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Abstract 

The famous Hydrological Tank Model is always preferred for runoff 
forecasting. This main reason is Tank Model not only simple in term of its 
structures, but able to forecast runoff accurately using only rainfall and runoff 
data. However, much time and effort are required to calibrate a large numbers 
of parameters in the model for obtaining better results through trial-and-error 
procedure. Therefore, there is an urgent need to develop an auto-calibration 
method. Two types of global optimization methods (GOMs), named as Particle 
Swarm Optimization (PSO) and Shuffle Complex Evolution (SCE) are selected. 
The selected study area is Bedup basin, Samarahan, Sarawak, Malaysia. Input 
data used for model calibration are hourly rainfall and runoff only. The 
accuracy of the simulation results are measured using Coefficient of 
Correlation (R) and Nash-Sutcliffe Coefficient (E

2
). The robustness of the 

model parameters obtained are further analyzed with boxplots analysis. Peak 
errors are also evaluated to determine the difference between the observed and 
simulated peaks. Results revealed that the performance of simple PSO method 
is slightly better than the famous and complicated SCE method. PSO is able to 
obtain optimal values for 10 parameters fast and accurate within a 
multidimensional parameter space that could provide the best fit between the 
observed and simulated runoff. 
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1 Introduction 

There are many deterministic and conceptual models that are able to simulate daily 

and hourly runoff accurately. However, most of them have complex structures and required 

various types of data. Thus, Hydrological Tank Model that considered the watershed as a 

series of storage vessels is selected in this study. This simple structure requires only rainfall 

and runoff data for model calibration. 

Tank Model was first proposed by Sugawara and Funiyuki (1956). According to Paik 

et al. (2005), despite the simple structure, Tank Model has proven more capable than many 

other models in modeling the hydrologic responses from a wide range of humid watersheds 

(World Meteorological Organization, 1975; Franchini and Pacciani, 1991).  

However, the major work in applying this hydrological model is fitting the model parameters. 

In early days, the most common procedure for searching the model parameters is through 

trial-and-error procedure. This manual calibration process is tedious and time consuming 

owing to the large numbers of model parameters involved in the four-layered Tank Model. 

Sometimes, the simulation results may be uncertain due to the subjective factors involved. 

Therefore, this study is carried out to determine a more efficient automatic calibration 

procedure. Recently, various optimization techniques have been developed (Shuchita and 

Richa, 2009; Rahnama and Jahanshai, 2009; Premalatha and Natarajan, 2010a)  

 Past studies claimed that the most effective and efficient GOM for auto-calibration of 

Tank Model is shuffle complex evolution (SCE) (Cooper et al., 1997; Chen et al., 2005). 

Cooper et al. (2007) extended the SCE optimization technique by including hydrologic 

process-based parameter constraints to improve the accuracy and efficiency of calibration 

procedures. Meanwhile, the most frequent algorithm investigated is GA where Cooper et al. 

(1997), Paik et al. (2005), Chen and Barry (2006) have compared the performance of GA 

with other algorithms even though GA is not always the best algorithm. Other algorithms 

such as simulated annealing (SA), Standardized Powell Method (SP), Marquardt algorithm, 

Multistart Powell, modified harmony search algorithm (MHS), Rosenbrock algorithm and 

simplex technique are rarely used by the researchers.  

Due to the superiority and popularity of SCE methods, this method is selected to auto-

calibrate the Tank Model parameters in humid region that consists of four storage vessels. 

The performance of SCE method is then compared with particle swarm optimization method 

(PSO), a simple and newly developed optimization algorithm, but has proven it realization 

and promising optimization ability in solving various problems (Song and Gu, 2004). 

 Currently, the application of PSO method in hydrology is still rare. Alexandre and 

Darrel (2006) applied multiobjective particle swarm optimization (MOPSO) algorithm for 

finding nondominated (Pareto) solutions when minimizing deviations from outflow water 

quality targets. Bong and Bryan (2006) used PSO to optimize the preliminary selection, 

sizing and placement of hydraulic devices in a pipeline system in order to control its transient 

response. Janga and Nagesh (2007) used multiobjective particle swarm optimization 

(MOPSO) approach to generate Pareto-optimal solutions for reservoir operation problems. 

Subashini and Bhuvaneswari (2011) applied non-dominated sorting particle swarm 

optimization (NSPSO) to combine the operations of NSGA–II for scheduling tasks in a 

heterogeneous environment. Premalatha and Natarajan (2010b) hybrid PSO and Genetic 

Algorithm (GA) approaches for solving the document clustering problem. 
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2  Study Area 

 The selected study area is 

City, Sarawak, Malaysia. It is non

Batang Sadong. The basin area is approximately about 47.5km

8m to 686m above mean sea level (JUPEM, 1975). Vegetation cover 

plant and forest. The development and land use changes are not really significant in this rural 

watershed for the past 30 years. Sungai Bedup's basin has a dendriti

Maximum stream length for the basin is approximately 10km, which is measured from the 

most remote area point of the stream to the basin outlet.

 The locality plan of Bedup 

Sadong basin. Main boundary of the Sadong 

within Sadong basin, are shown in Fig. 1b. 

available in Bedup basin, namely, Bukit Matuh (BM), Semuja Nonok (SN), Sungai Busit 

(SB), Sungai Merang (SM) and Sungai Teb (ST), and one river stage gauging station at 

Sungai Bedup located at the outlet of the basin. 

  Soil map of Bedup basin 

covered with clayey soil, such as

(Bjt) and Anderson (And). Clayey soil has low infiltration rate (minimum infiltration rate of 

0.04 inches/hr), where most of the precipitation fails to infiltrate

and thus produces surface runoff. Part of Bedup 

(Trh), Semilajau (Sml) soils, which are coarse loamy soil. This group of soil has higher 

infiltration rate (minimum infiltration rate of 1.02 inches/hr) and therefore has moderately 

low runoff potential. 

 

 

                                                                      

Sadong River 

b) Sadong basin and river network (DID, 2004)

 Comparison of Particle Swarm Optimization

The selected study area is Bedup basin, located approximately 80km from Kuching 

City, Sarawak, Malaysia. It is non-tidal influence river basin, located at upper stream of 

Batang Sadong. The basin area is approximately about 47.5km
2
 and the elevation varies

8m to 686m above mean sea level (JUPEM, 1975). Vegetation cover is mainly shrubs, low 

plant and forest. The development and land use changes are not really significant in this rural 

watershed for the past 30 years. Sungai Bedup's basin has a dendritic type channel system. 

Maximum stream length for the basin is approximately 10km, which is measured from the 

most remote area point of the stream to the basin outlet.The  

The locality plan of Bedup basin is presented in Fig. 1. Fig. 1a shows the location of 

asin. Main boundary of the Sadong basin, rainfall and river stage gauging stations 

are shown in Fig. 1b. Fig. 1c shows the 5 rainfall gauging stations 

namely, Bukit Matuh (BM), Semuja Nonok (SN), Sungai Busit 

(SB), Sungai Merang (SM) and Sungai Teb (ST), and one river stage gauging station at 

Sungai Bedup located at the outlet of the basin.  

asin is presented in Fig. 2. In general, Bedup 

such as Merit (Mrt), Malang (Mlg), Tarat (Trt), 

Clayey soil has low infiltration rate (minimum infiltration rate of 

most of the precipitation fails to infiltrate, runs over the soil surface 

surface runoff. Part of Bedup basin is covered with Nyalau

, which are coarse loamy soil. This group of soil has higher 

filtration rate (minimum infiltration rate of 1.02 inches/hr) and therefore has moderately 
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b) Sadong basin and river network (DID, 2004) 
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c type channel system. 

Maximum stream length for the basin is approximately 10km, which is measured from the 

presented in Fig. 1. Fig. 1a shows the location of 

asin, rainfall and river stage gauging stations 

Fig. 1c shows the 5 rainfall gauging stations 

namely, Bukit Matuh (BM), Semuja Nonok (SN), Sungai Busit 

(SB), Sungai Merang (SM) and Sungai Teb (ST), and one river stage gauging station at 

in Fig. 2. In general, Bedup basin is mostly 

, Kerait (Krt), Bijat 

Clayey soil has low infiltration rate (minimum infiltration rate of 

runs over the soil surface 

Nyalau (Nyl), Triboh 

, which are coarse loamy soil. This group of soil has higher 

filtration rate (minimum infiltration rate of 1.02 inches/hr) and therefore has moderately 
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a) Location map of Sadong basin  
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Fig 1:  Locality map of Bedup basin, Sub-basin of Sadong basin, Sarawak 

 

Fig. 2:  Soil Map of Bedup basin, Sarawak (DOA, 1975) 

   

The input data used is hourly rainfall data from the 5 rainfall stations. Data series used 

for model calibration and verification are hourly rainfall and runoff from year 1990 to year 

2003 obtained from Thiessen Polygon Analysis. The area weighted precipitation for BM, SN, 

SB, SM, ST are found to be 0.17, 0.16, 0.17, 0.18 and 0.32 respectively. The average areal 

hourly rainfall data for that time step is then fed into the Tank Model. The calibrated Tank 

Model will then carry out computations to simulate the hourly discharges for Bedup outlet. 

Observed runoff data are converted from water level data through a rating curve given by 

Equation 1 (DID, 2004).  

  Q=9.19( H )
1.9

                                                                                                            (1) 

where Q is the discharge (m
3
/s) and H is the stage discharge (m). These observed runoff data 

were used to compare the model runoff.  

 

3 Global Optimization Methods (GOMs) 

Two types of GOMs namely SCE and PSO methods are selected for auto-calibration 

of hourly Tank Model’s parameters.  The details of these two algorithms are described below. 

3.1    Particle Swarm Optimization (PSO) Method 

Particle swarm optimization (PSO) was developed by Kennedy and Eberhart (1995). 

PSO is initialized with a group of random particles (trial solutions), which are assigned with 

random positions and velocities.  The algorithm then searches for optima through a series of 

iterations where the particles are moved through the hyperspace searching for potential 

solutions. These particles “learn” over time in response to their own experience and those of 

other particles in their group (Ferguson, 2004). 

N 

Mrt/Nyl 

Trt/Rmn 

Mrt/Mlg/Bj

Mrt 

Mrt/Krt 

Trh/Smi 

And 

Nyl 

Mrt/Trh 



5  Comparison of Particle Swarm Optimization 

 

According to Eberhart and Shi (2001), each particle keeps track of its best fitness 

position in hyperspace that it has achieved so far. This best position value is called personal 

best or “pbest”. The overall best value obtained by any particle so far in the population is 

called global best or “gbest”. During each iterations, every particle is accelerated towards its 

own “pbest” as well as in the direction of the “gbest” position. This is achieved by calculating 

a new velocity term for each particle based on the distance from its “pbest” as well as its 

distance from the “gbest” position. These two “pbest” and “gbest” velocities are then 

randomly weighted to produce the new velocity value for this particle, which will affect the 

next position of the particle in next iteration (Van den Bergh and Engelbrecht., 2000). The 

basic PSO procedure is presented in Fig. 3. 

Jones (2005) specified two equations used in PSO, named as movement equation 

(Equation 2) and velocity update equation (Equation 3). Movement equation provides the 

actual movement of the particles using their specific vector velocity while the velocity 

updates equation provides for velocity vector adjustment given the two competing forces 

(“gbest” and “pbest”). Besides, inertia weight (ω) was introduced to improve the convergence 

rate (Shi and Eberhart, 1998). 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3: Basic PSO procedure  

tVonprevLocationpresLocati i∆+=                                                                          (2) 
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where Vi is the current velocity, t∆  defines the discrete time interval over which the particle 

will move, ω is the inertia weight, Vi-1 is the previous velocity, presLocation is the present 

location of the particle, prevLocation is the previous location of the particle and rand() is a 

random number between 0 and 1,  c1 and c2 are the acceleration constants for “gbest” and 

“pbest” respectively.  

3.2    Shuffle Complex Evaluation (SCE) Method 

The SCE method is a global optimization algorithm that based on a synthesis of four 

concepts that have proved to be effective automatic calibration tool for optimization problems 

(Duan et al., 1992). These four concepts are a) combination of random and deterministic 

approaches, b) the concept of clustering, c) the concept of a systematic evolution of a 

complex of points spanning the space, d) the concept of competitive evolution. The 

combination of these concepts made the SCE known as a powerful, effective and flexible 

method. SCE method consists of two parts, SCE and competitive complex evolution (CCE). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4:  SCE Calibration Process 

 

For SCE method, the search within the feasible region is conducted by first dividing 

the set of current feasible trial solutions into several complexes, each containing equal 

number of trial solutions. Concurrent and independent searches within each complex are 

conducted until each converges to its local optimal value. For each of the complexes, that are 

now defined by new trial solutions is collated into a common pool, shuffled by ranking 

according to their objective function value and then further divided into new complexes. The 

procedure is terminated when none of the local optima found among the complexes can 

improve on the best current local optimum. The SCE method used the Nelder and Mead 

(1965) downhill simplex method to accomplish local searches.  The flow chart of SCE 

calibration process was shown in Fig. 4. 
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The competitive complex evolution (CCE) algorithm is required for the evolution of 

each complex. Each point of a complex is a potential 'pare

the process of reproducing offspring. A subcomplex functions like a pair of parents. Use of a 

stochastic scheme to construct subcomplexes allows the parameter space to be searched more 

thoroughly. The idea of competit

stronger survives better and breed healthier offspring than the weaker. Inclusion of the 

competitive measure expedites the search towards promising regions. 

4 Tank Model Parameters

Since Tank Model is developed

development or management agencies all over the world

simple and easily to understan

surface runoff (Kawasaki, 2003). 

The response of surface runoff system is explained by vertically connected plural 

tanks. The model consists of four storage vessels (4

one or more outlets on its side and bottom. 

second storage tank (TS2) represent

tank and the forth tank (TS4) represent

occur when the water level in each tank is higher than the height of side outlet. The output 

from the bottom outlet of the first tank

bottom outlets for the rest of the tanks could be regarded as percolation. 

Q was calculated using Equation 4. 

5. 

Q= C1Q1 + C2Q2 + C4Q3 + C6Q4 + C8Q5            

 

Fig. 5: Schematic of 

 Comparison of Particle Swarm Optimization

The competitive complex evolution (CCE) algorithm is required for the evolution of 

ach point of a complex is a potential 'parent' with the ability to participate in 

the process of reproducing offspring. A subcomplex functions like a pair of parents. Use of a 

construct subcomplexes allows the parameter space to be searched more 

thoroughly. The idea of competitiveness is introduced in forming subcomplexes where the 

stronger survives better and breed healthier offspring than the weaker. Inclusion of the 

competitive measure expedites the search towards promising regions.  

Tank Model Parameters 

developed in 1956, it has been adopted by many water resources 

development or management agencies all over the world. This is not only due to the 

and, but also it is able to indicate accurately the response for 

ce runoff (Kawasaki, 2003).  

The response of surface runoff system is explained by vertically connected plural 

odel consists of four storage vessels (4-Tank) that lay vertically. 

one or more outlets on its side and bottom. First storage tank (TS1) represent

second storage tank (TS2) represents intermediate tank; third tank (TS3) represent

tank and the forth tank (TS4) represents base tank. Each outflow from side outlet will only 

in each tank is higher than the height of side outlet. The output 

from the bottom outlet of the first tank is used to model infiltration, the outputs from the 

bottom outlets for the rest of the tanks could be regarded as percolation. The total discharge, 

was calculated using Equation 4.  A schematic diagram of Tank Model 

Q= C1Q1 + C2Q2 + C4Q3 + C6Q4 + C8Q5                                                              

 
Fig. 5: Schematic of Tank Model used in this study 

Rainfall 

Evaporation 

Comparison of Particle Swarm Optimization 

 

The competitive complex evolution (CCE) algorithm is required for the evolution of 

ability to participate in 

the process of reproducing offspring. A subcomplex functions like a pair of parents. Use of a 

construct subcomplexes allows the parameter space to be searched more 

iveness is introduced in forming subcomplexes where the 

stronger survives better and breed healthier offspring than the weaker. Inclusion of the 

in 1956, it has been adopted by many water resources 

not only due to the model is 

able to indicate accurately the response for 

The response of surface runoff system is explained by vertically connected plural 

vertically. Each tank has 

storage tank (TS1) represents surface tank; 

intermediate tank; third tank (TS3) represents sub-base 

base tank. Each outflow from side outlet will only 

in each tank is higher than the height of side outlet. The output 

is used to model infiltration, the outputs from the 

The total discharge, 

odel is presented in Fig. 

                                                (4) 
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Parameters of Tank Model are side outlet coefficients (C1, C2, C4, C6 and C8), 

bottom outlet coefficients (C3, C5 and C7), height of side outlets (X1, X2, X3, X4 and X5) 

and initial storages in tanks (TS1, TS2, TS3 and TS4). The descriptions of 10 parameters are 

tabulated in Table 1. Prior to calibration, parameters X3, X4 and X5 are set to 0, This is 

because these parameters have little impact to model output and the values obtained are 

always near to 0. Hence, the remaining 10 parameters that calibrated automatically using 

PSO and SCE algorithms are C1, C2, C3, C4, C5, C6, C7, C8, X1 and X2. The models 

calibrated by PSO and SCE algorithms are denoted as PSO-Tank-H and SCE-Tank-H 

respectively. 

 

 

Table 1: The description of the 10 parameters for Tank Model 

No Coeff Identification Description 

1 C1 Side outlet coefficients No.1 for TS1 Surface runoff coefficient No.1 

2 C2 Side outlet coefficients No.2 for TS1 Surface runoff coefficient No.2 

3 C3 Bottom outlet coefficient from TS1 to 

TS2 

Infiltration coefficient from surface tank to 

intermediate tank 

4 C4 Side outlet coefficients for TS2 Intermediate runoff coefficient 

5 C5 Bottom outlet coefficient from TS2 to 

TS3 

Infiltration coefficient from intermediate tank to 

sub-base tank 

6 C6 Side outlet coefficients for TS3 sub-base runoff coefficient 

7 C7 Bottom outlet coefficient from TS3 to 

TS4 

Infiltration coefficient from sub-base tank to 

base tank 

8 C8 Side outlet coefficients for TS4 Base runoff coefficient 

9 X1 Height of side outlets No.2 for TS1 Height of surface runoff No.2 from surface tank 

10 X2 Height of side outlets No.1 for TS1 Height of surface runoff No.1 from surface tank 

 

5 Model Calibration 

The input data to Tank Model comprised of hourly average areal rainfall calculated 

using Thiesen Polygon method. In order to find the most robust parameters, Tank Model is 

calibrated using 11 sets of hourly rainfall-runoff data and the learning mechanism depends on 

the type of algorithm applied. Each set of parameters obtained is further validated with other 

11 storm hydrographs. Hence, there are 121 repetitions for each set of experiments calibrated 

with PSO and SCE respectively.  Table 2 presents the storm hydrographs used for finding the 

optimal Tank Model’s parameters of PSO-Tank-H and SCE-Tank-H.  

Table 2: Calibration data for PSO-Tank-H and SCE-Tank-H 

Description Storm Date 

PSOSetHA, SCESetHA 1-7 Jan 99 

PSOSetHB, SCESetHB 5-8 Apr 99 

PSOSetHC, SCESetHC 5-8 Feb 99 

PSOSetHD, SCESetHD 8-12 Aug 98 

PSOSetHE, SCESetHE 9-12 Sep 98 

PSOSetHF, SCESetHF 15-18 Mac 99 

PSOSetHG, SCESetHG 20-24 Jan 99 

PSOSetHH, SCESetHH 26-31 Jan 99 

PSOSetHI, SCESetHI 16-20 Apr 03 

PSOSetHJ, SCESetHJ 18-21 Jan 00 

PSOSetHK, SCESetHK 9-12 Oct 03 
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The robustness of the optimal parameters obtained will be further evaluated with 

different sets of validation data. 11 single storm hydrographs are used to validate the hourly 

simulation model. The validation data sets used for hourly runoff simulation are presented in 

Table 3. 

Table 3: Validation data for hourly runoff 

Description Storm Date 

Hydrograph 1 1-7 Jan 99 

Hydrograph 2 5-8 Apr 99 

Hydrograph 3 5-8 Feb 99 

Hydrograph 4 8-12 Aug 98 

Hydrograph 5 9-12 Sep 98 

Hydrograph 6 15-18 Mac 99 

Hydrograph 7 20-24 Jan 99 

Hydrograph 8 26-31 Jan 99 

Hydrograph 9 16-20 Apr 03 

Hydrograph 10 18-21 Jan 00 

Hydrograph 11 9-12 Oct 03 

 

The robustness of the validated data for hourly runoff simulation is then measured 

with boxplots whiskers analysis. The objective function selected is ordinary least squares 

(OLS). OLS always provide better approximations of the model parameters due to its 

algebraic formulations where each of these formulations consists of a summation of the least 

squares differences for every point in the flow series (Cooper et al., 1997). The objective 

function will evaluate the performance of the GOMs in calibrating Tank Model and it will 

ensure that the learning error is getting lesser with the increase of number iterations. The 

accuracy of simulation results is measured using the coefficient of correlation (R) and Nash-

Sutcliffe coefficient (E
2
).  

6 Performance Evaluation 

Boxplots is applied to determine the robustness of parameters investigated. In its 

simplest form, the boxplot presents five sample statistics namely the minimum, the lower 

quartile, the median, the upper quartile and the maximum, in a visual display.  

Peak runoff is evaluated for each storm hydrograph simulated by optimal 

configuration of Tank Model’s parameters. Observed and simulated peaks generated by 

optimal configuration of PSO-Tank-H and SCE-Tank-H approaches are compared for 11 

validation data sets.  The objective is to evaluate how successful the simulated runoff in 

approaching the observed peak.  Error between observed peak and simulated peak is 

calculated using Equation 5. 

%100
_

__
x

peakobserved

peakobservedpeaksimulated
Error 







 −
=                                              (5) 

The simulated results obtained are evaluated to determine the differences between 

observed and predicted values. The accuracy of model performance is measured by 

Coefficient of Correlation (R) and Nash-sutcliffe coefficient (E
2
).  According to Lauzon et al. 

(2000), the R and E
2
 are measuring the overall differences between observed and estimated 

flow values. The closer R and E
2
 to 1, the better the predictions are. The formulas of these 

two coefficients are presented in Table 4.      
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Coefficient of Correlation 

 

Nash-Sutcliffe Coefficient 

Note : obs = observed value, pred = predicted value, 

7  Results and Discussion

 

7.1    Particle Swarm Optimization (PSO)

The results revealed that the best parameter set is obtained using single storm event on 

5 to 8 April 1998 (PSOSetHC), with optimum R and E

respectively. The optimal configuration for PSO algorithm was found to be using 100 

numbers of Particles (D), 200 maximum iterations and 

parameters obtained using PS

X2=0.00001, C4=0.1158, C5=

storm hydrograph calibrated by the optimal configuration of PSO algorithm 

Fig. 6. 

Fig. 6: Comparison between observed storm hydrograph and optimal simulated storm 

hydrograph using PSO   

The trend of simulated hydrograph is very close with observed runoff. However, the 

simulated peak is slightly lower than observed peak. Five parameters 

C8 and X1 are the dominance parameters that affect the hourly runoff generation. Other 

parameters such as C2, C3, C5, C7 and X2 have little impact to hourly runoff simulation. All 

the infiltration coefficient values C3, C5 and C7 are 

infiltration rate for Bedup b

performance of PSOSetHC when validating 11 storm events is 

 

Table 4: Formulas for R and E
2
 

Name Formula

 

 

R 

 

∑ ∑

∑
−−

−−

−

−

2 ()(

)((

predobsobs

predobsobs

Sutcliffe Coefficient 

 

 

E
2
 

(

(∑

∑

−

−

−=
j

i

j

i

obsobs

predobs

E
2

1

Note : obs = observed value, pred = predicted value, 
−−

obs = mean observed values, dpre
−−

= mean predicted values and j = number of values.

Results and Discussion 

Particle Swarm Optimization (PSO) 

The results revealed that the best parameter set is obtained using single storm event on 

(PSOSetHC), with optimum R and E
2
 values of 0.962 and 0.8935 

respectively. The optimal configuration for PSO algorithm was found to be using 100 

numbers of Particles (D), 200 maximum iterations and c1 and c2 of 1.4. The optimal 

parameters obtained using PSO are C1=0.1165, C2=0.00001, X1=0.1593, 

C5=0.00001, C6=0.1208, C7=0.00001 and C8=

storm hydrograph calibrated by the optimal configuration of PSO algorithm 

Fig. 6: Comparison between observed storm hydrograph and optimal simulated storm 

The trend of simulated hydrograph is very close with observed runoff. However, the 

simulated peak is slightly lower than observed peak. Five parameters including C1, C4, C6, 

C8 and X1 are the dominance parameters that affect the hourly runoff generation. Other 

parameters such as C2, C3, C5, C7 and X2 have little impact to hourly runoff simulation. All 

the infiltration coefficient values C3, C5 and C7 are found to be 0.00001

asin, which mostly covered by clayey soil is 

performance of PSOSetHC when validating 11 storm events is presented in 
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Formula 

−−

−−

−

−

2
)

)

predpred

dprepred
 

)

)obs

pred

2

2

 

= mean predicted values and j = number of values. 

The results revealed that the best parameter set is obtained using single storm event on 

values of 0.962 and 0.8935 

respectively. The optimal configuration for PSO algorithm was found to be using 100 

of 1.4. The optimal 

0.1593, C3=0.00001, 

C8=0.0212. The best 

storm hydrograph calibrated by the optimal configuration of PSO algorithm is presented in 

 

Fig. 6: Comparison between observed storm hydrograph and optimal simulated storm 

The trend of simulated hydrograph is very close with observed runoff. However, the 

including C1, C4, C6, 

C8 and X1 are the dominance parameters that affect the hourly runoff generation. Other 

parameters such as C2, C3, C5, C7 and X2 have little impact to hourly runoff simulation. All 

. This indicates the 

asin, which mostly covered by clayey soil is very low. The 

in Table 5.  
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Table 5: Results of 

Description 

Storm Hydrograph 1

Storm Hydrograph 2

Storm Hydrograph 3

Storm Hydrograph 4

Storm Hydrograph 5

Storm Hydrograph 6

Storm Hydrograph 7

Storm Hydrograph 8

Storm Hydrograph 9

Storm Hydrograph 10

Storm Hydrograph 11

Average 

7.2   Shuffle Complex Evolution (SCE)

The best set of parameters

(SCESetHC), with nsp1 of 75 where R and E

optimal 10 parameters optimized by SCE algorithm are C1=

X1=14.7853, C3=0.311226, 

C7=0.000155 and C8=0.017274. 

algorithm was shown in Fig. 7. Result reveals that the simulated peak is slightly 

underestimated than observed peak.

Fig. 7: Comparison between observed storm hydrograph and optimal simulated storm 

hydrograph using SCE   

Infiltration coefficient values C3, C5 and C7 are 

and 0.000155 respectively. This revealed that the infiltration rate from first

high. Thereafter, there is only little infiltration for the subsequent tanks. The calibration 

results revealed that 8 parameters calibrated by SCE algorithm including C1, C2, C3, C4, C6, 

C8, X1 and X2 are controlling the hourly runoff ge

minor effect to hourly runoff simulation. Table 6 presents the R and E

validating 11 storm events using the SCESetHC optimal parameters. 
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Table 5: Results of PSOSetHC for validating 11 single storm events

 SCE 

R E
2
 

Storm Hydrograph 1 0.747 0.6139 

Storm Hydrograph 2 0.905 0.9512 

Storm Hydrograph 3 0.962 0.8935 

Storm Hydrograph 4 0.876 0.9590 

Storm Hydrograph 5 0.961 0.6097 

Storm Hydrograph 6 0.855 0.8032 

Hydrograph 7 0.832 0.6961 

Storm Hydrograph 8 0.935 0.9312 

Storm Hydrograph 9 0.902 0.719 

Storm Hydrograph 10 0.968 0.6587 

Storm Hydrograph 11 0.901 0.8780 

0.8949 0.7921 

Shuffle Complex Evolution (SCE) 

The best set of parameters is obtained using single storm event on 5 to 8 April 1998 

(SCESetHC), with nsp1 of 75 where R and E
2
 yielded to 0.917 and 0.8154 respectively. The 

optimal 10 parameters optimized by SCE algorithm are C1=0.57876, 

0.311226, X2=6.49865, C4=0.047421, C5=5.90424e-007, 

0.017274. The optimal calibrated storm hydrograph using SCE 

algorithm was shown in Fig. 7. Result reveals that the simulated peak is slightly 

underestimated than observed peak. 

parison between observed storm hydrograph and optimal simulated storm 

Infiltration coefficient values C3, C5 and C7 are found to be 0.311226

respectively. This revealed that the infiltration rate from first

high. Thereafter, there is only little infiltration for the subsequent tanks. The calibration 

results revealed that 8 parameters calibrated by SCE algorithm including C1, C2, C3, C4, C6, 

C8, X1 and X2 are controlling the hourly runoff generation. In contrast, C5 and C7 have 

minor effect to hourly runoff simulation. Table 6 presents the R and E

validating 11 storm events using the SCESetHC optimal parameters.  

Comparison of Particle Swarm Optimization 

 

11 single storm events 

obtained using single storm event on 5 to 8 April 1998 

to 0.917 and 0.8154 respectively. The 

0.57876, C2=0.374059, 

007, C6=0.695887, 

The optimal calibrated storm hydrograph using SCE 

algorithm was shown in Fig. 7. Result reveals that the simulated peak is slightly 

 

parison between observed storm hydrograph and optimal simulated storm 

0.311226, 5.90424e-007 

respectively. This revealed that the infiltration rate from first to second tank is 

high. Thereafter, there is only little infiltration for the subsequent tanks. The calibration 

results revealed that 8 parameters calibrated by SCE algorithm including C1, C2, C3, C4, C6, 

neration. In contrast, C5 and C7 have 

minor effect to hourly runoff simulation. Table 6 presents the R and E
2
 obtained when 
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Table 6: Results of SCESetHC for validating 11 single storm events 

Description SCE 

R E
2
 

Storm Hydrograph 1 0.765 0.7285 

Storm Hydrograph 2 0.933 0.9291 

Storm Hydrograph 3 0.917 0.8154 

Storm Hydrograph 4 0.785 0.5138 

Storm Hydrograph 5 0.860 0.8418 

Storm Hydrograph 6 0.930 0.6462 

Storm Hydrograph 7 0.788 0.5302 

Storm Hydrograph 8 0.933 0.8846 

Storm Hydrograph 9 0.894 0.6390 

Storm Hydrograph 10 0.964 0.7557 

Storm Hydrograph 11 0.953 0.8254 

Average 0.8838 0.7372 

 

7.3   Comparison of Two GOMS 

Fig. 8 shows the average R and E
2
 values produced by the optimal configuration of 

SCE and PSO algorithm for validating 11 storms hydrograph. The average R and E
2
 values 

obtained by PSO algorithm are 0.8949 and 0.7921 respectively. For SCE algorithm, the 

average R and E
2
 values obtained after validating 11 storm events are 0.8838 and 0.7372 

respectively. This indicates that the parameters calibrated using PSO is more accurate than 

SCE when validating 11 storm events.  

 

 

Fig. 8: Comparison of optimal PSO and SCE algorithms 

7.4    Comparison Between Observed Peak and Simulated Peak 

The simulated peak for optimal configuration of each GOMs was compared with 

observed peak. Table 7 presents the peak error (%) between observed and simulated peak 

flow for PSOSetHC and SCESetHC when validating 11 storms hydrograph.   
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Table 7: Peak flow Error for PSOSetHC and SCESetHC 

 SCE-Tank-H PSO-Tank-H 

Storms 
Observed 

Peak 

Simulated 

Peak 

Error 

(%) 

Observed 

Peak 

Simulated 

Peak 

Error 

(%) 

1998 Aug 8-12 25.75 27.61 7.24 25.75 22.73 11.71 

1999 Jan 1-7 34.63 27.36 20.97 34.63 23.68 31.62 

1999 Apr 5-8 18.37 16.03 12.74 18.37 13.65 25.74 

1999 Feb 5-8 14.26 18.58 30.30 14.26 15.28 7.14 

1998 Sep 9-12 40.40 23.20 42.57 40.40 30.21 25.22 

1999Mac 15-18 13.20 16.37 23.97 13.20 13.61 3.09 

1999 Jan 20-24 20.36 22.38 9.92 20.36 19.35 4.98 

1999 Jan 26-31 28.37 25.05 11.72 28.37 21.71 23.48 

2000 Apr 5-8 22.45 19.50 13.12 22.45 19.69 12.30 

2000 Jan 18-21 22.18 20.85 5.98 22.18 16.86 23.98 

2003 Oct 9-12 19.36 21.22 9.62 19.36 17.27 10.78 

Average Error   17.10   16.37 

It was found that average error (%) between simulated and observed peak for optimal 

configuration of SCE and PSO are 17.10% and 16.37% respectively. The results revealed that 

PSO approach has produced simulated peaks that are closer to observed peak than SCE 

approach. These simulated peaks can be used as early warning flow forecaster to take 

necessary flood protection measures before a severe flood occurs. 

7.5    Boxplots Analysis 

To ensure the parameters obtained is the most optimal and accurate, 11 sets of storm 

hydrographs are calibrated and optimized by PSO and SCE algorithms. Each set of parameter 

obtained is then validated with another 11 sets of storm events. The resulting parameters 

obtained using PSO and SCE calibration methods for different dataset are presented in Table 

8 and 9 respectively.   

Table 8: Optimal parameters obtained using PSO algorithm with different dataset 

 C1 C2 X1 C3 X4 C4 C5 C6 C7 C8 
PSOSetHA 0.1165 0.00001 0.1593 0.00001 0.00001 0.1158 0.00001 0.1208 0.00001 0.0212 

PSOSetHB 1.1435 1.1448 0.3693 0.2980 0.3232 2.4044 0.3188 0.0260 0.00001 0.0351 

PSOSetHC 1.0688 1.0113 0.1393 0.00001 0.00001 1.8834 1.6107 0.0337 0.00001 0.0352 

PSOSetHD 0.1087 0.00001 0.3801 0.00001 0.00001 1.3865 0.9869 0.1004 0.00001 0.0160 

PSOSetHE 0.6970 0.0061 0.0011 0.00001 0.0321 2.3341 0.4037 0.0868 0.00001 0.0150 

PSOSetHF 0.1561 0.00001 0.0504 0.00001 0.0003 1.8585 0.00001 0.1666 0.00001 0.0143 

PSOSetHG 1.8862 0.6467 0.0744 0.00001 0.00001 1.0000 0.7005 1.0000 0.0924 0.0053 

PSOSetHH 1.1934 0.00001 0.3576 0.00001 0.00001 2.3606 0.7823 0.0323 0.00001 0.0414 

PSOSetHI 0.9851 0.3346 0.00001 0.0592 0.00001 1.2972 0.7070 0.0979 0.00001 0.0138 

PSOSetHJ 0.1422 0.00001 0.00001 0.0008 0.00001 0.9962 1.7252 0.1686 0.00001 0.0242 

PSOSetHK 0.9440 0.4144 1.0077 0.3297 0.6356 1.0000 0.6417 0.0981 0.00001 0.0127 

 

Table 9: Optimal parameters obtained using SCE algorithm with different dataset 

 C1 C2 X1 C3 X4 C4 C5 C6 C7 C8 
SCESetHA 0.57876 0.374059 14.7853 0.311226 6.49865 0.047421 5.90E-07 0.695887 0.000155 0.017274 

SCESetHB 0.239367 0.000152 19.9981 0.00404 4.21419 0.99953 0.142576 0.999998 0.651766 0.01605 

SCESetHC 0.382111 0.013735 13.3852 0.000111 10.9231 0.073761 9.38E-07 0.850929 0.00194 0.024017 

SCESetHD 0.73823 0.073409 3.3418 3.13E-05 7.1593 0.42368 3.52E-06 1.000000 0.39497 0.009329 

SCESetHE 0.835835 0.289136 13.3096 0.255264 12.7314 0.115417 6.29E-08 0.759014 3.18E-08 0.015798 

SCESetHF 0.137185 1.65E-05 9.46114 0.880488 19.9992 0.787643 0.000103 0.716401 0.004526 0.010075 

SCESetHG 0.278742 0.531293 19.3113 0.234886 19.9882 0.710385 0.000219 0.999999 0.935953 0.009887 

SCESetHH 0.548313 0.480161 10.9885 0.534595 9.90657 0.999945 0.15776 0.99975 0.316135 0.018535 

SCESetHI 0.660371 0.349439 15.1549 0.168425 4.16672 0.928385 2.80E-05 0.999984 0.138532 0.01006 

SCESetHJ 0.113613 0.001223 19.9952 0.459864 19.1121 0.204836 1.07E-05 0.926352 0.493893 0.018574 

SCESetHK 0.27012 0.164622 19.9984 0.062928 11.568 0.999998 0.152339 0.999982 0.99596 0.008362 
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The selection of a GOM for a particular application is governed by GOM’s accuracy 

of its solution to the global optimum. Accuracy was expressed as R and E
2
 of the simulated 

flow series generated by the parameter set found in the search. The R and E
2
 obtained are 

analyzed with boxplots. The boxplots in Fig. 9 and 10 show the quartile distributions of the R 

and E
2 

performances using SCE and PSO optimization methods respectively. These two 

GOMs are compared according to their robustness and accuracy, where the robust method is 

one which has little variability. 

 

 

         a) Boxplots of R for PSO-Tank-H                       b) Boxplots of E
2
 for PSO-Tank-H. 

Figure 9: Boxplots of PSO-Tank-H for validating 11 storms hydrograph 

 

 

       a) Boxplots of R for SCE-Tank-H                      b) Boxplots of E
2
 for SCE-Tank-H 

Fig. 10: Boxplots of SCE-Tank-H for validating 11 storms hydrograph 

The boxplots also proclaimed that PSOSetHC produced highest median with R=0.902 

and E
2
=0.8032 among the 11 calibration sets (refer Fig. 9). Upper quartile R of 0.961 and 

lower quartile R of 0.855 are obtained for PSOSetHC. Meanwhile, PSOSetHC also produced 

upper and lower quartile E
2
 of 0.9312 and 0.6587 respectively. The maximum R recorded for 

PSOSetHC is 0.968, and 0.747 is obtained for minimum R.  Meanwhile, the maximum and 

minimum of E
2 

were found to be 0.9590 and 0.6097 respectively. Thus, the best set of 

calibration parameters is obtained using PSOSetHC for PSO algorithm. 

2
 

2
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Fig. 10 presents the boxplots produced by SCE algorithm. The results clearly 

indicated that the best calibration set for SCE algorithm is SCESetHC among the 11 

calibration sets, with median R of 0.917 and median E
2
 of 0.7557. The upper and lower 

quartile recorded for R is 0.933 and 0.788 respectively for SCESetHC, where else 0.8418 and 

0.6390 are obtained for E
2
. The maximum and minimum of R are found to be 0.964 and 

0.765 respectively, while maximum and minimum values recorded for E
2
 are 0.9291 and 

0.5138 respectively. 

Between the two GOMs, PSO method appeared to consistently give a remarkable 

performance and is considered as more robust and accurate than SCE method. PSO still 

consider more reliable that SCE, even though the median of R=0.902 provided is slightly 

lower than SCE method (R=0.917). This is because PSO method has produced median of 

E
2
=0.8032, which is much better than SCE method (E

2
=0.7557). Besides, boxplots also 

revealed that PSO method has smaller variability for both R and E
2
 than SCE approach. 

Moreover, average R and E
2
 obtained for PSO when validating 11 storms hydrograph are 

higher than SCE approach (refer Fig. 8). Therefore, PSO approach performs better than SCE 

for hourly runoff simulation in this study. 

 

8.0   Conclusion 

The new PSO algorithm and the famous SCE are compared to determine their 

suitability and accuracy for calibration of Tank Model, under various modeling scenarios. 

Both GOMs had confirmed their abilities to calibrate and optimize 10 parameters of 

Hydrologic Tank Model. Optimal PSO calibration method had achieved average R=0.8949 

and E
2
=0.7921 with the model configuration of c1=1.4, c2=1.4, 100 of number of particles, 

200 max iteration when validating 11 storms hydrograph. Meanwhile, the performance of 

SCE method is slightly lower than PSO with average R and E
2
 of 0.8838 and 0.7372 

respectively for validating 11 storms hydrographs.  

 These results proved that the newly developed PSO algorithm has the ability to 

calibrate and optimize 10 parameters of Tank Model accurately. Besides, PSO had shown its 

robustness by simulating accurately the 11 single storms hydrograph during the validation 

period. This indicates that PSO optimization search method is a simple algorithm, but found 

to be robust, efficient and effective in searching optimal Tank Model parameters. This was 

totally revealed by the ability of PSO methods in searching the optimal parameters that 

provide the best fit between observed and simulated flows.  

The methodology has been tested for rural catchment in humid region. The results 

revealed that Hydrologic Tank Model clearly manage to demonstrate the ability to adapt to 

the respective lag time of each gauge through calibration. Rainfall and runoff as inputs are 

sufficient to develop an accurate hourly rainfall-runoff model. Inclusion of more parameters 

such as temperature, moisture content, evaporation will make the Tank Model unnecessarily 

complex in nature without any significant improvement in performance. 
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