
Int. J. Advance Soft Compu. Appl, Vol. 10, No. 2, July 2018

ISSN 2074-8523

Developing an Accelerometer-based Mobile

Application to Aid Knee Extension Exercise

Rong Phoophuangpairoj

Department of Computer Engineering, College of Engineering,

Rangsit University, Pathum Thani, Thailand

e-mail: rong.p@rsu.ac.th

Abstract

 Knee pain is a medical condition that disturbs many individuals

throughout the world. Physicians prescribe knee exercises to restore

mobility and strength to painful and weakened knees. However,

some sufferers may find these exercises dull, which might affect

their motivation. Currently, smartphones are ubiquities and they

come equipped with sensors such as accelerometers. In this research,

smartphone accelerometer data are used to compute knee angles and

Google’s TensorFlow machine learning software library for

machine intelligence is applied to derive a linear regression equation.

The resulting algorithm is the basis of a mobile application, which

was developed to count the number of times patients’ legs are raised

and lowered correctly, calculate the length of time the legs are held,

count the number of times the legs are held correctly and incorrectly,

compute the percentage of correct leg holds, warn patients when leg

movement is outside acceptable thresholds and evaluate the overall

effectiveness of the exercise by giving it a score. The mobile

application allows patients to recover more rapidly because knee

extension exercises can be monitored and adjusted through feedback

to improve their efficiency.

 Keywords: accelerometer, Android application, knee extension, machine

learning, regression equation, TensorFlow.

1 Introduction

Accelerometers have been utilized by researchers to recognize actions and

movement [1-10]. For example, mobile phone accelerometers have been applied

to recognize activities such as walking, jogging, going upstairs and downstairs,

rong.p@rsu.ac.th

133 Developing an Accelerometer-based Mobile Application

sitting, standing and falling [11][12]. Smartphones have been used to reduce

prosthetic hip dislocation caused by improper posture [13]. Nowadays, billions of

people throughout the world carry their smartphones with them throughout the

day and both budget and flagship models come equipped with accelerometers

making the technology accessible to almost all users.

 A knee extension exercise is carried out by extending the knee while sitting in

a chair with the back of the body straight. The knee is held in an extended position

for predetermined seconds before it is lowered back to its original position, then

the steps are repeated. The number of times the knee is extended and the exactness

of the extended leg position are significant factors, which directly affect the

usefulness of the exercise. TensorFlow [14] is an open-source software library for

numerical computation and machine intelligence originally developed by

researchers and engineers working on the Google Brain Team within Google's

Machine Intelligence research organization for the purposes of conducting

machine learning and deep neural networks research. It is not a straightforward

tool with clickable menus that requires only data and parameters to be entered,

extensive prior knowledge of machine learning, artificial intelligence, and

programming is required. In this research, TensorFlow was used to compute the

equation parameters. The knee angles were determined from the accelerometer

data. In addition, a mobile application was developed which, uses the equation to

keep track of the angles when patients raise, hold and lower their legs.

Consequently, knee extension exercises can be monitored so that patients are

alerted when they move their legs improperly. Inappropriate exercises could result

in knee pain taking longer to heal. The mobile application allows patients to

recover faster from knee injuries because they can monitor the effectiveness of

their exercises. In this research, the performance of the equations obtained from

TensorFlow and linear regression to compute knee angles are compared. Then, the

method used to develop the knee extension exercise mobile application is

presented.

2 Related Work

Researchers have used accelerometers in smartphones to detect triaxial motions

and identify human activities [1]. A smartphone with an accelerometer attached to

a head-mounted display could detect walk, run, lower half, upper half, jump and

full vertical activities [15]. However, research on using smartphone

accelerometers to detect poor posture during rehabilitation has been limited to

only a few papers. Patients who exercise when physiotherapists and physicians are

unavailable to supervise the outcome could further damage their knees and delay

the healing process. Accelerometer data has been used to estimate unsuitable

postures for patients who had undergone hip surgery. Rules using values obtained

from an accelerometer were used to identify unsuitable postures [13]. Knee

extension exercises have also been studied [16]. In the research, stored triaxial

accelerometer data were analyzed to determine the degree the leg was held at, the

Rong Phoophuangpairoj 134

length of time the leg was held for, and the angular velocity the leg was lowered

and raised at. A mobile application which activates an alert and provides feedback

in real time on the effectiveness of knee extension exercises could help those with

injured knees to heal more rapidly.

 Machine learning gives computer systems the ability to learn and iteratively

enhance the performance of a specific task with data. A support vector machine

(SVM), artificial neural networks, regression tree analysis and k-nearest neighbor

(k-NN) were applied to recognize the characteristic features of falls [17][18].

Deep learning recently broke records in speech and image classification; however,

it has not been fully studied as a potential approach to analyzing wearable sensor

data. Deep learning using Google’s TensorFlow has been applied to recognizing

patients with idiopathic Parkinson’s disease where its classifiers outperformed

those using AdaBoost.M1, PART, k-NN and SVM [19]. Currently, due to the

emergence of new technology, a mobile application to determine the effectiveness

of pain relief exercises should be developed.

3 Materials and Method

3.1 Instruments

Fig. 1 shows the instruments used to collect the accelerometer data. They

consisted of a digital protractor, a smartphone and the Android-based Sensor

Fusion application created by Linköpins Universitet as described in [16]. First, a

Samsung Galaxy S6 smartphone was attached with an armband to the digital

protractor. Next, the top of the smartphone was aligned parallel to the floor.

Top of a

smartphone

Representing

a knee angle

Fig. 1: Collecting data from the accelerometer

 The angle of the digital protractor was varied and the Sensor Fusion

application, which was downloaded from the Google Play Store, was used to

record the sensor data. A Python program was written using TensorFlow and

Microsoft Visual Studio Community 2017 to derive an equation, which could

compute knee angles on mobile devices. Android Studio [20] and the Java SE

Development Kit (JDK) [21] were used to develop the mobile application.

Android Studio is the officially integrated development environment for Android

and can be used with the JDK for building applications on Android devices.

135 Developing an Accelerometer-based Mobile Application

3.2 Deriving an equation to compute the knee angle

The angle of the digital protractor (representing the knee angle) was incremented

in steps of 5 degrees from 80 to 190 degrees. At each 5-degree step, the

accelerometer data was recorded for 10 seconds. Then, for each degree, the

average values of X, Y and Z were computed. Microsoft Excel and TensorFlow

were used in the data analysis to derive equations that could predict the knee angle

from the accelerometer data. However, the accelerometer X value did not affect

the prediction performance. Therefore, only the accelerometer Y and Z values

were used. Errors in the equations obtained from the TensorFlow and linear

regression analysis were compared. A Python program was written, which used

TensorFlow to find the equation parameters, as shown below.

#Import statements for the TensorFlow program

import numpy as np

import tensorflow as tf

Model parameters (create weights, a bias, and initialize their values)

W1 = tf.Variable([.3], dtype=tf.float32)

W2 = tf.Variable([.3], dtype=tf.float32)

b = tf.Variable([.3], dtype=tf.float32)

Model inputs and output

Create placeholders for inputs and an output

(inputs y (accelerometer y value) and z (accelerometer z value), output angle)

y = tf.placeholder(tf.float32)

z = tf.placeholder(tf.float32)

angle = tf.placeholder(tf.float32)

Construct the model

Scale y and z to the range of -1 and 1 by the maximum values of the accelerometer data

obtained from accelerometer y and z values (10.54922853)

linear_model = W1*y/10.54922853 + W2*z/10.54922853 + b

loss (use the square error as the loss function)

angles were scaled to values of not more than 1 by dividing by 1,000

When using the obtained equation, the predicted angle must be multiplied by 1,000 later

loss = tf.reduce_sum(tf.square(linear_model - angle/1000)) # sum of the squares

optimizer (using gradient descent with a learning rate of 0.01 to minimize the loss)

optimizer = tf.train.GradientDescentOptimizer(0.01)

train = optimizer.minimize(loss)

Training data (y_train, z_train and angle_train)

y_train = [-9.854918276, -9.935656452, -9.930376719, -9.876094528, -9.609847081, -9.400428557,

-9.188858565, -8.606071056, -8.281913096, -7.646664423, -7.144252027, -6.421738093, -5.947865058,

-5.36909638, -4.225071377, -3.933800704, -2.958510073, -2.402172669, -1.039182786, -0.526669963,

-0.015127189, 1.036411793, 2.432224464]

z_train = [-0.544567652, 0.425204723, 1.131641737, 1.809724306, 3.181905278, 3.890094311,

4.442849749, 5.612897496, 6.14114012, 6.920205372, 7.449510166, 8.248553807, 8.603829062,

9.018231482, 9.639302822, 9.770692485, 10.12989709, 10.27038887, 10.46382032, 10.53568769,

10.54922853, 10.49447203, 10.20460383]

angle_train = [80.0, 85.0, 90.0, 95.0, 100.0, 105.0, 110.0, 115.0, 120.0, 125.0, 130.0, 135.0, 140.0, 145.0,

150.0, 155.0, 160.0, 165.0, 170.0, 175.0, 180.0, 185.0, 190.0]

Rong Phoophuangpairoj 136

Training loop (20000 epochs)

Model parameters are stored in curr_W1, curr_W2 and curr_b

Model loss is stored in curr_loss

init = tf.global_variables_initializer()

sess = tf.Session()

sess.run(init)

for i in range(20000):

 sess.run(train, {y:y_train, z:z_train, angle:angle_train})

Evaluate the training accuracy (from a value obtained from the loss function (curr_loss))

curr_W1, curr_W2, curr_b, curr_loss = sess.run([W1, W2, b, loss], {y:y_train, z:z_train, angle:angle_train})

print("W1: %s W2: %s b: %s loss: %s"%(curr_W1, curr_W2, curr_b, curr_loss))

 TensorFlow was used to find the equation to compute the knee angles. The data

were scaled between the range of -1 and 1 by dividing the values of Y and Z with

the maximum value (magnitude). The loss from the model was calculated to find

the equation parameters. The loss measured how far away its prediction was from

the desired output, in other words, how poorly the model or equation had

performed. To obtain the model, the loss value needed to be minimized or

optimized. First, the training process attempted to find the best combination of

weights and a bias to minimize the loss. Then, a gradient descent optimization

algorithm was used to find optimal model variables that reduced the prediction

error or its loss. Next, to minimize the loss, an optimizer used the computed

gradients to find the model's variables. The model was adjusted iteratively by

computing the loss and gradients at each step. The optimizer generated the weight

and bias parameters of the equation to minimize the loss function 20,000 times. At

the training stage, the output angles were scaled to values that were not more than

1 by dividing by 1,000. Subsequently, the obtained angle was multiplied by 1,000

to reflect the original value.

3.3 Developing an application to aid knee extension exercises

The mobile application was developed to give feedback on the knee extension

exercise. The factors that affected the knee extension exercise were the knee angle,

the number of correct leg-raise and leg-lower cycles, the number of correct leg

holds, the number of incorrect leg holds and the percentage of correct leg holds, as

shown below.

3.3.1 Computing the knee angle

Accelerometers report a sequence of three values, which are X, Y and Z. The

results section shows that the knee angle (KA) could be approximated from the

accelerometer data by the following equation, which was derived using

TensorFlow.

KA = (W1Y/10.54922853 + W2Z/10.54922853 + b) * 1000 (1)

Y : Accelerometer Y value Z : Accelerometer Z value

W1 : 0.0529054 W2 : 0.04322108 b : 0.13487998

137 Developing an Accelerometer-based Mobile Application

 Alternatively, the knee angle could also be computed from the accelerometer

data using the following regression equation obtained by the method proposed in

[16]. The errors obtained when using the TensorFlow and linear regression

equations are compared in the results section.

 KA = 5.0150259663567Y + 4.09716153510471Z + 134.879035721248 (2)

Y : Accelerometer Y value Z : Accelerometer Z value

 The KA value represented the position of the leg when it was raised and

lowered, which was computed every time new data were received from the

accelerometer. The angle could be less than 90 and greater than 180. The KA

value was used in the mobile application to estimate accurately the lower leg and

thigh angles from 90 to 180.

3.3.2 Alert when raised or lowered leg is out of range

When legs were over or under extended, the application notified the patient with

an alert. The method for warning patients when legs are moved out of range is

shown below:

Given

LW: Leg- lower warning threshold (e.g. 85)

RW: Leg- raise warning threshold (e.g. 185)

event.values[1] : accelerometer Y value

event.values[2] : accelerometer Z value

When new values of accelerometer data are received

// public void onSensorChanged(SensorEvent event)

{

 Compute KA by

 KA = (0.0529054*event.values[1]/10.54922853 +

 0.04322108*event.values[2]/10.54922853 + 0.13487998) * 1000;

 …

if((KA <= LW) OR (KA >= RW))

 Generate beep sounds

…

}

 The predefined LW and RW can be set to values representing angles that are

less than 90 and greater than 180.

3.3.3 Determining leg-hold duration and the number of correct leg holds

The start and finish time of each leg hold was obtained from the system clock and

each leg-hold duration was computed from the time difference. The method for

determining the leg-hold duration is shown below:

Rong Phoophuangpairoj 138

Keep start time (in milliseconds from a reference time).

Do something.

Keep end time.

Compute the difference of time (in milliseconds).

 The number of correct and incorrect leg holds was determined using the

following method.

Given

LR : Low angle threshold for a raised a leg (e.g. 170)

HR : High angle threshold for a raised a leg (e.g. 190)

MCD : Minimum threshold of correct leg-hold duration (e.g. 5000)

MID : Minimum threshold of incorrect leg-hold duration (e.g. 2000)

(Duration (in milliseconds) that is shorter than MID is not considered as a leg

hold)

NCH : the number of correct leg holds

NICH : the number of incorrect leg holds

LHD : Leg-hold duration (in milliseconds)

FirstHighDegreeFlag : Flag indicating that a leg has passed a high-degree angle

for the first time (for each time of leg raised)

event.values[1] : accelerometer Y value

event.values[2] : accelerometer Z value

KA : Knee angle

NCH = 0;

N ICH = 0;

FirstHighDegreeFlag= 0;

When new values of accelerometer data are received

// public void onSensorChanged(SensorEvent event)

{ Compute KA by

 KA = (0.0529054*event.values[1]/10.54922853 +

 0.04322108*event.values[2]/10.54922853 + 0.13487998) * 1000;

if ((KA >= LR) AND (KA <= HR)) { // A leg is passing a high-degree range or is hold.

 Increment FirstHighDegreeFlag by 1 // Not 0 if a leg passes a high-degree angle

 if(FirstHighDegreeFlag == 1) {

 Keep start time

 }

 …

 Keep the end time

 Compute LHD (which is the leg-hold duration) from the difference

 of the kept start and finish time

 }

 …

139 Developing an Accelerometer-based Mobile Application

 else {

 if (LHD >= MCD) {

 Increment NCH by 1

 …

 }

 if ((LHD >= MID) AND (LHD < MCD)) {

 Increment NICH by 1

 …

 }

 LHD = 0;

 FirstHighDegreeFlag= 0;

 …

}

…

Display the correctness and effectiveness of the knee extension exercise.

}

3.3.4 Determining the number of correct leg raise and lower cycles

The number of correct leg raise and lower cycles (NCRL) can be found from the

number of times that a patient moves their leg through the low and high thresholds

of the raised leg (LR and HR) and the low and high thresholds of the lowered leg

(LL and HL). The method used to determine the number of correct raise and

lower cycles is shown below:

Given

LR : Lower threshold of a raised leg (e.g. 170)

HR : Higher threshold of a raised leg (e.g. 190)

LL : Lower threshold of a lowered leg (e.g. 80)

HL : Higher threshold of a lowered leg (e.g. 100)

NCRL : the number of correct raise and lower cycles

LHD : Leg-hold duration (in milliseconds)

PassedLowDegreeFlag: Flag indicating that a leg has passed a low-degree angle

(for each time a leg is lowered)

FirstHighDegreeFlag : Flag indicating that a leg has passed a high-degree angle

for the first time (for each time a leg is raised)

event.values[1] : accelerometer Y value

event.values[2] : accelerometer Z value

KA : Knee angle

PassedLowDegreeFlag = 0;

NCRL = 0;

Rong Phoophuangpairoj 140

When the new values of accelerometer data are received

// public void onSensorChanged(SensorEvent event)

{

 Compute KA by

 KA = (0.0529054*event.values[1]/10.54922853 +

 0.04322108*event.values[2]/10.54922853 + 0.13487998) * 1000;

if ((KA >= LR) AND (KA <= HR)) { // A leg is passing a high-degree range or is held.

 …

if (PassedLowDegreeFlag == 1){ // A leg has passed a low-degree range.

 Increment NCRL by 1
 PassedLowDegreeFlag = 0;

 }

 …

}

else if ((KA >= LL) AND (KA <= HL)) // A leg is passing a low-degree range.

{ // Can use the HL only

 PassedLowDegreeFlag = 1;

LHD = 0;

 FirstHighDegreeFlag = 0;

}

…

Display the correctness and effectiveness of the knee extension exercise.

}

3.3.5 Computing the percentage of correct leg holds

From the leg-hold duration (LHD), the number of correct and incorrect leg holds

(NCH and NICH) were counted and the percentage of correct leg holds (PCH) was

computed, as shown below.

Given

NCH : the number of correct leg holds

NICH : the number of incorrect leg holds

if (NCH + NICH) > 0

𝑃𝐶𝐻 =
𝑁𝐶𝐻

𝑁𝐶𝐻 + 𝑁𝐼𝐶𝐻
𝑥 100

(3)

3.3.6 Computing the score of the knee extension exercise

After the NCH and NCRL values were obtained, an overall score (Score) for the

exercise was computed using the equation below.

Given

WCH : Weight of correct leg holds (e.g. 3)

WCRL : Weight of the correct raise and lower cycles (e.g. 1)

141 Developing an Accelerometer-based Mobile Application

NCH : the number of correct leg holds

NCRL : the number of correct raise and lower cycles

Score = WCHNCH + WCRLNCRL (4)

 WCH and WCRL are manually pre-defined weighting values, which represent the

significance of the number of correct leg holds and the number of raise and lower

cycles, respectively.

 To analyze the knee extension exercises in the mobile application, the LW, RW,

LR, HR, MCD, MID, LL, HL thresholds and the WCH and WCRL weighting values

must be adjusted to suit physiotherapists’ diagnosis.

4 Results

4.1 Equations to determine the knee angle

Table 1 shows the equations used to determine the knee angle from X, Y and Z

obtained using regression data analysis in Microsoft Excel and TensorFlow

machine learning.

Table 1: Equations to determine the knee angle from X, Y and Z
Method Results

Regression

using regression

data analysis in

Microsoft Excel

KA = -0.0329195890694764X + 5.0141242004229Y + 4.09999153486268Z +

134.859522862178

R2 = 0.997536452

Machine learning

using TensorFlow

(Scale the data

 to the range of

[-1, 1] using a

maximum value of

10.54922853)

KA = (W1X/10.54922853 + W2Y/10.54922853 + W3Z/10.54922853 + b) *

1000

W1 : -0.00033007

W2 : 0.05290307

W3 : 0.04324205

b : 0.13486998

Maximum value in the data : 10.54922853

Error (loss) = 6.3227e-05

 Table 2 shows the coefficients of X, Y, Z, the intercept value and the

corresponding P-value computed in the regression analysis.

Table 2: Coefficients of X, Y, Z, the intercept value and their P-values

Coefficients P-value

Intercept 134.859522862178 4.21001E-22

X -0.0329195890694764 0.976228404

Y 5.0141242004229 3.23129E-16

Z 4.09999153486268 2.34989E-13

Rong Phoophuangpairoj 142

 The P-value of X (0.976228404) was greater than the common alpha level of

0.05, which indicated that it was not statistically significant. Generally, P-values

are used to determine the variables that should be kept in the regression model.

According to the P-values, X was considered for removal from the regression

equation. After X was removed, linear regression and TensorFlow were applied to

find the equations again. The obtained equations are shown in Table 3.

Table 3: Equations used to determine the knee angle from Y and Z

Method Results

Regression

using regression

data analysis in

Microsoft Excel

KA = 5.0150259663567Y + 4.09716153510471Z + 134.879035721248

R2 = 0.997536334

Machine learning

using TensorFlow

(Scale the data

 to the range of

[-1, 1] using a

maximum value of

10.54922853)

KA = (W1Y/10.54922853 + W2Z/10.54922853 + b) * 1000

W1 : 0.0529054

W2 : 0.04322108

b : 0.13487998

Maximum value in the data : 10.54922853

Error (loss) = 6.23309e-05

 Table 4 shows the coefficients of Y, Z, the intercept value and the

corresponding P-value computed in the regression analysis. The obtained P-values

ensured that Y, Z and the intercept value were kept in the regression equation.

Table 4: Coefficients of Y, Z, the intercept value and their P-values

Coefficients P-value

Intercept 134.879035721248 1.73E-23

Y 5.0150259663567 4.17E-17

Z 4.09716153510471 9.6E-15

 The linear regression equation obtained shown in Table 4 was used to compare

the knee angle computation errors derived from TensorFlow. The results are

shown in the section below.

4.2 Knee angle computation errors

Table 5 shows that errors occurred when the equations obtained from TensorFlow

and linear regression were used to compute the knee angle from Y and Z. The

results show that the average differences when using TensorFlow machine

learning and regression analysis were 1.273596193 and 1.273601303,

respectively. TensorFlow machine learning was used to efficiently find an

equation that could compute the knee angle. The error of the angle determined

143 Developing an Accelerometer-based Mobile Application

from Y and Z using TensorFlow machine learning was about 1.27360. Since the

errors obtained from TensorFlow machine learning and regression analysis were

not significantly different, both equations could be used to compute the knee

angles from the accelerometer data.

Table 5: Errors when using equations obtained from TensorFlow and linear

regression

Actual
knee

angle

(KA)
(degree)

Y Z

KA using
TensorFlow

machine

learning)
(degree)

KA

(Regression)

(degree)

Difference

 (using

TensorFlow

machine

learning)

(degree)

Difference

 (Regression)

(degree)

80 -9.854918276 -0.544567652 83.22547333 83.22518303 3.225473334 3.225183032

85 -9.935656452 0.425204723 86.79380289 86.79359306 1.793802886 1.793593057

90 -9.930376719 1.131641737 89.71461335 89.71445762 0.285386646 0.28554238

95 -9.876094528 1.809724306 92.76500532 92.76489803 2.23499468 2.235101967

100 -9.609847081 3.181905278 99.72220328 99.72218299 0.277796716 0.277817009

105 -9.400428557 3.890094311 103.6739677 103.6739872 1.326032329 1.326012809

110 -9.188858565 4.442849749 106.9996973 106.9997445 3.000302682 3.000255485

115 -8.606071056 5.612897496 114.7162174 114.7163136 0.283782623 0.283686371

120 -8.281913096 6.14114012 118.5061555 118.5062696 1.493844513 1.493730426

125 -7.646664423 6.920205372 124.8838851 124.8840143 0.116114944 0.115985651

130 -7.144252027 7.449510166 129.5721382 129.5722728 0.427861817 0.427727195

135 -6.421738093 8.248553807 136.4693646 136.4695098 1.469364609 1.469509813

140 -5.947865058 8.603829062 140.3014764 140.3016155 0.301476368 0.301615499

145 -5.36909638 9.018231482 144.9018989 144.9020291 0.098101106 0.097970898

150 -4.225071377 9.639302822 153.1838765 153.1839738 3.183876499 3.183973801

155 -3.933800704 9.770692485 155.1829416 155.1830285 0.182941604 0.183028466

160 -2.958510073 10.12989709 161.5458099 161.5458556 1.545809913 1.545855595

165 -2.402172669 10.27038887 164.9115024 164.9115196 0.088497586 0.088480362

170 -1.039182786 10.46382032 172.5395333 172.5394692 2.539533309 2.539469192

175 -0.526669963 10.53568769 175.4042813 175.4041865 0.404281296 0.404186525

180 -0.015127189 10.54922853 178.0251957 178.0250658 1.974804322 1.974934175

185 1.036411793 10.49447203 183.0744232 183.0742149 1.92557676 1.925785095

190 2.432224464 10.20460383 188.8869441 188.8866148 1.113055897 1.113385155

Sum of difference (degree) 29.29271244 29.29282996

Average of difference (degree) 1.273596193 1.273601303

 Remark: The actual knee angle was the value obtained from the digital protractor.

4.3 Android application to aid knee extension exercises

Fig. 2 shows an android application, which was developed as an aid to knee

extension exercises. The application reports current accelerometer values (X, Y

and Z), the current angle, the number of cycles of correct raise and lower

Rong Phoophuangpairoj 144

movements, current leg-hold time, the number of correct and incorrect leg holds,

the percentage of correct leg holds, and the overall score of the exercise.

Fig. 2: Android application to aid knee extension exercises

 To use the application, first, attach a smartphone with an accelerometer to an

armband. Then, adjust the armband to suit the diameter of the leg. Next, fasten the

smartphone and the armband to a point on the shin below the injured knee while

making sure the top of the smartphone is aligned parallel with the foot, as shown

in Fig. 3.

Fig. 3: A smartphone attached to an armband fastened on a leg

145 Developing an Accelerometer-based Mobile Application

 Start the application by pressing the START KNEE EXTENSION EXERCISE

button on the screen, to begin exercising raise the leg up, hold it in the extended

position then lower it back down. During the exercises, patients can set alerts that

will notify them when the leg is moved out of the preset range by pressing the

SET ALERTS (ON/OFF) button. Finally, pressing the STOP KNEE

EXTENSION EXERCISE button will end the program and give the patient

feedback on the outcome of the exercise. They can use the feedback from the

application to determine whether the exercise was done correctly or not. In

addition, smartphone screens can easily be mirrored to smart TVs allowing

patients to get feedback in a more enjoyable way.

5 Conclusion

The aim of this research was to develop a mobile application that could be used to

make knee extension exercises more effective and enjoyable. Knee pain sufferers

may find exercises boring due to their repetitive nature. The mobile application

developed in this research encourages outpatients to exercise more appropriately

and it may motivate them to restore strength and mobility to their injured knees

because the exercises are more enjoyable. Furthermore, they can evaluate and

adjust their exercises through feedback. Linear regression and TensorFlow

machine learning were investigated to compute knee angles. Both methods could

be applied to find equations that computed the knee angle from the accelerometer

data with an average error of about 1.27. TensorFlow machine learning approach

is more beneficial than the traditional regression method because it is more

flexible and applicable to a wider variety of algorithms such as deep neural

network models. In addition, TensorFlow is not limited to only linear regression.

It can be used to find the coefficients of various other types of equations. In the

future, it is hoped the mobile application will be further developed so that it could

be applied to a variety of other exercises such as sit-ups.

References

[1] Bayat, A., Pomplun, M., & Tran, D. A. (2014). A study on human activity

recognition using accelerometer data from smartphones. In Procedia

Computer Science, 34, 450-457.

[2] Brezmes T., Gorricho J-L., & Cotrina J. (2009). Activity Recognition from

Accelerometer Data on a Mobile Phone. In Lecture Notes in Computer

Science, 5518, 796-799, Springer, Berlin, Heidelberg.

[3] Cho, Y., Nam, Y., Choi, Y-J., & Cho, W-D. (2008). SmartBuckle: human

activity recognition using a 3-axis accelerometer and a wearable camera. In

Proceedings the 2nd International Workshop on Systems and Networking

Support for Health Care and Assisted Living Environments.

Rong Phoophuangpairoj 146

[4] Krishnan, N. C., & Panchanathan, S. (2008). Analysis of low resolution

accelerometer data for continuous human activity recognition. In Proceedings

IEEE International Conference on Acoustics, Speech and Signal Processing

(ICASSP), (pp. 3337-3340).

[5] Lester J., Choudhury T., & Borriello G. (2006). A Practical Approach to

Recognizing Physical Activities. In Lecture Notes in Computer Science,

3968, 1-16, Springer, Berlin, Heidelberg.

[6] Ravi, N., & Dandekar, N. (2005). Activity recognition from accelerometer

data. In Proceedings 17th Conference on Innovative Applications of Artificial

Intelligence (IAAI), 3, (pp. 1541-1546).

[7] Tapia, E. M., Intille, S. S., et al. (2007). Real-time recognition of physical

activities and their intensities using wireless accelerometers and a heart rate

monitor. In Proceedings 11th IEEE International Symposium on Wearable

Computers, (pp. 1-4).

[8] Long, X., Yin, B., & Aarts, R. M. (2009). Single accelerometer-based daily

physical activity classification. In Proceedings 31st Annual International

Conference of the IEEE Engineering in Medicine and Biology Society (EMBS),

(pp. 6107-6110).

[9] Mannini, A., & Sabatini, A. M. (2010). Machine learning methods for

classifying human physical activity from on-body accelerometers. Sensors,

10(2), 1154-1175.

[10] Győrbíró, N., Fábián, Á., & Hományi, G. (2009). An activity recognition

system for mobile phones. Mobile Networks and Applications, 14(1), 82-91.

[11] Kwapisz, J. R., Weiss, G. M., & Moore S. A. (2010). Activity recognition

using cell phone accelerometers. ACM SIGKDD Explorations Newsletter,

12(2), 74-82.

[12] Mathie, M., Celler, B., Lovell, N., & Coster, A. (2004). Classification of basic

daily movements using a triaxial accelerometer. Medical & Biological

Engineering and Computing, 42, 679-687.

[13] Chutatape, O., Naonueng, K., & Phoophuangpairoj, R. (2017). Detection of

improper postures leading to dislocation of hip prosthesis by a smartphone. In

Proceedings 14th International Conference on Electrical Engineering/

Electronics, Computer, Telecommunications and Information Technology

(ECTI-CON).

[14] TensorFlow, An open-source software library for machine intelligence,

Retrieved from https://www.tensorflow.org/

[15] Huda, F. A., Tolle, H., & Putra, K. P. (2017). Human activity recognition

using single accelerometer on smartphone put on user’s head with head-

mounted display, Int. J. Advance Soft Compu. Appl, 9(3), 239-249.

147 Developing an Accelerometer-based Mobile Application

[16] Phoophuangpairoj, R. (2016). Frame-based analysis of knee extension

exercises using a smartphone accelerometer, In Proceedings 13th

International Joint Conference on Computer Science and Software

Engineering (JCSSE).

[17] Vallejo, M., Isaza, C, & Lopez, J. (2013). Artificial neural networks as an

alternative to traditional fall detection methods. In Proceedings of 35th Annual

International Conference of the IEEE Engineering in Medicine and Biology

Society (EMBC), Osaka, Japan, (pp. 1648-1651).

[18] Putra, I. P. R. S, Brusey, J., Gaura, E, & Vesilo R. (2017). An event-triggered

machine learning approach for accelerometer-based fall detection, Sensors,

18(20), 1-18.

[19] Eskofier, B. M. (2016). Recent machine learning advancements in sensor-

based mobility analysis: Deep learning for Parkinson's disease assessment, In

Proceedings 38th Annual International Conference of IEEE Engineering in

Medicine and Biology Society (EMBC), Orlando, FL, USA.

[20] Android Studio, Retrieved from

https://developer.android.com/studio/index.html

[21] Java SE development kit, Retrieved from

http://www.oracle.com/technetwork/java/javase/downloads

