started

by Sanger since 1997 [19]. DNA in humans is the same as the animal which is

located in the nucleus of cells and mitochondria, in contrast to plants that also

have DNA located on the chloroplast. DNA is a double-stranded, helical-shaped

nucleic acid molecule composed of nucleotide monomers with deoxyribose sugar

[1]. Most of the DNA lies in the nucleus cells but can also be found in

mitochondria. DNA information is stored as code and into four chemical bases:

adenine (“A”), guanine (“G”), cytosine (“C”), and thymne (“T”). The DNA bases

have their respective pairs, “A” with “T” while “C” with “G”. Each base is also

attached to sugar molecules and phosphate molecules. Simultaneously, they are

called nucleotide [20].

Genomic Repeats or repeated sequences are patterns of recurrent nucleic acids in

the genome. Based on the sequence, the genomic repeats are divided into

minisatellite and microsatellite as explained below:

a. Minisatellite: It is a recurrence of a nucleic acid pattern with 10-60 pairs of

repeating bases approximately 5-50 times in a sequence [20]. In humans,

the first minisatellite was discovered in 1980 [21].

b. Microsatellite: It is a recurrence of a nucleic acid pattern with 2-5 pairs of

bases repeating about 5-50 times in a sequence [22]. This type is also often

referred to as simple sequence repeats (SSR) by genetic scientists in

plants. Patterns such as “TATATATATATA” are called dinucleotide

microsatellite, whereas a pattern like “GTCGTCGTCGTC” is called

trinucleotide microsatellite.

Moreover, the looping of short (microsatellite) patterns overload or over normal

limits can cause genetic diseases. The study conducted by [23] explained that the

three most important pairs of triplets/trinucleotides in human diseases are “CGG”,

“CCG”, “CTG”, “CAG”, “GAA” and “TTC” in addition to the other 58

trinucleotides. The disease caused by these three repetitive bases is also called

trinucleotide repeat disorders.

97 Genomic Repeat Detection

Basically, trinucleotide repeat disorders are divided into two groups based on

recurrent base pairs: “CGG” or “CCG” loops as alternatives and “CAG” or

“CTG” loops as alternatives [24]. Now both groups of trinucleotide repeat

disorders are divided into Polyglutamine (PolyQ) Diseases and Nonpolyglutamine

Diseases. Group of diseases caused by “CAG” bases (polyglutamine) is largely

due to toxic protein mutant expansion function [25] as illustrated in Table 1.

Table 1: Trinucleotide repeat disorders included in Polyglutamine [25]

Disease
CAG Repeat Size

Normal Disease

Spinobulbar Muscular Atrophy (Kennedy Disease) 9-36 38-62

Huntington’s Disease 6-35 36-121

Dentatorubral-pallidoluysian Atrophy (Haw-River Syndrome) 6-35 49-88

Spinocerebellar Ataxia Type 1 6-44 49-82

Spinocerebellar Ataxia Type 2 15-31 36-63

Spinocerebellar Ataxia Type 3 (Machado-Joseph Disease) 12-40 55-84

Spinocerebellar Ataxia Type 6 4-18 21-33

Spinocerebellar Ataxia Type 7 4-35 37-306

Table 1 shows some examples of trinucleotide repeat disorders that belong to the

Polyglutamine group. An example of Huntington's Disease (HD) has a detectable

repetition of disease in 36-121 which means there are loops containing

“CAGCAGCAGCAGCAG” at least 36 times. Huntington's Disease which can

furthermore be abbreviated as HD is usually a disease carried by offspring that

can affect children's age even though. This disease is due to repetition of “CAG”

located on N-terminus with the number of repetitions 36-121 times where it

should have a normal repetition of 6-34 times [4].

2.2 Techniques on Genomic Repeats

String matching or also commonly called pattern matching or pattern searching is

a technique that is included in the information retrieval. The use of current string

matching techniques is used for many reasons, especially in information security,

bioinformatics, plagiarism detection, text processing and document matching [17].

The use of string matching helps in real-time HTTP packet data rectification

which inevitably results in the need for efficient string matching algorithms to be

very important [26]. Another area that is not less popular for the use of string

matching techniques is bioinformatics. Analyzing DNA sequences using string

matching techniques can provide the information needed quickly. This is what

causes string matching to be an interesting and important research topic in the

field of computer science [27].

Riza et al. 98

The Knuth-Morris-Pratt algorithm [7] was invented by three scientists, named

Knuth, Morris and Pratt, to find the given string positions for text-editing

programs. This algorithm provides prefix information on the string or pattern to

search before searching. The Knuth-Morris-Pratt algorithm is very different from

brute force in terms of the algorithm complexity of pattern matching. Meanwhile,

the brute force algorithm (i.e., naïve algorithms) has the complexity of O (mn)

because it matches all possibilities of each character in the text [28]. The

complexity of the KMP-Prefix algorithm is O (m) where the variable 'm' is the

sequence length of the pattern to be searched. The complexity for KMP-Search is

O (n) where the variable 'n' is the sequence length of the text that becomes the

search object. Therefore the overall complexity of the Knuth-Morris-Pratt

algorithm is O (m + n). It means that the Knuth-Morris-Pratt algorithm is much

faster than the brute force algorithm.

3 Parallel Computing in R

R is a programming language used for statistical analysis and graphics [29]. R was

created by Ross Ihaka and Robert Gentlemen at Auckland University, New

Zealand. Currently R language is developed by R Development Core Team. The

R language has become the de facto standard among statisticians for the

development of statistical software and is widely used for the development of

statistical software.

The R programming language has many packages for parallel computing. One of

them is the 'snow' which stands for Simple Network of Workstation [30] that can

be used for simple parallel computing in the R programming language. The other

package developed continuously is ‘snowFT’ or ‘snowfall’ [31]. The most

striking difference of any package is ‘Rmpi’ using MPI, ‘rpvm’ using PVM,

‘pnmath’ using OpenMP, and ‘biopora’ using sockets. The package ‘pbdMPI’ is

one of package for programming with Big Data in R (called ‘pbdR’) [12]. The

significant difference between ‘pbdR’ and the usual R code is that ‘pbdR’ focuses

on distributing memory systems, where data is distributed across multiple

processors and analyzed at each branch by communication performed by MPI

which makes it easier to use HPC.

There are two implementations of R on MPI, namely ‘Rmpi’ and ‘pbdMPI’.

‘Rmpi’ uses manager/workers parallelism where one main processor becomes

control for the workers while ‘pbdMPI’ uses Single Program Multi Data

parallelism (SPMD), where each processor is a worker and has a piece of data.

This concept allows each processor to do the same job on different pieces of data

for very large data [32].

99 Genomic Repeat Detection

4 Knuth-Moris-Pratt with the pbdMPI Package

In the implementation of the Knuth-Morris-Pratt algorithm on ‘pbdMPI’, we

design a model to run the concept of parallel computing as shown in Fig 1.

Detailed explanation can be found in the next subsections.

Fig. 1: The proposed model involving the Knutt-Morris-Pratt Algorithm in

parallel computing with ‘pbdMPI’

4.1 Data Pre-processing
First, the data file to be used goes through the preprocessing stage to generate a

clean string. Previously, the contents of the file has a lot of data information while

in this study will only require sequences in it. The sequence in question is the data

of base pairs “A”, “C”, “G”, “T” beginning after the word 'ORIGIN' and before

the '//' symbol on the contents of the file as illustrated in Fig 2.

Riza et al. 100

<……………>

COMMENT All the exons and transcripts in Ensembl are confirmed by similarity to

either protein or cDNA sequences.

ORIGIN

 1 CTACTGCTGC TACATCTGCT

 11 GTCGAT

//

Fig. 2: Original file containing DNA sequence

After preprocessing as described previously, the pre-processing results from the

above data will be a string ready for use in the next stage, which is

“CTACTGCTGCTACATCTGCTGTCGAT”.

4.2 Splitting DNA Sequence

Generally, it is an important step in parallel computing since in this phase we have

to split the datasets into some batches that are processed by each core. In this case,

the datasets is in sequences of DNA. It should be noted that the objective is to find

indices of the sequences that are matched with the pattern, which usually is much

shorter sequence than the datasets. So, it can be seen that cutting or splitting the

datasets could divide matched patterns inside the sequence so that the patterns are

not recognized as the matched patterns. For example, we have a sequence

containing 26 characters that will be divided into three batches/iterators. So, we

can divide the data into 8 characters on the first and second batches and 10

characters for the last one as illustrated in Fig 3.

Fig. 3: Splitting DNA sequencing according to the number of batches

If the case is to find the pattern of “TCT” or “ATCT”, we can see that the pattern

cannot be found on every batch, even though the pattern is found in the

complete/long sequence.

Therefore, we makes a mathematical formula of cutting in order to avoid missing

patterns as mentioned earlier as follows:

 (1)

101 Genomic Repeat Detection

where , , , and are length of subsequence on each

batch, length of sequence, length of pattern, and numbers of batches, respectively.

For example, we try to find the same pattern as pervious, which is “ATCT”. By

following the equation, we obtain the batches as illustrated in Fig 4.

Fig. 4: The new rule on splitting DNA sequence in the proposed model

Now, it can be seen that by defining the new rule to generate each batch, we can

find indices of the match pattern on all the batches, which are the same as the

complete DNA sequence.

4.3 KMP Algorithm on Parallel Computing with pbdMPI

Basically, in this step we just perform KMP algorithm into the parallel computing

with the ‘pbdMPI’ package. It should be noted that each core perform KMP over

each batch. So, the output of the algorithm is a vector of indices of each batch.

Moreover, we should increment the values of the indices so that along with the

simulation the output of the KMP algorithm are not always begun from 1.

Therefore, the authors create a model to change the index on the 2nd cut to the nth

piece with the actual index pattern when the string state intact by creating an

adder. The variables will participate in the search for the pattern on the string by

using the Knuth-Morris-Pratt algorithm and used as the resulting index enhancer.

The number of adders required is as many as 1-piece. The adder value itself is the

value of the number of characters used in the calculation as shown in Fig 5

multiplied by the order of each of the pieces that can be formulated as follows:

 (2)

where, i is incremental number (i.e., 1, 2, …). So, for example, the output of each

piece is as shown in Fig 5.

Riza et al. 102

Fig. 5: Calculating indices on the match pattern

4.4 Combining All Indices

After the output of each string searching process using the Knuth-Morris-Pratt

algorithm has produced the correct indices, the next step is to combine the result

of each slice performed by each core into a list which in the next step will be

searched on the indices to obtain how many patterns in the longest sequence

occurs.

4.5 Calculating Genomic Repeats

In this final stage we take a look for patterns that appear side by side such as the

problem of this research to look for repeating patterns of genetic diseases. In the

indices of patterns that are closed are traced. If there is nothing adjacent at all,

then the result of this stage will output 0. If it has one repetition sequence of any

number, then the indices of patterns will be the result of this stage. If there are

more than one, then this stage will release the results of index patterns with the

largest number of pattern repetitions. For example on the previous DNA sequence,

we obtain the indices of the match pattern with “CTG” are 16, 19, and 22. So the

longest loop, which is three times of the repetition pattern “CTG”, is

“CTGCTGCTG”.

5 Experimental Design

5.1 Data Gathering

The data used in this study is human DNA sequences that can be downloaded

freely on the page ftp://ftp.ensembl.org/pub/release-88/fasta/homo_sapiens/dna/.

The data are examples of human DNA sequences in publication number 88

provided on the File Transfer Protocol (FTP) Ensembl site. In this experiments,

there are 24 DNA chromosome sequence files that can be seen in Table 2.

103 Genomic Repeat Detection

Table 2: Files of DNA sequence from FTP Ensembl

File Names

File

Capacity

(KB)

Length of

Sequence

Homo_sapiens.GRCh38.88.chromosome.1.dat 356.015 248.956.422

Homo_sapiens.GRCh38.88.chromosome.2.dat 339.136 242.193.529

… … …

Homo_sapiens.GRCh38.88.chromosome.22.dat 77.049 50.818.468

Homo_sapiens.GRCh38.88.chromosome.X.dat 213.977 156.040.895

Homo_sapiens.GRCh38.88.chromosome.Y.dat 69.038 541.06.423

Total 4.028.943 3.085.148.840

The data in Table 2 show an example of a human DNA sequence comprising 24

chromosomes (chromosomes 1-22, X and Y) along with their size in KB and the

number of base pairs present in it. The contents of the .dat file are composed of

some information and the DNA sequence as the main data.

5.2 Scenarios of Experimentations

In conducting the experiments, we firstly need to design the scenario for the

experiment. We perform two experiments. The first is to look for a string pattern

using the Knuth-Morris-Pratt algorithm with standalone, then we take a look for

patterns on the string using the Knuth-Morris-Pratt algorithm in parallel with the

program created with some change of iterator variables and the number of cores

used.

The pattern to be used is “CCG”, which is if found repeated as much as 200-900

times then it can be concluded that humans have Fagile XE Syndrome disease

where in normal pattern “CCG” only repeated 4-39 times. Furthermore there is a

pattern “CAG” which is the cause of the disease that belongs to the category

polyglutamine. The differences in the “CCG” and “CAG” patterns lie not only on

the difference of one character in the middle, but also have differences in the

resulting prefix. The prefix for “CCG” is “0 1 0”, while the prefix for “CAG” is

“0 0 0”. So, we investigate the computational cost caused by these different

prefixes. Then, there is a pattern “TTAGGG” which is a telomere or the very end

of linear DNA. The search “TTAGGG” is intended to see the effect of the pattern

length on the difference in computational speed performed. In addition the

selection of “TTAGGG” is also because it certainly exists in every human DNA

sequence.

Riza et al. 104

5.2.1 Scenario 1: Experiments in Standalone/Single Core

In the first scenario, we perform some experiments on standalone strings with

pattern “CCG”, “CAG” and “TTAGGG” as seen in Table 3. It shows the

experiments will search for “CCG”, “CAG” and “TTAGGG” patterns on

chromosome 1, chromosome 4, and chromosome 14 files on single

core/standalone.

Table 3: The first scenario using single core/standalone

No Patterns Filenames

1 CCG Homo_sapiens.GRCh38.88.chromosome.1.dat

2 CCG Homo_sapiens.GRCh38.88.chromosome.4.dat

3 CCG Homo_sapiens.GRCh38.88.chromosome.14.dat

4 CAG Homo_sapiens.GRCh38.88.chromosome.1.dat

5 CAG Homo_sapiens.GRCh38.88.chromosome.4.dat

6 CAG Homo_sapiens.GRCh38.88.chromosome.14.dat

7 TTAGGG Homo_sapiens.GRCh38.88.chromosome.1.dat

8 TTAGGG Homo_sapiens.GRCh38.88.chromosome.4.dat

9 TTAGGG Homo_sapiens.GRCh38.88.chromosome.14.dat

5.2.2 Scenario 2: Experiments in parallel computing/multicores

In the second scenario, we conduct 108 attempts with regard to searching three

patterns (i.e., “CCG”, “CAG”, and “TTAGGG”) on three files with four different

batches performed by three cores: 2 cores, 4 cores and 8 cores as shown in Table

4.

Table 4: The second scenario using parallel computing/multicores

No Pattern File

Number of

Batches Core

1 CCG Chromosome 1 50 2

2 CCG Chromosome 1 50 4

3 CCG Chromosome 1 50 8

… … … … …

21 CCG Chromosome 4 500 8

22 CCG Chromosome 4 2.500 2

23 CCG Chromosome 4 2.500 4

… …. … … …

28 CCG Chromosome 14 100 2

29 CCG Chromosome 14 100 4

30 CCG Chromosome 14 100 8

… … … … …

107 TTAGGG Chromosome 14 2.500 4

108 TTAGGG Chromosome 14 2.500 8

105 Genomic Repeat Detection

6 Results and Discussion

After doing two experimental scenarios, the author gets the results that will be

presented in the following subsections.

6.1 Results on the 1st Scenario (Standalone)

The results of the standalone experiments can be seen in Table 5. The 'Total

Pattern' column shows the number of patterns found in the DNA sequence, while

'Longest Pattern Repeats' indicates the longest recurrence of the pattern in the

DNA sequence. The 'time' column shows the amount of time to complete each

computation in seconds.

Table 5: Results of experiments with standalone

No Patterns Files
Total

Patterns

Longest

Pattern

Repeats

Time (s)

1 CCG Chromosome 1 669.612 12 1821,48

2 CCG Chromosome 4 386.822 10 667,84

3 CCG Chromosome 14 243.060 9 340,31

4 CAG Chromosome 1 4.852.390 12 81.439,60

5 CAG Chromosome 4 3.456.386 19 42.836,94

6 CAG Chromosome 14 1847242 11 11.931,92

7 TTAGGG Chromosome 1 43.719 10 344,02

8 TTAGGG Chromosome 4 35.503 11 302,90

9 TTAGGG Chromosome 14 17.018 4 207,00

6.2 Results on the 2nd Scenario (Parallel Computing/Multicore)

Results from the second scenario, which is in parallel computing, can be seen in

Table 6. It can be seen that the 'Total Pattern' column shows the number of

patterns in the file/DNA sequence. While 'Longest Pattern Repeats' indicates the

longest recurrence of the pattern in the file followed by 'Index Pattern Repeats' is

the index of the pattern referred to in 'Longest Pattern Repeats'. The 'time' column

shows the amount of time to complete each computation in seconds.

Riza et al. 106

Table 6: Results of experiments with parallel computing

No Patterns Files

The

numbers

of

Batches

Cores
Total

Patterns

Longest

Pattern

Repeats

Time (s)

1 CCG Chromosome 1 50 2 669.612 12 130,10

2 CCG Chromosome 1 50 4 669.612 12 48,42

3 CCG Chromosome 1 50 8 669.612 12 36,01

4 CCG Chromosome 1 100 2 669.612 12 161,11

5 CCG Chromosome 1 100 4 669.612 12 43,48

6 CCG Chromosome 1 100 8 669.612 12 32,39

… … … … … … … …

105 TTAGGG Chromosome 14 500 8 17.018 4 12,57

106 TTAGGG Chromosome 14 2.500 2 17.018 4 105,49

107 TTAGGG Chromosome 14 2.500 4 17.018 4 26,78

108 TTAGGG Chromosome 14 2.500 8 17.018 4 17,26

6.3 Discussion

From the experimental results obtained, we are able to analyze some aspects that

will be presented in the following sections.

6.3.1 Comparison of Computation Cost among the Numbers of Batches

In this part, we attempt to analyze the effect of the numbers of batches on the

computation cost. To provide better illustration, we only take into account the

simulation with 8 cores. As illustrated in Fig 6, it can be seen that basically the

computation costs of all simulations are not linear along with the batch numbers.

Intuitively, we can state that the optimal batch number is 500 since in the average

the computation time becomes small for all simulations.

6.3.2 Comparison of Computation Cost among the Numbers of Cores

Furthermore, we analyze the computation times in term of the numbers of cores as

seen in Fig 7. It should be noted that Fig 7 was generated when the number of

batches is 500. It can be seen that all simulations involving three different patterns

(i.e., “CCG”, “CAG”, and “TTAGGG”) and three different cores (i.e., 2, 4, and 8)

have the same trend. It shows that the higher number of cores have the faster

computation. It means that the proposed model and its implementation have been

successful to reduce the computation cost.

Moreover, we can also compare standalone with parallel computing. For example,

the pattern matching of “CCG” on the file of the chromosome 1 took 1,821.48

107 Genomic Repeat Detection

seconds, which was more than 10, 37, and 50 times on parallel computing using 2,

4, and 8 cores in the average (i.e., 166.21, 48.78, and 35.30 seconds), respectively.

In matching on “CAG”, the comparisons of the standalone experiments with all

the results of parallel computing experiments are very significant. In the

chromosome 1, the standalone scenario took time more than 184, 528, and 809

times on the average time on 2, 4, and 8 cores. As for the search “TTAGGG”, the

experimental results of standalone and parallel computing are not too significant

as the experiments for two previous patterns. The parallel-computing experiments

using 8 cores had only ten times faster than the standalone in the average.

Fig. 6: Profiles of computation cost along with some batch numbers on the pattern

matching of “CGG” (on the top left), “CAG” (on the top right), and “TTAGGG”

(on the bottom) on the following chromosome 1 (orange line), 4 (yellow line), and

14 (green line).

 6.3.3 Comparisons with the Previous Research

First, the previous research conducted by [33] used the suffix of patterns, unlike in

this study which used prefix in the Knuth-Morris-Pratt algorithm itself. The

research used data from DNA Data Bank Japan (DDBJ) at random. The results

with two computers that run in parallel need to spend more than 100 seconds just

to process a DNA sequence that has 1,000 base pairs while in this research using 2

cores only takes 86.99 seconds to search the sequence which has 107,043,718

Riza et al. 108

base pairs. It means that this research can give a very good contribution on the

computational cost.

In addition, the research by [34] performed a search pattern on DNA sequences

and English text using ‘OpenMPI’. The algorithm used in the research was the

Boyer Moore string search algorithm. The study revealed that experiments using

DNA data gave more stable results than English text. However, according to the

research, the ratio of the computing time between standalone and parallel

computing is 1:3. It means that the proposed model and its implementation in this

research are better since it obtained the best ratio of 1:809.

Fig. 7: Profiles of computation cost along with numbers of cores on the pattern

matching of “CGG” (on the top left), “CAG” (on the top right), and “TTAGGG”

(on the bottom) on the following chromosome 1 (orange line), 4 (yellow line), and

14 (green line).

7 Conclusions

After performing the research on genomic repeats detection program with Knuth-

Morris-Pratt algorithm implementation on R package high-performance

computing ‘pbdMPI’, we draw some conclusions as follows:

1. The proposed model has the concept of cutting the string so that no miss

occurs. The model also introduces adder variables as an addition of the

index value on the parallel computing.

109 Genomic Repeat Detection

2. The research has conducted 117 experiments divided into the standalone

scenario (i.e., 9 simulations) and the parallel-computing scenario

containing 108 simulations.

3. Analysis of experimental results has been presented. For example on

matching on “CAG”, the comparisons of the standalone experiments with

all the results of parallel-computing experiments are very significant. In

the chromosome 1, the standalone scenario took 184, 528, and 809 times

slower than on the average time on 2, 4, and 8 cores.

References

[1] Campbell, N. A., and Reece, J. B. (2008). Biology: Eight Edition. San

Francisco: Pearson Benjamin Cummings.

[2] Pahadia, M., Srivastava, A., Srivastava, D., and Patil, D. N. (2015).

Genome Data Analysis using MapReduce Paradigm. 2015 Second

International Conference on Advances in Computing and Communication

Engineering (pp. 556-559). IEEE.

[3] Edgar, R. C., and Myers, E. W. (2005). PILER: Identification and

Classication of Genomic Repeats. Bioinformatics, 21(1), 152-158.

[4] Orr, H. T., and Zoghbi, H. Y. (2007). Trinucleotide Repeat Disorders.

Annual Review of Neuroscience, 30, 575-621.

[5] Liu, B., Li, J., Chen, C., Tan, W., Chen, Q., and Zhou, M. (2015). Efficient

Motif Discovery for Large-Scale Time Series in Healthcare. IEEE

Transactional on Industrial Informatics, 11(3), 583-590.

[6] Kindhi, B. A., and Sardjono, T. A. (2015). Pattern Matching Performance

Comparison as Big Data Analysis Recomendations for Hepatitis C Virus

(HCV) Sequence DNA. 2015 Third International Conference on Artificial

Intelligence, Modelling and Simulation (pp. 99-104). IEEE.

[7] Knuth, D. E., Morris, J. H., and Pratt, V. R. (1977). Fast Pattern Matching

In Strings. SIAM Journal on Computing, 6(2), 323-350.

[8] Ukkonen, E. (1985). Finding Approximate Patterns in Strings. Journal of

Algorithms, 6, 132-137.

[9] Franek, F., Jennings, C. G., and Smyth, W. F. (2005). A Simple Fast

Hybrid Pattern Matching Algorithm. CPM, 288-297.

[10] Dean, J., and Ghemawat, S. (2010). MapReduce: A Flexible Data

Processing Tool. Communications of The ACM, 53, 72-77.

[11] Yu, H. (2002). Rmpi: Parallel Statistical Computing in R. R News, 2(2),

10-14.

[12] Ostrouchov, G., Chen, W.-C., Schmidt, D., and Patel, P. (2012).

Programming with Big Data in R. Retrieved from http://www.r-pbd.org

[13] Ishwaran, H., and Kogalur, U. (2007). Random Survival Forests for R. R

News, 7(2), 25-31.

[14] dclone: Data Cloning in R. (2010). The R Journal, 2(2), 29-37.

http://www.r-pbd.org/

Riza et al. 110

[15] Riza, L. S., Asyari, A. H., Prabawa, H. W., Kusnendar, J., & Rahman, E.

F. (2018a). Parallel Particle Swarm Optimization for Determining Pressure

on Water Distribution Systems in R. Advanced Science Letters, 24(10),

7501-7506.

[16] Riza, L. S., Utama, J. A., Putra, S. M., Simatupang, F. M., & Nugroho, E.

P. (2018b). Parallel Exponential Smoothing Using the Bootstrap Method

in R for Forecasting Asteroid's Orbital Elements. Pertanika Journal of

Science & Technology, 26(1), 441 - 462.

[17] Vijayarani, D., and Janani, M. (2017). String Matching Algorithms For

Reteriving Information From Desktop – Comparative Analysis.

International Conference on Inventive Computation Technologies

(ICICT). IEEE.

[18] Venter, J. C., Adams, M., Myers, E., Li, P., Mural, R., Sutton, G., . . .

Skupski, M. (2001). The Sequence of the Human Genome. Science,

291(5507), 1304–1351.

[19] Sanger, F., Air, G. M., Barrell, B. G., Brown, N. L., Coulson, A. R.,

Fiddes, J. C., ... & Smith, M. (1977). Nucleotide sequence of

bacteriophage φX174 DNA. nature, 265(5596), 687.

[20] U.S. National Library of Medicine. (n.d.). What is DNA? Retrieved

Februari 8, 2017, from Genetics Home Reference:

https://ghr.nlm.nih.gov/primer/basics/dna

[21] Wyman, A. R., and White, R. (1980). A Highly Polymorphic Locus in

Human DNA. Proc. Natl. Acad. Sci. U.S.A., 77(11), 6754-6758.

[22] Turnpenny P, E. S. (2005). Emery's Elements of Medical Genetics (12th

ed.). London: Elsevier.

[23] Calladine, C. R., Drew, H. R., Luisi, B. F., and Travers, A. A. (2004).

Understanding DNA: The Molecule and How It Works (Third Edition).

San Diego: Elsevier Academic Press.

[24] Claude T., Ashley, J., and Warre, S. T. (1995). Trinucleotide Repeat

Expansion and Human Disease. Annual Reviews, 29, 703-728.

[25] Lutz, R. E. (2007). Trinucleotide Repeat Disorders. Seminars in Pediatric

Neurology, 14, 26-33.

[26] Zhang, L., Peng, Y., Liang, J., Liu, X., Yi, J., and Wen, Z. (2015). An

Improved String Matching Algorithm for HTTP Data Reduction. 2015

International Conference on Intelligent Information Hiding and

Multimedia Signal Processing (pp. 345-348). IEEE.
[27] Yangjun Chen, Y. W. (2016). On the Massive String Matching Problem.

2016 12th International Conference on Natural Computation, Fuzzy

Systems and Knowledge Discovery (ICNC-FSKD) (pp. 350-355). IEEE.

[28] Barth, G. (1981). An Alternative For The Implementation of The Knuth-

Morris-Pratt Algorithm. Information Processing Letters, 13, 134-137.

[29] Ihaka, R., & Gentleman, R. (1996). R: a language for data analysis and

graphics. Journal of computational and graphical statistics, 5(3), 299-314.

111 Genomic Repeat Detection

[30] Rossini, A., Tierney, L., dan Li, N. (2007). Simple Parallel Statistical

Computing in R. Journal of Computational and Graphical Statistics,

16(2), 399–420.

[31] Knaus, J. (2008). sfCluster/snowfall: Managing Parallel Execution of R

Programs on a Compute Cluster. useR!

[32] Houston, M. (2007). Folding@Home - GPGPU. Retrieved from

http://graphics.stanford.edu/~mhouston/

[33] Cheng, L.-L., Cheung, D. W., dan Yiu, S.-M. (2003). Approximate String

Matching in DNA Sequences. 8th International Conference on Database

Systems for Advanced Applications. Kyoto, Japan: IEEE.

[34] Al-Dabbagh, S. S., Barnouti, N. H., Naser, M. A., dan Ali, Z. G. (2016).

Parallel Quick Search Algorithm for the Exact String Matching Problem

Using OpenMP. Journal of Computer and Communications, 4, 1-11.

