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Abstract 

     Image intensity values which are extracted from magnetic 
resonance imaging (MRI) are not standardised and do not have 
tissue-specific interpretation due to the limitation of MRI 
instrumentation. The limitation poses many difficulties on data 
visualisation and texture feature analysis. Intensity and texture 
features extracted from MRI are not comparable for each inter-scan 
and intra-scan. Hence, they are not appropriate to be applied in 
supervised learning approaches to analyse the texture of white 
matter lesions. Consequently, this drawback often requires a 
standardisation method prior to further image analysis, which 
remains a common problem. In this study, a new automated method 
for image intensity standardisation is proposed to provide a standard 
intensity scale. In the proposed method, the landmarks in the 
intensity scale are automatically detected in the brain tissue intensity 
distribution using an adaptive outlier detection approach. 
Subsequently, landmarks are used to transform the brain tissues and 
lesion intensity into a standard scale by using the proposed 
transformation method. The method is validated using the cranial 

School of Computing,Faculty of Engineering



 

 

 

 

 

 

 

ONG et al.                                                                                                           144 

MRIs (FLAIR sequence) that contain the white matter lesions from 
10 subjects during their 3-year follow-up study. A paired t-test: t(29) 
= 2.045 and P(29)=1.42x10-15 where P<0.0001 confirms the 
significant difference in the before and after intensity range. In 
addition, intensity and texture features between the output images 
from the proposed approach and a leading intensity standardisation 
algorithm are further compared using the coefficient of variation, 
Pearson's correlation coefficient, and Kullback-Leibler divergence. 
Finally, qualitative evaluation of the MRI intensity is presented 
using the fixed-window-level method.  

     Keywords:  Intensity normalisation, intensity standardization, MRI, outlier 
detections, white matter lesions. 

1      Introduction 

Consequent to a revolution in diagnostic imaging modality, magnetic 

resonance imaging has become an advanced intervention that offers a non-

invasive imaging technology enabling visualisation inside the human body 

without the use of ionising radiation. The magnetic resonance (MR) modality 

provides high contrast images to allow radiologists to identify abnormality by 

visualising the soft-tissue intensity differences. Thus, MRI is widely used to 

diagnose and study the progression of brain diseases that are caused by white 

matter lesions (WML) such as multiple sclerosis (MS). However, quantitative 

WML analysis based on a classification model is challenging since MRI does not 

provide Hounsfield Units (HU) as offered in a computed tomography (CT) scan. 

Moreover, results of the quantitative WML analysis are easily influenced by the 

MRI acquisition conditions such as MR protocol, different brands of MRI 

scanners, and MRI parameters. Consequently, image intensity standardisation is 

an essential step to visualise the desired tissue uniformity and improve the tissue-

specific meaning. Furthermore, intensity standardisation can also enhance the 

quality of brain lesion segmentation by using a supervised learning algorithm. 

Thus, it may improve the accuracy of the results in quantification analysis [1].  

2      Related Work 

There are several intensity standardisation methods that have been reported in the 

literature [1-8]. An automatic brightness and contrast adjustment approach has 

been proposed by Wendt [9] to visualise MR images uniformly. The simplistic 

standardisation approach using minimum and maximum pixel intensities for each 

image is first determined. These values are then mapped onto grey scale linearly 

in the 8-bit display. However, this method does not standardise the MR intensity 

for tissue-specific meaning. Nyu and Udupa [2] extended the method to 

standardise MRI intensity by using a windowing transformation approach. A set 

of images was used as input to learn and define the parameters. Mode of the 

histogram, minimum and maximum percentile intensities, and shoulder of the 
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"background hump" were the parameters suggested by Nyu and Udupa [2]. The 

parameters were used as landmarks to determine an intensity-standardised scale 

histogram. The actual intensities from the original histogram that were generated 

from input volumes were linearly transformed into the intensity standardised scale 

histogram. Ge et al. [1] applied the intensity standardisation method with new 

variant parameters such as median and percentiles that were introduced by Nyul et 

al. [3] to determine the standard histogram. In their experiments, the characteristic 

of healthy white matter tissue and abnormal tissue in Multiple Sclerosis (MS) 

patients can be distinguished accurately. Furthermore, an intensity standardisation 

method based on a multiplicative correction field was presented by Weisenfeld 

and Warfteld [4]. The method transformed MR images to match standard scale 

images with a minimising Kullback-Leibler divergence. Hence, the quality of MR 

brain lesions segmentation by using the classification approach could be further 

improved. To the best of our knowledge, the effectiveness of intensity 

standardisation on pathological images has been discussed very rarely in the 

literature. Most of the methods suggested above often did not include 

abnormalities such as white matter lesions. Researchers tend to remove the lesions 

on the brain images when evaluating the proposed intensity standardisation 

algorithm. An interesting patch-based intensity standardisation had been 

introduced by Roy et al. [8], whereby, a set of three-dimensional (3D) patches 

were stacked into one-dimensional (1D) vectors. These best-matching vectors 

between patch subject and patch atlas were determined by maximum likelihood 

and an expectation-maximisation (EM) algorithm. An intensity-standardised 

image was generated by replacing the centre of the pixel of each best-match 

subject patch with the atlas patch. 

In recent years, image intensity standardisation on brain lesion images has gained 

more attention than healthy brain images. This is understandable since intensity 

standardisation allows for many other supervised learning algorithms to be 

applied to identify brain abnormalities such as white matter lesions and brain 

tumours. Jäger et al. [10] suggested a set of grey values to search and map 

between a set of probability density functions (PDF) which were generated from 

MR images and a set PDF generated from reference MR images. The mapping 

between the joint PDF of both sets of images can be approximated by the 

minimisation of the distance. Therefore, the benefit of this image intensity 

standardisation method is independent of the application, region of interest, 

acquisition protocol, and modality. In another work, MS lesion quantitative 

analysis based on texture features that were computed based on MR intensity 

pixels often suffered from inaccurate results due to non-standardisation. An 

appropriate intensity standardisation method was proposed by Loizou et al. [5,11] 

among six different intensity standardisation methods. These intensity 

standardisation methods were evaluated based on a texture feature that was 

extracted from the original and standardised images. Their evaluation method 

included Wilcoxon rank sum test and Kullback-Leibler Divergence. Thus, the 
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results of MS lesion classification were significantly improved after intensity 

standardisation was applied and they were less dependent on the MR acquisition 

protocol in their findings. In addition, a novel pathology robust intensity 

standardisation algorithm was presented by Ekin [7]. In their study, 

standardisation by global constraints (e.g., histogram similarity) and local 

constraints (e.g., voxel intensity) that improved transformation functions between 

the input and the reference were proposed. Subsequently, the final transfer 

function was computed as a weighted combination of the two local and global 

transfer functions. Thus, the method was successfully applied on pathology MR 

images. 

A thorough review of image intensity standardisation applied to MRI with MS 

lesion load was first reported by Shah et al. [6]. They are investigating the effect 

of standardisation approaches when the methods are applied on MR brain lesions. 

Parametric supervised classifications such as a standard Bayesian classifier, an 

outlier-detection based approach, and a Bayesian classifier with Markov Random 

Field (MRF) were used to classify brain tissue and MS lesions before and after an 

intensity standardisation process. In their comprehensive evaluation, they 

concluded that image intensity standardisation was a significant step towards 

providing an improved discriminating ability for supervised learning algorithms.  

From the existing literature, it is found that the lack of intensity standardisation on 

MRI still leads to the re-training of many supervised learning algorithms for every 

new protocol setting on MRI. Obviously, this is a tedious and time-consuming 

process for clinicians to repeat the algorithm training process every time. Hence, 

many of discussed supervised learning algorithms are not appropriate give 

efficient solution to the intensity standardisation issues on MRI. Besides, the lack 

of intensity standardisation also caused a difficulty for neuro-radiologist in 

performing a comparable brain lesion assessment study because the intensity 

contrast of a lesions are vary from time to time when imaging acquired. Therefore, 

in this study, an improved intensity standardisation method is introduced based on 

enhanced landmark-based approach with automated outlier detection method. The 

landmark-based approach has been used in many previous studies [17-20] and its 

performance and accuracy were evaluated by Bergeest and Jäger [21]. In addition,  

Shah et al. [6] had thoroughly validated its exceptional performances on MRI 

images to detect MS brain lesions which contributed by its fast computation and 

ability to reduce the complexity. The integration of the landmark-based approach 

and automated outlier detection method are able to standardise the brain tissue as 

well as lesion on MR images. Unlike the existing approaches that had been 

discussed, only brain tissue is normalised but not the lesion on MR images. In 

term of WML visual assessment [22-24], the proposed method aims to standardise 

image intensity contrasts for a comparable brain lesion assessments. This paper 

consists of Section 3, description of details of MR images and the proposed 

method used in the study; Section 4, presentation of results and the evaluation 
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methods; and finally, in Sections 5 and 6, discussion of the findings and 

conclusion respectively. 

3      Materials and Methods 

The proposed new image intensity standardisation method is validated using the 

dataset MRI sequences obtained from the clinical study of the protective effects of 

palm vitamin E tocotrienols on brain white matter [13]. Pathological cranial MR 

images with 10 subjects comprising T1-weighted (T1-W) and Fast Fluid 

Attenuated Inversion Recovery (FLAIR) sequences were randomly selected. All 

subjects were part of at 3-year follow-up study that was acquired by different 

parameters in each follow-up year. Therefore, a total of 30 case studies (628 

images) were used in this validation of intensity standardisation. In addition, the 

dataset included the cranial MR images from six healthy subjects that were 

acquired by different parameters used to construct an image intensity standard 

scale model; these healthy subjects were between 38 and 55 years of age (mean 

age 45.00 ± 5.83 yr.). The subjects who were being used for intensity 

standardisation were between 40 and 62 years of age (mean age 48.90 ± 6.98 yr.). 

The subjects were scanned with an acquisition matrix of 512 x 512 for axial 

FLAIR and axial T1-weighted sequences. Both sequences had a slice thickness of 

5.0 mm; all MR brain imaging were obtained from a 1.5T Signa HDx GE Scanner. 

Details of MRI protocol and parameters are given in clinical study of the 

protective effects of palm vitamin E tocotrienols on brain white matter [13]. The 

evaluation and experiment were performed on a computer with Intel Core i5-

2450M CPU 2.50Ghz and 8.0 Gb installed memory (RAM) on 64-bit windows 7 

operating system. 

3.1 Manual Delineation and Features of White Matter Lesions 

White matter lesions were delineated manually based on original image slices by 

an experience neuro-radiologist. The lesions annotation created manually was 

done by using the MIPAV 1  (Medical Image Processing, Analysis, and 

Visualization) software package. All lesion annotations converted into the binary 

mask in patches to extract the voxel intensities before and after the standardisation 

approaches. Grey-level co-occurrence matrix (GLCM) was constructed defined as 

second-order statistical texture features. Haralick features such as contrast, 

homogeneity, energy, and correlation are employed to describe the relationship 

between the grey level intensity in GLCM. 

3.2 Preprocessing 

Brain tissue intensity standardisation is a crucial step in brain lesion analysis 

especially when dealing with a supervised segmentation approach. Prior to 

                                                 
1 http://mipav.cit.nih.gov/ 
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intensity standardisation, skull stripping [14] and inhomogeneity N3 correction 

[15] are essential preprocessing steps in the proposed method. In this study, 

inhomogeneity N3 correction proposed by Sied et al. [15] is first performed on 

T1-W and FLAIR sequence images. This approach is mainly to eliminate the MRI 

artefact, which is caused by the receiver coil sensitivity variation. It is a necessary 

step that must be performed prior to the standardisation process according to the 

thorough evaluation by Madabhushi and Udupa [16]. Subsequently, the model-

based level set method introduced by Zhuang et al. [14] was used to the perform 

skull stripping process, because T1-W is the best MRI sequence to show the 

structure of brain tissues. and thus, the preferred sequence for skull stripping. The 

skull-stripped T1-W sequence was used as a mask to extract the brain in the 

corresponding FLAIR sequence. Co-registration does not apply because the T1-W 

and FLAIR sequence images for each patient used in this study were well aligned 

because they are acquired at the same time during the acquisition process. 

Furthermore, a small degree of misaligned T1-W’s mask applied on the 

corresponding FLAIR image does not have an impact on the proposed method. 

The reason for this is that, cerebrospinal-fluid (CSF) in the subarachnoid space in 

brain tissue is not used further in our processing; a small degree of mis-alignment 

would cut-off a few voxel of CSF only. Brain tissues such as grey matter and 

white matter do not affect this case. 

3.3 The Proposed MR Intensity Standardisation 

The proposed MR intensity standardisation method is flexible and can be 

customised into various regions of interest including brain and lesion images. The 

outlier detection method was used to automatically identify the landmarks of 

normal brain tissue voxel distribution. FLAIR images with skull stripping were 

used to construct a histogram and perform a smoothing operation with using 1D 

Gaussian kernel. An initial point is set at the full width at half maximum(FWHM) 

to perform a gradient descent process. Local minimum points Pcl and Pcr as shown 

in Fig. 1 were determined and used to compute the outliers P1i and P2i, 

respectively. In order to compute these outliers, a box-whisker plot was performed. 

The outlier, f3 is defined in as Eq. (1) 

  IQR1.5+Q= 33 f  

where IQR is the inter-quartile range (see Eq. (2)) that denotes the range of values 

falling within the 25th percentile, Q1 and 75th percentile, Q3 of the voxel 

distribution. 

 13 Q-Q   IQR   
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Fig.1 A pair of landmark [P1i, P2i] constructed from a histogram based on the 

outlier detection approach [12]. 

 
Fig.2 An overview of the proposed MR Intensity standardisation 

framework using landmark-based brain tissue analysis. 

 

An overview of the proposed method is illustrated in Fig. 2. Generally, the 

proposed method consists of two main steps. They are called the training step and 

the transformation step [2]. Details of the standard intensity scale formation are 

described in the following section.  
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Training step : A set of preprocessed healthy brain images vi  = gi (x; y) ∈ VFLAIR 

where VFLAIR is the volume image of the FLAIR MR sequence and g is an 

intensity function in two dimensions that assign an integer intensity value for each 

vi are used as input. The outlier detection method [12] that is based on the gradient 

descent approach is applied to automatically compute the landmarks (parameters) 

P1i and P2i from the Hi intensity histograms that were obtained from each vi 

image. These landmarks are important keys in this study because they are used to 

separate the voxels of Cerebrospinal fluid (CSF), voxels of normal brain tissues 

(which include white matter (WM), and grey matter (GM)), and the voxels of 

hyperintensity (regions with high intensity) that are potentially related to image 

artefacts or white matter lesions. 

A standard intensity scale [L1,L2] is constructed from landmarks P1i and P2i that 

are obtained from the intensity histogram where the histogram is generated using 

preprocessed healthy brain images as demonstrated in Fig. 1. The detected 

parameters are first computed into a range of intensity of interest (IOI) which is 

denoted as [H'1i, H'2i]. In this study, a range of [0, 4095] that is denoted as [G'1, 

G'2] are selected as IOI to ensure the range is under a lossless condition as 

reported by Nyu and Udupa [2]. A set of parameters P1'i and P2'i are computed 

using Eq. (3) and Eq. (4), respectively. 
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In the final step of the training process, the mean of a set of landmark parameters 

L1 and L2 is computed as shown in Eq. (5) and Eq. (6). 
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where n is total number of training image slice. 

Transformation step: The core idea of the transformation step is to transform all 

intensity voxels of each preprocessed brain image slice into a standard intensity 

scale. In other words, it is the deformed histogram Hi from each preprocessed 

brain image slice that is matched to the standard histogram. All slices of 

preprocessed brain images vi  = gi (x; y) ∈ VFLAIR. The landmark (parameters) P1i 



  

 

 

151                                                                            White Matter Lesion Intensity  

 
Fig.3 Intensity standardisation scale constructed using a landmark-based brain 

tissue analysis. 

and P2i for each histogram Hi are detected and mapped onto L1 and L2 of the 

standard intensity scale. Hence, every voxel is computed and transformed using 

three piecewise linear functions. The first linear function is transformed from 

[G'1i,P1i] to [H'1i,L1]; the second linear function is transformed from [P1i,P2i] to 

[L1,L2]; and the third linear function is transform from [P2i,G'2i] to [L2,H'2i]. The 

transformation process in linear mapping using the piecewise linear function can 

be illustrated in Fig. 3. 

The proposed method is different from Nyu and Udupa [2] since the 0.02 

percentile at the right-most part of the histogram is intended to be cut off. In this 

study, all of the intensity values will be fully utilised since the right-most tail of 

the histogram is important for white matter lesion detection and segmentation 

analysis. Hence, the right-most point of the histogram will be first estimated based 

on Eq. 7 instead of being limited to a 4095 intensity range. This is mainly 

because, for many of the abnormal brain images detected by outlier method, the 

right-most point will normally exceed the 4095 intensity range. In the proposed 

transformation step, the intensity of each voxel will then be mapped and 

transformed based on Eq. 8. 
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3.4 Validation Method 

In the experiment, validation is done to depict the standardisation results obtained 

from the proposed method, which are compared with the original intensity value 

and existing standardisation methods named as histogram normalisation and 

decile-based histogram standardisation proposed by Loizou et al. [5,11] and Nyul 

et al. [3] respectively. The aim of the evaluation is to verify the following: 

 The consistency of intensity level after the standardisation process by using 

the proposed method and existing standard methods. 

 Minimisation of the change in intensity distribution after employing the 

proposed method and existing standardisation methods. 

 Minimisation of the change in texture structure after employed proposed 

method and existing standardisation methods. 

Therefore, we selected the appropriate evaluation method for the above 

verification. There are four types of evaluation methods in this study: 

 Coefficient of variation (CV): Repeatability of intensity level; 

 Kullback-Leibler divergence: similarity measure of intensity distribution;  

 Pearson’s correlation coefficient [26]: Change in texture structure; 

 Fixed image contrast visualisation. 
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4      Results 

4.1 Quantitative Evaluation 

In order to measure the difference before and after standardisation results using 

the proposed method, a paired sample t-test was done. The significance test is 

performed based on the intensity distribution of a total of 30 case studies, 628 MR 

images for 10 subjects in this study. From the statistical analysis, the p-value is 

1.42 x 10−15, which is less than 0.0001 (conventional criteria). Therefore, the 

evaluation shows that there is a significant difference between the intensity results 

before and after standardisation process. The changes of intensity distribution for 

each subject and each time point are shown significant before and after the 

standardisation on the histogram in Fig. 4. Before the standardisation, the image 

intensity ranges of the distribution are varying from one to another (row (a)). 

After the proposed method is applied, the image intensity values of distribution in 

each study were changed according to the standard scale (row (b)). Subsequently, 

the proposed method was also compared with the decile-based standardisation 

method [3] and histogram normalisation(HN) [27]. In our studies, MR images for 

each of the 10 subjects with their 3-year follow-up studies were computed by 

using these standardisation methods. The decile-based standardisation was widely 

used in recent research because it was easy to customised into various anatomical 

regions and fast computation could be achieved due to less computational 

complexity. Lately, this method was thoroughly evaluated and used by Shah et al. 

[6] to investigate the significance of image intensity standardisation on the study 

of multiple sclerosis segmentation and classification of MRI. 

In our evaluation, the proposed method is compared with the decile-based 

standardisation method proposed by Nyul et al. [3] using software called 

Computer Aided Visualization and Analysis Software System (CAVASS) 2 . 

Furthermore, the accuracy of white matter lesion segmentation and classification 

would be significantly affected by the computation of texture features which were 

mainly calculated from the intensity value of MR images. Therefore, the 

minimum change in texture information during transformation intensity into a 

standard scale was always critical. In recent literature, histogram normalisation 

[27] was evaluated by Loizou et al. [11] and it was proven that texture features 

were not affected after the standardisation process. Therefore, the histogram 

normalisation was also used in our results evaluation and comparison. 

                                                 
2 http://www.mipg.upenn.edu/cavass/ 
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Fig.4 Image intensity distribution of each subject before (row (a)) and after (row 

(b)) standardisation. The first, second and third column are the base-year, 1-year 

and 2-year follow-up study. 

The repeatability of the intensity scale was crucial to ensure the consistency of 

image features in MR images processing. Hence, with a good consistency in the 

intensity scale, the accuracy of the classification model in the white matter lesions 

segmentation was improved. Base on this fact, the CV was calculated based on 

intensity distribution for each of the 10 subjects during 3-year follow-up studies. 

The CV comparison among FLAIR MR Images before the standardisation process, 

the existing standardisation method, and our proposed method can be illustrated in 

Fig. 5. From the CV comparison within methods, a huge variation is shown in 

FLAIR MR Images before the standardisation process for each subject and their 
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Fig.5 Coefficient of variation of all standardised FLAIR MR Images from each 

subject with their 3-year follow-up study. 

follow-up studies. On the other hand, image intensity generated from HN, decile-

based standardisation and proposed method showed a good consistency and trivial 

variation after the standardization process. In addition, the mean and standard 

deviation of CV for each method in percentages were calculated. Among the CV 

comparison of methods, the proposed method showed a good consistency with the 

smallest variation (1.25 ± 0.89) among other method. The proposed method 

showed the lowest CV measures with 1.25% in averaged over 30 studies as it was 

efficient to maintain the consistency of all images as shown in Table 1. The 

proposed method also showed small dispersion compared across 30 different 

studies where the standard deviation of CV is 0.89%. In addition, HN showed 

2.03% of CV averaged over 30 studies, which were considered slightly higher 

than the proposed method. The decile-based standardization method shown is 

91.59% lower than FLAIR MR Images before standardization process and 5.88% 

higher compared to the proposed method.  

 

The minimum change in image distribution during the transformation process is 

essential to prevent inaccurate computation of intensity features and texture 

features. The Kullback-Leibler(KL) divergence [25] is employed to evaluate the 

distance in between the distribution of the standardised image and non-

standardised image. In our observation, HN show a KL divergence 3.13 × 10−5 ± 

2.85 × 10−5 which was good and similar to the image before standardisation as 

shown in Table 2. It is the lowest value compared to the proposed method and 

decile-based standardisation as shown in Fig. 6. Apparently, decile-based 

standardisation received the highest value of KL divergence (1.04 ± 0.20), which 

indicated that an image intensity distribution change occurs during the 

transformation process. Our proposed method received a good similarity, which is 

seven times better than the decile-based standardisation method. 
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Table 1: Average coefficient of variation, comparison before and after 

intensity standardisation among histogram normalisation, decile-based 

standardisation and the proposed method (mean ± std). 

FLAIR MR Image Type Coefficient of Variation  

IBS 98.72±40.60 

IAHN 3.28±1.80 

IADS 7.13±2.42 

IAPM 1.25±0.89 

IBS : images before standardisation; IAHN: images after histogram 

normalisation; IADS: images after decile-based standardisation; IAPM: 

images after proposed method. 

 

Table 2: Average Kullback-Leibler divergence, comparison of difference 

in image distribution before and after the standardisation process, use of 

histogram normalisation, decile-based standardisation and proposed 

method (mean ± std). 

FLAIR MR Image Type Kullback-Leibler Divergence 

IAHN 3.13 × 10−5 ± 2.85 × 10−5 

IADS 1.04 ± 0.20 

IAPM 0.14 ± 0.08 

IAHN: images after histogram normalisation; IADS: images after decile-

based standardisation; IAPM: images after proposed method. 

 

 
Fig.6 Kullback-Leibler(KL) divergence of all standardised FLAIR MR Images 

from each subject with their 3-year follow-up study. 
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The accuracy of the classification model was highly associated with the image 

features. Hence, it is important to ensure the image features extracted are 

comparable before and after the standardisation process. In this evaluation, the 

WML were delineated from six different case studies, which were randomly 

selected from 3-year follow-up studies. A comparison correlation coefficient of 

each texture's relationship to FLAIR MR images for each method before 

standardisation is illustrated in Fig. 7. We report that the texture features of WML 

extracted based on images after the process with our proposed method and HN 

received the highest correlation compared to decile-based standardization. 

Furthermore, mean and standard deviation of each feature extracted from WML 

were also calculated and illustrated in Table. 3. The mean of four features 

computed from the image before standardisation and image after the proposed 

method and HN showed trivial difference. They are 0.003 (Contrast), 0.001 

(Homogeneity), 0.000 (Energy), and 0.001 (Correlation). On the other hand, mean 

of each feature extracted from decile-based standardisation showed a huge 

difference compared to the image before standardisation. They are 2.014 

(Contrast), 0.025 (Homogeneity), 0.064 (Energy) and 0.036 (Correlation). Based 

on this fact, the results of Pearson's correlation as shown in Fig. 7 are further 

confirmed. 
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Fig.7 Pearson's correlation coefficient of four texture features of WML compared to 

each standardisation method, where IAHN is images after histogram normalisation; 

IADS is images after decile-based standardisation; IAPM is images after proposed 

method; std: standard deviation 
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Table 3: Average WML texture features delineated by experience radiologist 

computed using a GLCM approach, comparison before and after intensity 

standardisation among histogram normalisation, decile-based standardisation 

and proposed method (mean ± std). 

FLAIR MR 

Image Type 

GLCM Texture features 

Contrast Homogeneity Energy Correlation 

IBS 0.722 ± 0.355 0.832 ±   0.052 0.281 ± 0.127 0.892 ± 0.049 

IAHN 0.719 ± 0.352 0.831 ±   0.052 0.281 ± 0.127 0.893 ± 0.048 

IADS 2.736 ± 1.609 0.857 ±   0.053 0.345 ± 0.11 0.856 ± 0.066 

IAPM 0.719 ± 0.352 0.831 ±   0.052 0.281 ± 0.127 0.893 ± 0.048 

IAHN: images after histogram normalisation; IADS: images after decile-based 

standardisation; IAPM: images after proposed method 

4.2      Qualitative Evaluation 

The quality of the MR image standardisation can be judged by using the naked 

eye as suggested by Nyu and Udupa [2] and Nyul et al. [3]. Fig. 8 shows an 

example of a 2D axial image slice from the different three-year follow-up studies 

with fixed window level. Four axial images in the first row before standardisation 

show different contrast at fixed window with a window level of 2602 and window 

width of 3659, this is mainly because of inconsistency in the grey-level intensity 

value. Apparently, the radiologist might need more time and effort to re-adjust the 

window level in order to visualise lesions accurately for each subject for a 

comparable lesions image assessment. This is worse especially when the image 

showed black indicating that the intensity value is out of the fixed window level. 

For example, in the first column with the first row as shown in Fig. 8. These axial 

images in the first row were then performed with the proposed standardisation as 

shown in the second row, decile-based histogram standardisation [3] is in the third 

row and histogram normalisation [11] is shown in the fourth row. Direct visual 

comparison at a fixed window level is obviously shows that our proposed method 

can be archived with better repeatability performance. In this experiment, these 

images were generated by using a decile-based standardisation histogram showing 

poor quality where the huge change in image texture could be observed. On the 

other hand, images after a HN process [11] show inconsistency among four axial 

images. We further judged the quality of the processed image from each method 

by generating these images as shown in Fig. 8 into intensity distribution. From Fig. 

9b, it is seen that the intensity distribution that were processed by the proposed 

method were well aligned at the centre of distribution.  This indicated that these 

distribution are well located at the standard scale. Apparently, the image before 

the standardisation process had been shown at nonstandard scale can be noticed as 

illustrated in Fig. 9a. It is noticed that with decile based standardisation, all 
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Fig.8 Individual slices from four different studies acquired using FLAIR 

sequence with variable lesion load. First row is the original FLAIR before the 

standardisation process. Second, third, and fourth rows are images after 

standardisation based on proposed method, deciles based histogram 

standardisation [3] and histogram normalisation [11], respectively. All image 

slices are adjusted at a fixed window with window level of 2602 and window 

width of 3659. 

intensities were mapping well into 10 different landmarks [3] as demonstrated in 

Fig. 9c. However, these histogram plot do not form a normal distribution which 

reveal the inconsistency of the texture of brain. Hence, we do believe this finding 

might make a great impact on the structure of image content such as image texture. 

Thus, this is well explained by the worst correlation of texture features before and 

after the decile-based standardisation process. It is worthwhile to notice that the 

image (K) processed with histogram normalisation was out of the standard scale 

as reported in Fig. 9d. This is mainly because voxels of lesions have extreme 

hyperintensity, which were developed in the image (K) as shown in Fig. 8. 

Therefore, the right tail of the intensity distribution will shift entire distribution, 

which indicates a subject with moderate or severe lesion volume can cause the 

distribution to become non-standardised. On the other hand, this did not affected 

the proposed method since it was adapted to extend the right tail accordingly. 
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Fig.9 Intensity distribution generated from J, K, L, and M of individual image 

slices in Fig. 8. where (a) show the image intensity distribution before the 

standardisation process, (b) is image intensity distribution after the proposed 

standardisation process. (c) is image intensity distribution after decile-based 

standardisation process. (d) is image intensity distribution after histogram 

normalisation process. 

 

5      Discussions  

In this study, our aim is to standardise the image intensity scale of MRI for white 

matter lesions analysis. From the analysis and results, the method is applied on 

660 MRI slices that consist of 10 subjects in a 3-year follow-up study. Images 

standardised using the proposed method have the relatively smallest value of 

coefficient variation compared with histogram normalization and deciles based 

histogram standardization, for each of the 30 studies as reported in Fig. 5.  The 

standardised image processed by using the proposed method demonstrate a trivial 

variation for different subjects and different time points. This is shown that the 

proposed standardisation method able to correct the scanner sensitivity variations 
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and variations due to repeatability studies. Therefore, comparisons between MRI 

dataset from different time point and different subject become meaningful. 

Furthermore, Fig. 6 has shown that the distribution of MRI intensity for each 

subject is similar to the distribution of intensity before standardisation using the 

proposed method since the mean and standard deviation of KL divergence is 0.14 

± 0.08. This is indicates the method shows the change of intensity level without 

influent the image data. The proposed method considers shows a good similarity 

to the image before standardisation. Therefore, it is proved that the method is an 

appropriate method for MR intensity standardisation on FLAIR sequence.  

Texture features of WML delineated by experience radiologist computed using a 

GLCM approach between the image before and after standardisation using the 

proposed method, which shows a good correlation as illustrated in Fig. 7. 

Moreover, it is noticed that mean and standard deviation of contrast, homogeneity, 

energy and correlation extracted from the image after the proposed process were 

relatively close to the image before standardisation process as demonstrated in 

Table 3. These evaluations suggest that the proposed method is capable of a 

standardized MRI intensity scale and minimises the change in image texture 

during the transformation process. Hence, it is suitable as a key preprocessing step 

for white matter lesions analysis.  

The proposed method is found robust comparing to existing methods in literature. 

The reason is our method is to include the landmarks L1 (Eq. 5) and L2 (Eq.6) 

computation that using the intensity of specific brain tissues namely white matter 

and grey matter on FLAIR sequence.  The landmarks L1 (Eq. 5) and L2 (Eq.6) are 

essential to improve the consistency of the intensity scale from various studies 

with different time points on FLAIR sequence in MRI. Unlike other method in 

literature [1-3], the percentile or mode of intensity distribution was used as the 

main landmark without considering the information of specific brain structure. 

Furthermore, the exiting methods [1-3] is only suitable for small amount of lesion 

load images with assumption these amount of lesion voxel is above the 99.8 

percentile value. However, a study conducted to show that standardised MS lesion 

image with decile-based histogram standardisation added advantage to increase 

the MS lesion segmentation accuracy [6].  

In Fig. 9d, the histogram has explained that the HN method is not proper to be 

applied to FLAIR sequence but only appropriate to be implemented on T2-w 

sequence images which have been described by [11]. It had been observed that an 

image intensity distribution curve (curve K) is located away from the centre of 

standard scale which is processed using HN [27] method. This had shown that the 

method does not become robust to standardised image intensity on FLAIR 

sequence images. On the contrary，in our proposed method has implemented the 

retention of the information from the most-right tail of the image intensity 
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distribution which is essential for WML analysis. Therefore, our proposed method 

has been designed by the estimation of the right tail of the image intensity 

distribution adaptively (refer Eq. 7). As a result, most the intensity pixels on 

FLAIR images are taken into account in order to identify wider dynamic range on 

lesion images. 

The proposed method has a limitation where it only works for FLAIR sequences 

of the skull stripped MR brain images. FLAIR sequence is chosen because it is the 

promising sequence used by various automated segmentation methods to detect 

and visualise white matter lesions in clinical practice. One of the advantages is 

that the proposed method works without the need to adjust any parameters 

manually. Landmarks parameters are detected automatically based on the specific 

tissues during outlier detection as described. Furthermore, the method is proved to 

be used for standardising the progression lesions dataset from the different time 

point. Hence, the proposed method is an essential preprocessing method which 

can be applied in an automatic procedure in white matter lesion analysis. 

In addition, the proposed method also indirectly improves the work efficiency for 

visual assessment [22-24] in clinical practice, since the method enables 

radiologists to visualise the comparable lesions under one standard scale for each 

subject and every time point studied, for example standardised image 

demonstrated in Fig. 8. 

 

6      Conclusion  

Variations in acquisition protocols over time, especially in clinical follow-up 

studies can lead to non-standardisation intensity in MRI. Meaningful results 

which construct from these non-standardised images is not possible. Therefore, 

image intensity standardisation method used to WML identification with a 

supervised learning approach that relies heavily on intensity feature become 

critical. In this work, a new adaptive landmark based on brain tissue-specific 

standardisation method for FLAIR MR brain lesions images is presented. The 

method is enhanced based on the standardisation method proposed by Nyu and 

Udupa [2]. The main difference in our proposed method is that the landmarks 

(parameters) of the standard scale are automatic identified based on brain tissue 

information using outlier detection. The method, which is validated and evaluated 

based on a total of 660 MR images that consist of 10 subjects with their 3-year 

follow-up study are reported. The proposed methodology in this study was 

designed to standardise the FLAIR images without user intervention effectively. 

Furthermore, the proposed method does not involve a complex mathematical 

computation; it is proven to be fast and robust in successfully standardising the 

brain MR with WML images from the different subject and follow-up studies over 
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the time. The proposed method demonstrates a superior approach and achieves 

good results in comparison to existing intensity standardisation methods.  

In our opinion, the proposed method can provide a better way to advance the 

accuracy of classification models to identify WML. However, a WML 

segmentation investigation is required to conduct in the near future to review the 

performance of proposed method to improve accuracy of WML identification and 

segmentation. Besides, the proposed method could also improve the visual 

assessment [22-24] performance and automatic quantitative assessment of WML 

progression for drug discovery and early diagnosis of WML treatments with a 

comparable image intensity result. 
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