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Abstract 

     Speech recognition is the important problem in pattern 
recognition research field. In this paper, the combination of the 
Sparse Principle Component Analysis method and the kernel ridge 
regression method will be applied to the MFCC feature vectors of the 
speech dataset available from IC Design lab at Faculty of 
Electricals-Electronics Engineering, University of Technology, Ho 
Chi Minh City. Experiment results show that the combination of the 
Sparse Principle Component Analysis method and the kernel ridge 
regression method outperforms the current state of the art Hidden 
Markov Model method and the kernel ridge regression method alone 
in speech recognition problem in terms of sensitivity performance 
measure. 

     Keywords: kernel ridge regression, HMM, speech recognition, MFCC, PCA, 
Sparse PCA. 

1      Introduction 

In this paper, we will present the kernel ridge regression method and apply this 

method to automatic speech recognition problem. To the best of our knowledge, 

this work has not been investigated. Researchers have worked in automatic speech 

recognition for almost six decades. The earliest attempts were made in the 1950’s. 

In the 1980’s, speech recognition research was characterized by a shift in 

technology from template-based approaches to statistical modeling methods, 

especially Hidden Markov Models (HMM). Hidden Markov Models (HMM) have 

been the core of most speech recognition systems for over a decade and is 

mailto:tran0398@umn.edu


  

 

 

121                                                                  The combination of Sparse Principle             

considered the current state of the art method for automatic speech recognition 

system [1]. Second, to classify the speech samples, a graph (i.e. kernel) which is 

the natural model of relationship between speech samples can also be employed. 

In this model, the nodes represent speech samples. The edges represent for the 

possible interactions between nodes. Then, machine learning methods such as 

Support Vector Machine [2], kernel ridge regression [3], Artificial Neural 

Networks [4], or nearest-neighbor classifiers [5] can be applied to this graph to 

classify the speech samples. The nearest-neighbor classifiers method labels the 

speech sample with the label that occurs frequently in the speech sample’s 

adjacent nodes in the network. Hence neighbor counting method does not utilize 

the full topology of the network. However, the Artificial Neural Networks, 

Support Vector Machine, kernel ridge regression, and graph based semi-

supervised learning methods utilize the full topology of the network. Moreover, 

the Artificial Neural Networks, kernel ridge regression, Support Vector Machine 

are supervised learning methods. Please note that the kernel ridge regression 

method is the simplest form of the Support Vector Machine method. 

While nearest-neighbor classifiers method, the Artificial Neural Networks, 

and the graph based semi-supervised learning methods are all based on the 

assumption that the labels of two adjacent speech samples in graph are likely to be 

the same, SVM and kernel ridge regression methods do not rely on this 

assumption. Graphs used in nearest-neighbor classifiers method, Artificial Neural 

Networks, and the graph based semi-supervised learning method are very sparse. 

However, the graph (i.e. kernel) used in SVM and kernel ridge regression 

methods is fully-connected. 

In the last two decades, the SVM learning method has successfully been 

applied to some specific classification tasks such as digit recognition, text 

classification, and protein function prediction and automatic speech recognition 

problem [2]. However, the kernel ridge regression method (i.e. the simplest form 

of the SVM method) has not been applied to any practical applications. Hence in 

this paper, we will use the kernel ridge regression method applied to the automatic 

speech recognition problem as the baseline method. 

Next, we will introduce the Principle Component Analysis. Principle Component 

Analysis (i.e. PCA) is one of the most popular dimensionality reduction 

techniques [6]. It has several applications in many areas such as pattern 

recognition, computer vision, statistics, and data analysis. It employs the 

eigenvectors of the covariance matrix of the feature data to project on a lower 

dimensional subspace. This will lead to the reduction of noises and redundant 

features in the data and the low time complexity of the Kernel Ridge Regression 

approach solving speech recognition problem. 

In detail, PCA method convert the original set of features to a different and more 

compact representation keeping as much information as possible and to try to 

increase the performance of the Kernel Ridge Regression approach, especially the 

accuracy of the Kernel Ridge Regression approach. The dimensional reduction 

stage is achieved by retaining only the relevant dimensions according to one 
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specific criteria which is maximizing the variance. This stage helps solve the 

problem called the curse of dimensionality. Therefore, reducing the 

dimensionality of the dataset is the most direct way solving the problems caused 

by high dimensionalities. 

However, the PCA has two major disadvantages which are the lack of 

sparsity of the loading vectors and each principle component is the linear 

combination of all variables. From data analysis viewpoint, sparsity is necessary 

for reduced computational time and better generalization performance. From 

modeling viewpoint, although the interpretability of linear combinations is usually 

easy for low dimensional data, it could become much harder when the number of 

variables becomes large. To overcome this hardness and to introduce sparsity, 

many methods have been proposed such as [7,8,9,10].  

In this paper, we will introduce new approach for sparse PCA using Alternating 

Direction Method of Multipliers (i.e. ADMM method) [11]. Then, we will try to 

combine the sparse PCA dimensional reduction method and the Kernel Ridge 

Regression method and applied this combination approach to the speech 

recognition problem. This work, to the best of our knowledge, has not been 

investigated. 

We will organize the paper as follows: Section II will present the 

Alternating Direction Method of Multipliers. Section III will derive the sparse 

PCA method using the ADMM method in detail. Section IV will present the 

sparse PCA algorithm. Section V will introduce kernel ridge regression 

algorithms in detail. Section VI will present the detailed derivation of the kernel 

ridge regression method. In section VII, we will apply this combination of sparse 

PCA algorithm and Kernel Ridge Regression algorithm to speech samples 

available from the IC Design lab at Faculty of Electricals-Electronics Engineering, 

University of Technology, Ho Chi Minh City. Section VIII will conclude this 

paper and discuss the future directions of researches of this automatic speech 

recognition problem. 

 

2      Alternating Direction Method of Multipliers 

In this section, we will introduce the Alternating Direction Method of Multipliers. 

The detailed information about the Alternating Direction Method of Multipliers 

can be found in [10]. First, assume that we want to solve the following problem: 

 

                                                                                          (1) 

                                                                                       (2) 
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Next, we will form the augmented Lagrangian 

           (3) 

 

Finally,  can be solved as the followings 

      (4) 

      (5) 

,     (6) 

 

where . 

3      Sparse Principle Component Analysis Derivation 

Assume that we are given the data matrix . Next, we will formulate our 

sparse PCA problem. This problem is in fact the following optimization problem: 

        (7) 

,            (8) 

 

where  are the singular value, the left singular vector, and the right singular 

vector of the Singular Value Decomposition (i.e. SVD) of X respectively. 

Information about the SVD and its relationship to PCA can be found in [6]. In the 

above optimization problem,  are fixed. Our objective is to find the sparse 

loading vectors . 

 

 First, the augmented Lagrangian of the above optimization problem can be 

derived as the following: 

   (9) 

 

Then  can be solved as the followings: 

            (10)  

 

Hence 

       (11)       

        (12) 

   (13) 



 

 

 

 

 

 

 

Loc Hoang Tran et al                                                                                           124 

 (14) 

 

(15) 

     (16) 

         (17) 

 

Next, we solve       (18) 

Thus,              (19) 

Next, we have  

         (20) 

Hence 

       (21) 

         (22) 

,           (23) 

where 

          (24) 

Solve , we have   

         (25) 

If , then 

                   (26) 
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If , then     

    (27) 

If , then 

                   (28) 

Thus, 

   (29) 

Finally, we have 

                 (30) 

 

4      Sparse Principle Component Analysis algorithm 
In this section, we will present the sparse PCA algorithm 

Algorithm 1: Sparse PCA algorithm 

1. Input: The dataset , where p is the dimension of the dataset and n is 

the total number of observations in the dataset 

2. Compute , where  be the 

mean vector of all column vectors  of X  

3. Randomly select parameters . 

4. Set  

5. for  

i. Compute the SVD of  

ii. Initialize  

iii. Set  

iv. do 
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a. Compute  

b. Compute    

c. Compute  

d.     

v. while  

vi.  

vii.  

viii.  

6. End 

7. Output: The matrix V. 

__________________________________________________________________ 

5      Kernel Ridge Regression Algorithm 

Given a set of feature vectors of speech samples } where 

 is the total number of speech samples. 

Please note that  is the set of all labeled points and  is the 

set of all un-labeled points. The way constructing the feature vectors of speech 

samples will be discussed in Section 7. 

Let  represents the kernel matrix of the set of labeled points. 

Let c be the total number of words. 

Let  the initial label matrix for l labeled speech samples be defined as 

follows 

        (31) 

 

Our objective is to predict the labels of the un-labeled points .  

Let the matrix  be the estimated label matrix for the set of feature vectors 

of speech samples }, where the point  is labeled as  for 

each word j ( ).  
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Kernel Ridge Regression 

In this section, we will give the brief overview of the original kernel ridge 

regression method [3]. The outline of this algorithm is as follows 

1. Form the kernel matrix . The way constructing K will be discussed 

in section 7. 

2. Compute  

3. For each speech sample k belong to the set of un-labeled points, 

compute the vector , where the value of each element 

of this vector is defined as the similarity of feature vector of speech 

sample k and feature vector of speech sample of the set of l labeled 

points.     

4. Compute . Label each speech samples 

(  as the integer value result of  

6      Detailed Derivation of Kernel Ridge Regression 

Consider the problem of finding a homogeneous real-valued linear function 

             (32) 

 

that best interpolates a given training set 

            (33) 

of point  with corresponding label  and d is the dimension of 

the feature vector of the speech samples.  

 

Measures discrepancy between function output and correct output (squared to 

ensure always positive): 

          (34) 

 

We introduce notation: matrix X has rows of l labeled points. Hence we can write 

            (35) 

for the vector of differences between  and . 

We need to ensure that flexibility of g is controlled (controlling the norm of w 

proves effective)  

         (36) 

where we can compute   

                                                                  (37) 

Setting the derivative of L(w,X) equal to zero gives  

                                                                                            (38) 

We get the primal solution weight vector 

            (39) 

and the regression function 

          (40) 
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A dual solution expresses the weight vector as a linear combination of the training 

examples can be obtained from (1). We have 

         (41) 

This implies that 

       (42) 

where            (43)  

The vector  is the dual solution. 

Substitute  into equation (2), we obtain 

.        (44) 

Thus we can get the dual solution and the regression function as the followings 

                   (45) 

      (46) 

7      Experiments and Results 

In this paper, the set of 4,500 speech samples recorded of 50 different words (90 

speech samples per word) are used for training. Then another set of 500 speech 

samples of these words are used for testing the sensitivity measure. This dataset is 

available from the IC Design lab at Faculty of Electricals-Electronics Engineering, 

University of Technology, Ho Chi Minh City. After being extracted from the 

conventional MFCC feature extraction method, the column sum of the MFCC 

feature matrix of the speech sample will be computed. The result of the column 

sum which is the  column vector will be used as the feature vector of the 

combination of the sparse PCA and the kernel ridge regression algorithms. 

First, the sparse PCA algorithm will be applied to 5,000 speech samples to 

transform this original dataset to the new dataset. Finally, the kernel ridge 

regression algorithm will be applied to this new dataset. Please note that 4,500 

speech samples are still used for training and 500 speech samples are still used for 

testing.   

There is one way to construct the kernel matrix from these feature vectors (of the 

set of labeled points): The fully connected network (i.e. all speech samples in the 

labeled set are connected). 

In this paper, the similarity function (i.e. the kernel value of speech samples i and 

speech sample j) is the value of the dot product of feature vector of speech sample 

i and feature vector of speech sample j. 

In this section, we experiment with the above kernel ridge regression method in 

terms of sensitivity measure. All experiments were implemented in Matlab 6.5 on 

virtual machine. The sensitivity measure Q is given as follows: 

 

     (46) 
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True Positive (TP), True Negative (TN), False Positive (FP), and False Negative 

(FN) are defined in the following Table 1 

 

Table 1: Definitions of TP, TN, FP, and FN 

  Predicted Label 

  Positive Negative 

Known Label Positive True Positive (TP) False Negative 

(FN) 

Negative False Positive 

(FP) 

True Negative 

(TN) 

 

For this dataset, the second table shows the sensitivity measures of the kernel 

ridge regression method alone, the HMM method (i.e. the current state of the art 

method of speech recognition application), the combination of the PCA and the 

kernel ridge regression method, and the combination of the sparse PCA and the 

kernel ridge regression method. 

  

Table 2: Comparisons of the kernel ridge regression method, the HMM method, 

the combination of the PCA and the kernel ridge regression method, and the 

combination of the sparse PCA and the kernel ridge regression method 

 

Sensitivity Measures (%) 

HMM method 

(4 mixtures, 8 states) 

89% 

Kernel Ridge Regression 

(dot product) 

94% 

PCA (d=19) + Kernel Ridge Regression 

(dot product) 

94% 

PCA (d=20) + Kernel Ridge Regression 

(dot product) 

95% 

PCA (d=21) + Kernel Ridge Regression 

(dot product) 

95.4% 

PCA (d=22) + Kernel Ridge Regression 

(dot product) 

94.8% 

Sparse PCA (d=19) + Kernel Ridge 

Regression (dot product) 

94% 

Sparse PCA (d=20) + Kernel Ridge 

Regression (dot product) 

95% 

Sparse PCA (d=21) + Kernel Ridge 

Regression (dot product) 

95.4% 

Sparse PCA (d=22) + Kernel Ridge 

Regression (dot product) 

95% 
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From the above Table 2, we recognized that the combination of the sparse PCA 

and the kernel ridge regression method outperforms the current state of the art 

HMM method and the Kernel Ridge Regression method alone in terms of 

sensitivity measures in speech recognition problem. Moreover, the combination of 

the sparse PCA and the kernel ridge regression method is at least as good as the 

combination of the PCA and the kernel ridge regression method but sometimes 

leads to better sensitivity performance measures. 

8      Conclusion 

The detailed algorithm combining the sparse PCA method and the kernel ridge 

regression method applying to the speech recognition problem has been developed. 

We easily recognized that this combination of the sparse PCA method and the 

kernel ridge regression method outperform the kernel ridge regression method 

alone and the current state of the art method for speech recognition which is the 

HMM method. 

In the future, the other dimensional reduction methods will be explored 

such as Local Linear Embedding [12] and Laplacian Eigenmaps methods [13]. The 

combinations of these dimensional reduction methods and the Kernel Ridge 

Regression method have not yet been investigated, to the best of our knowledge. 

Those methods’ performances will be compared to the sparse PCA method’s 

performances. 
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