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Abstract 

     Sparse PCA and non-linear dimensional reduction methods have 
been developed and studied in depth for almost two decades. Their 
applications are huge such as speech recognition and face 
recognition. However, the sparse PCA and the non-linear 
dimensional reduction methods have not been applied to biological 
network inference problem. Thus, in this paper, we propose two new 
non-linear dimensional reduction methods which are un-normalized 
Laplacian Eigenmaps algorithm and symmetric normalized 
Laplacian Eigenmaps algorithm and the sparse PCA algorithm and 
apply these three new methods to the biological network inference 
problem using gene expression data. Experimental results show that 
the combination of Laplacian Eigenmaps methods and the un-
supervised learning method and the combination of the sparse PCA 
method and the un-supervised learning method outperform the un-
supervised learning method alone in terms of accuracy performance 
measures.  

     Keywords: un-supervised learning, direct method, PCA, sparse PCA, 
Laplacian Eigenmaps, biological network inference. 

1      Introduction 

Many phenomena in the world can be represented by sets of objects and sets of 

relationships among the objects. Sets of such relationships create networks. The 

problem predicting links of the networks is called the link prediction problem, 

which is one important task in data mining research area. A classic setting of the 

link prediction problem is to infer the unknown parts of the network from the 
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known parts of the network. Link prediction problem has many applications in 

many fields such as social network analysis [1,2] or bio-informatics [3,4]. For 

example, link prediction is used to predict the friendships among participants in 

the social network or link prediction is used in recommender system [5,6] of 

www.amazon.com. In the bio-informatics research field, link prediction is 

typically used to predict the interactions among proteins. This will lead to the 

experimental designs discovering new biological facts.   

The link prediction problem can be viewed as the problem of completing an 

adjacency matrix representing the structure of the network. One of the typical 

approaches to the link prediction problem is to consider it as the binary 

classification problem of the elements of the adjacency matrix. In this paper, the 

approach solving the link prediction problem is the node-information-based 

approach. In the other words, this approach exploits the node information such as 

feature vectors of nodes. In the biological network, [3,4] exploit the gene 

expression profiles of genes (i.e. nodes of the network). One of the state of the art 

approaches for this link prediction problem is the pairwise support vector machine 

(i.e. the supervised approach) combining the node-wise kernel to construct the 

pairwise kernel [7,8,9]. Recently, in 2009, the semi-supervised approach [10], 

which utilizes the success of graph based semi-supervised learning methods in 

data mining field, is also proposed to solve this link prediction problem.  

In this paper, we will focus on the reliable inference of biological network 

structure from gene expression data. However, this remains a challenging problem 

because of the noisy and high dimensional gene expression data. This will lead to 

the bad performance of the un-supervised, semi-supervised, and supervised 

approaches solving the link prediction of biological network. One way to 

overcome this difficulty is to integrate the dimensional reduction methods with 

the un-supervised (or semi-supervised or supervised) approaches to solve the link 

prediction problem. In this paper, we will try to combine the dimensional 

reduction methods with the un-supervised approach to infer the biological 

network. To the best of my knowledge, this work has not been investigated up to 

now.     

In our literature review, many dimensional reduction methods have been 

successfully developed and applied to various applications such as speech 

recognition and face recognition, to name a few. To the best of my knowledge, 

there are two classes of dimensional reduction methods which are the linear and 

the non-linear techniques [11]. Linear dimensional reduction methods assume that 

the data lies on or close to linear subspace of the high-dimensional ambient space. 

Linear dimensional reduction methods have been developed and used for a long 

time. For example, Principle Component Analysis (i.e. PCA) was invented in 

1901 and is still the most widely used dimensional reduction methods nowadays. 

For example, the PCA technique is employed in and successfully applied to 

speech recognition research field [12] and face recognition research field [13].  



 

 

 

 

47                                                                     Applications of (SPARSE)-PCA and 

and 

 
In this paper, PCA is also employed to solve the biological network inference 

problem.  

However, the PCA has two major disadvantages which are the lack of sparsity of 

the loading vectors and each principle component is the linear combination of all 

variables. From data analysis viewpoint, sparsity is necessary for reduced 

computational time and better generalization performance. From modeling 

viewpoint, although the interpretability of linear combinations is usually easy for 

low dimensional data, it could become much harder when the number of variables 

becomes large. To overcome this hardness and to introduce sparsity, many 

methods have been proposed such as [21,22,23,24].  

In this paper, we will introduce new approach for sparse PCA using Alternating 

Direction Method of Multipliers (i.e. ADMM method) [25]. Then, we will try to 

employ the sparse PCA dimensional reduction method to solve biological network 

inference problem. This work, to the best of our knowledge, has not been 

investigated. 

In the other hand, non-linear dimensional reduction methods make no assumption 

about the linearity and are designed to identify complex non-linear manifolds as 

well as linear ones. Recently, many researchers have focused on developing 

various non-linear dimensional reduction methods such as Kernel PCA [14], 

Isomap [15], Local Linear Embedding [16], Laplacian Eigenmaps [17]. In this 

paper, we will try to apply the Laplacian Eigenmaps to solve the link prediction 

problem. To the best of my knowledge, the random walk Laplacian Eigenmaps 

have been successfully developed and applied to multiple applications. However, 

the un-normalized and symmetric normalized Laplacian Eigenmaps have not yet 

been developed and applied to any practical applications. Hence we will try to 

developed these two new variants of the random walk Laplacian Eigenmaps 

method and apply these two new methods to the biological network inference 

problem.       

The direct approach to the biological network inference problem is the closeness-

based approach. In the other words, two genes are likely to share the same edge if 

their distance is small enough. In this paper, Euclidean distance is considered as 

the measure of closeness between two gene expression profiles. A direct approach 

thus predicts that there exists an edge between these two genes if their Euclidean 

distance is below a threshold. This direct approach is also call un-supervised 

learning approach since no labels are assigned to the dataset. By changing the 

threshold, we can get different amounts of true positives and true negatives.  

In our work, we first try the direct approach to the gene expression data alone and 

measure its accuracy performance measure. Finally, we try to apply the 

dimensional reduction methods to the gene expression data and then apply the 

direct approach to the “recently transformed” gene expression data and measure 

their accuracy performance measures.      
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We will organize the paper as follows: Section II will present how to derive the 

PCA method and present the classical PCA algorithms in detail. Section III will 

present the Alternating Direction Method of Multipliers. Section IV will derive 

the sparse PCA method using the ADMM method in detail. Section V will present 

the sparse PCA algorithm.. Section VI will present the definitions of the un-

normalized, random walk, and the symmetric normalized graph Laplacian. 

Section VII will introduce the three graph Laplacian Eigenmaps in detail. In 

section VIII, we will compare the accuracy performance measures of the three 

graph Laplacian Eigenmaps algorithms, the PCA algorithm, the sparse PCA 

algorithm, and the direct approach alone applied to the biological network 

inference problem. Section IX will conclude this paper and the future direction of 

researches will be discussed. 

2      PCA Algorithms 

Principle Component Analysis (i.e. PCA) is one of the most popular 

dimensionality reduction techniques [18]. It has several applications in many 

areas such as pattern recognition, computer vision, statistics, and data analysis. It 

employs the eigenvectors of the covariance matrix of the feature data to project on 

a lower dimensional subspace. This will lead to the reduction of noises and 

redundant features in the data and the low time complexity of the direct approach 

solving the biological network inference problem. 

In detail, PCA method, used in this paper, convert the original set of features to a 

different and more compact representation keeping as much information as 

possible and to try to increase the performance of the direct approach, especially 

the accuracy of the direct approach. The dimensional reduction stage is achieved 

by retaining only the relevant dimensions according to one specific criteria which 

is maximizing the variance. This stage helps solve the problem called the curse of 

dimensionality. Therefore, reducing the dimensionality of the gene expression 

data is the most direct way solving the problems caused by high dimensionalities. 

Next, we will show how to derive the PCA algorithm from maximum variance 

approach. First, assume that  be the gene expression data, where p is the 

dimension of the gene expression profile and n is the total number of genes in the 

gene expression data. Hence X can be expressed as . 

Let  be the mean vector of all column vectors (i.e. gene expression 

profiles) . 

Let .             (1) 
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Next, let’s project the gene expression data X onto the line along the unit vector 

. The variance along this line is 

     (2) 

We want to maximize the function  under the constraint that u is the unit 

vector. In the other words, we want to solve the following maximization problem: 

            (3) 

Take the derivative of  with respect to u, we have 

                                                            (4) 

Set this amount to zero, we have the equation 5: 

               (5) 

Thus, u is the principle eigenvector of the covariance matrix .   

Finally, we will present the PCA algorithm 

Algorithm 1: PCA algorithm 

1. Input: The gene expression data , where p is the dimension of the 

gene expression profile and n is the total number of genes in the gene 

expression data 

2. Compute , where  be the 

mean vector of all column vectors (i.e. gene expression profiles) 

 of X 

3. Compute the covariance matrix  
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4. Compute  be the matrix with orthonormal columns, 

which are the eigenvectors associated with k largest eigenvalues of the 

covariance matrix (please note that )   

5. Output: The matrix  

__________________________________________________________________ 

From the above algorithm, we easily recognize that PCA algorithm has many 

advantages such as finding feature groups that are highly correlated and 

supporting the feature extraction, outlier detection, and clustering process (i.e. by 

reducing noise and redundant features of the datasets). However, PCA algorithm 

is the linear dimensional reduction method. This is the major disadvantage of 

PCA algorithm.                               

3      Alternating Direction Method of Multipliers 

In this section, we will introduce the Alternating Direction Method of Multipliers. 

The detailed information about the Alternating Direction Method of Multipliers 

can be found in [25]. First, assume that we want to solve the following problem 

        (6) 

       (7) 

with variables  and , where . 

Next, we will form the augmented Lagrangian 

           (8) 

Finally,  can be solved as the followings 

                                                                           (9) 

           (10) 

,          (11) 

where . 

4      Sparse Principle Component Analysis Derivation 

Assume that we are given the data matrix . Next, we will formulate our 

sparse PCA problem. This problem is in fact the following optimization problem: 

         (12) 
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, 

where  are the singular value, the left singular vector, and the right singular 

vector of the Singular Value Decomposition (i.e. SVD) of X respectively. 

Information about the SVD and its relationship to PCA can be found in [18]. In 

the above optimization problem,  are fixed. Our objective is to find the 

sparse loading vectors . 

First, the augmented Lagrangian of the above optimization problem can be 

derived as the following Equation 13-34: 

  (13) 

Then  can be solved as the followings 

            (14) 

Hence 

         (15) 

         (16) 

 (17) 

  (18) 

  (19) 

     (20) 
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  (19) 

      (20) 

Next, we solve      (21) 

Thus,             (22) 

Next, we have  

                                                         (23) 

Hence 

       (24) 

                    (25) 

,                                                                                (26) 

where 

                               (27)       

Solve , we have   

            (28) 

If , then 

          (29) 

If , then 

     

        (30) 

If , then 

                                                                                      (31) 
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Thus, 

     (32) 

Finally, we have 

                                                                        (33) 

5      Sparse Principle Component Analysis algorithm 

In this section, we will present the sparse PCA algorithm 

Algorithm 2: Sparse PCA algorithm 

1. Input: The dataset , where p is the dimension of the dataset and n is 

the total number of observations in the dataset 

2. Compute , where  be the 

mean vector of all column vectors  of X  

3. Randomly select parameters . 

4. Set  

5. for  

i. Compute the SVD of  

ii. Initialize  

iii. Set  

iv. do 

a. Compute  

b. Compute    

c. Compute  
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d.     

v. while  

vi.  

vii.  

viii.  

6. End 

7. Output: The matrix V. 

__________________________________________________________________ 

6      Definitions of Graph Laplacians 

Given a graph G=(V,E), where V is the set of vertices and E is the set of edges. 

Let w(i,j) be the weight of the edge (i,j). Then W will be the  matrix 

containing the weights of all edges of graph G. W is also called the weighted 

adjacency matrix of the graph G. Please note that  is the total number of 

genes in the gene expression data.     

Next, we can define the degree of vertex  as follows 

        (35) 

Let  be diagonal matrix containing the degrees of vertices in its diagonal entries. 

Please note that  is the  matrix. 

Definition 1: Un-normalized graph Laplacian 

The un-normalized graph Laplacian is defined as follows 

 
Definition 2: Symmetric normalized graph Laplacian 

The symmetric normalized graph Laplacian is defined as follows      

 
Definition 3: Random walk graph Laplacian 

The random walk graph Laplacian is defined as follows      
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 7      Laplacian Eigenmaps Algorithms 

Laplacian Eigenmaps algorithms will be our next discussion. We will spend time 

to discuss the key features of these algorithms. In [17], Belkin and the co-authors 

propose an approach building a graph incorporating neighborhood information of 

the dataset. Then by using the graph Laplacian, they compute the low dimensional 

representation of the dataset that optimally preserves local neighborhood 

information. This algorithm is very closely related to the spectral clustering 

techniques used in machine learning and computer vision research field [19]. 

In specific, Laplacian Eigenmaps algorithm, originally derived from [17], try to 

solve the generalized eigenvalue problem: 

,       (36) 

where L is the un-normalized graph Laplacian,  is the diagonal matrix 

containing the degrees of vertices in its diagonal entries, and  is the 

eigenvalue-eigenvector pair of the generalized eigenvalue problem (*). 

Then this generalized eigenvalue problem (*) will lead to two different eigenvalue 

problems which are 

                  (37) 

and 

,   (38) 

where  which implies that . 

Obviously, solving the generalized eigenvalue problem (*) will lead to two 

completely different Laplacian Eigenmaps algorithms. This fact has not been 

pointed out clearly in [17]. In detail, solving the eigenvalue problem (**) will lead 

to the random walk Laplacian Eigenmaps algorithm. Then, solving the eigenvalue 

problem (***) will lead to the symmetric normalized Laplacian Eigenmaps 

algorithm.    

Finally, we will present the three Laplacian Eigenmaps algorithms. First, let’s 

discuss about the random walk Laplacian Eigenmaps algorithm. 

Algorithm 3: Random walk Laplacian Eigenmaps algorithm 

1. Input: The gene expression data , where p is the dimension of the 

gene expression profile and n is the total number of genes in the gene 

expression data 
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2. Construct the similarity graph W from the gene expression data X as 

follows:  

a. The ε-neighborhood graph: Connect all genes whose 

pairwise distances are smaller than ε. 

b. k-nearest neighbor graph: Gene i is connected with gene j if 

gene i is among the k-nearest neighbor of gene j or gene j is 

among the k-nearest neighbor of gene i.     

c. The fully connected graph: All genes are connected. 

3. Compute the Gaussian similarity function (i.e. the weight of the edge 

(i,j)) as follows: 

 

4. Compute the degree matrix D 

5. Compute the random walk graph Laplacian  

6. Compute all eigenvalues and eigenvectors of  and sort all eigenvalues 

and their corresponding eigenvector in ascending order. Pick the first  

eigenvectors  of  in the sorted list. k can be determined in 

the following two ways: 

a. k is the number of connected components of  [19] 

b. k is the number such that  or  is largest for all 

         
7. Output:  be the matrix containing the vectors  as 

columns 

__________________________________________________________________ 

Next, we will discuss about the symmetric normalized Laplacian Eigenmaps 

algorithm. 

Algorithm 4: Symmetric normalized Laplacian Eigenmaps algorithm 

1. Input: The gene expression data , where p is the dimension of the 

gene expression profile and n is the total number of genes in the gene 

expression data 

2. Construct the similarity graph W from the gene expression data X as 

follows:  

a. The ε-neighborhood graph: Connect all genes whose pairwise 

distances are smaller than ε. 

b. k-nearest neighbor graph: Gene i is connected with gene j if gene i 

is among the k-nearest neighbor of gene j or gene j is among the k-

nearest neighbor of gene i.     

c. The fully connected graph: All genes are connected. 
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3. Compute the Gaussian similarity function (i.e. the weight of the edge 

(i,j)) as follows: 

 

4. Compute the degree matrix D 

5. Compute the symmetric normalized graph Laplacian  

6. Compute all eigenvalues and eigenvectors of  and sort all eigenvalues 

and their corresponding eigenvector in ascending order. Pick the first  

eigenvectors  of  in the sorted list. k can be determined in 

the following two ways: 

a. k is the number of connected components of  [19] 

b. k is the number such that  or  is largest for all 

         
7. Output:  be the matrix containing the vectors  as 

columns 

__________________________________________________________________ 

Finally, we will discuss about the un-normalized Laplacian Eigenmaps algorithm. 

Algorithm 5: Un-normalized Laplacian Eigenmaps algorithm 

1. Input: The gene expression data , where p is the dimension of the 

gene expression profile and n is the total number of genes in the gene 

expression data 

2. Construct the similarity graph W from the gene expression data X as 

follows:  

a. The ε-neighborhood graph: Connect all genes whose pairwise 

distances are smaller than ε. 

b. k-nearest neighbor graph: Gene i is connected with gene j if gene i 

is among the k-nearest neighbor of gene j or gene j is among the k-

nearest neighbor of gene i.     

c. The fully connected graph: All genes are connected. 

3. Compute the Gaussian similarity function (i.e. the weight of the edge 

(i,j)) as follows: 

 

4. Compute the degree matrix D 

5. Compute the un-normalized graph Laplacian  

6. Compute all eigenvalues and eigenvectors of  and sort all eigenvalues and 

their corresponding eigenvector in ascending order. Pick the first  
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eigenvectors  of  in the sorted list. k can be determined in the 

following two ways: 

a. k is the number of connected components of  [19] 

b. k is the number such that  or  is largest for all 

         
7. Output:  be the matrix containing the vectors  as 

columns  

__________________________________________________________________ 

From the above algorithms, we easily recognize that Laplacian Eigenmaps 

algorithms have many advantages such as the primary algorithms are very simple 

to implement and the locality preserving property of Laplacian Eigenmaps makes 

it insensitive to noise and outliers. Finally, the Laplacian Eigenmaps algorithm is 

the pre-processing step of the spectral clustering technique (i.e. it supports the 

clustering process). In the other words, the Laplacian Eigenmaps algorithm and 

the k-mean clustering technique are the two major steps in the spectral clustering 

algorithm.  

8      Experiments and Results 

8.1   Datasets 

In this paper, we use the StatSeq dataset available from [20] and the metabolic 

network dataset available from [4]. The StatSeq dataset contains expression 

levels of 100 genes over 300 samples. In the other words, we are given gene 

expression data ( ) matrix. Moreover, we are also given the gold standard 

network which has 100 nodes and 284 edges. The metabolic network dataset also 

contains the gold standard network and the gene expression data. This gene 

expression data contains the expression levels for 668 genes over 157 samples. 

The gold standard network in the metabolic network dataset contains 668 nodes 

and 2782 edges. 

8.2   Experiments 

First, we apply the direct method (i.e. the un-supervised learning method) to the 

two datasets. Then, we will apply the PCA algorithm and the direct method to the 

two datasets. Next, we will apply the sparse PCA algorithm and the direct method 

to the two datasets. Finally, the three Laplacian Eigenmaps algorithms and the 

direct method will be applied to the two datasets.  
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We experiment the above proposed methods in terms of accuracy performance 

measures. The accuracy performance measure Q is given as in Equation 39: 

    (39) 

True Positive (TP), True Negative (TN), False Positive (FP), and False Negative 

(FN) are defined in the following Table 1. 

Table 1: Definitions of TP, TN, FP, and FN 

 Predicted Label 

Positive Negative 

Known Label Positive True Positive (TP) False Negative 

(FN) 

Negative False Positive 

(FP) 

True Negative 

(TN) 

In the experiments, the parameter t of the Gaussian similarity function is set to 

. The 3-nearest neighbor graph is used to construct the similarity graph (for 

Laplacian Eigenmaps algorithms) from the two datasets.   

For the StatSeq dataset, the table 2 shows the accuracy performance measures of 

the direct method, the PCA and the direct method, the sparse PCA and the direct 

method, the three Laplacian Eigenmaps and the direct method. 

Table 2: Comparisons of the direct method, the PCA and the direct method, and 

the un-normalized Laplacian Eigenmaps and the direct method, the random walk 

Laplacian Eigenmaps and the direct method, the symmetric normalized Laplacian 

Eigenmaps and the direct method 

Accuracy (%) 

Direct Method 89.24 

PCA + Direct Method 89.28 

Sparse PCA + Direct Method 89.60 

Un-normalized Laplacian 

Eigenmaps + Direct Method 

90.64 

Random walk Laplacian 

Eigenmaps + Direct Method 

89.72 

Symmetric normalized Laplacian 

Eigenmaps + Direct Method 

90.20 

 

For the metabolic network dataset, the table 3 shows the accuracy performance 

measures of the direct method, the PCA and the direct method, the three 

Laplacian Eigenmaps and the direct method. 
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Table 3: Comparisons of the direct method, the PCA and the direct method, and 

the un-normalized Laplacian Eigenmaps and the direct method, the random walk 

Laplacian Eigenmaps and the direct method, the symmetric normalized Laplacian 

Eigenmaps and the direct method 

Accuracy (%) 

Direct Method 79.62 

PCA + Direct Method 79.64 

Sparse PCA + Direct Method 76.96 

Un-normalized Laplacian 

Eigenmaps + Direct Method 

76.99 

Random walk Laplacian 

Eigenmaps + Direct Method 

77.06 

Symmetric normalized Laplacian 

Eigenmaps + Direct Method 

76.98 

From the above Table 2 and Table 3, we easily recognize that the PCA and direct 

method outperform the direct method alone since the PCA method reduce the 

noise and the redundant features in the gene expression data. Moreover, the three 

Laplacian Eigenmaps methods and the direct method outperform the PCA method 

and the direct method since the Laplacian Eigenmaps methods are the non-linear 

dimensional reduction methods. Finally, we recognize that the sparse PCA and 

direct method outperform the PCA and direct method.   

9      Conclusions 

We have propose the un-supervised learning method, the combination of PCA 

method and the un-supervised learning method, the combination of sparse PCA 

method and the un-supervised learning method, the combination of three 

Laplacian Eigenmaps methods and the un-supervised learning method to solve the 

biological network inference using gene expression data in detail. In specific, we 

show how to derive the PCA method by using maximum variance approach and 

present the PCA algorithm in detail. Moreover, we also present the sparse PCA in 

detail. Finally, we propose two new Laplacian Eigenmaps algorithms which are 

the un-normalized Laplacian Eigenmaps and the symmetric normalized Laplacian 

Eigenmaps. Then we apply all these proposed methods to the biological network 

inference problems. Experimental results show that the three Laplacian 

Eigenmaps algorithms and the direct method outperform other methods since they 

reduce the noise and the redundant features of the gene expression data. Moreover, 

they are the non-linear dimensional reduction methods. Please note that applying 

these dimensional reduction methods to the biological network inference problem 

will also lead to the low time complexity of the direct method. Interestingly, we 

also recognize that the combination of sparse PCA method and the direct method 

outperform the combination of PCA method and the direct method. 
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In the future, we will try to propose the new semi-supervised learning method 

utilizing the normalized and random walk Kronecker product Laplacian matrices 

and apply it to the biological network inference problem. 

Finally, in the industrial speech recognition research area, we will try to apply the 

sparse PCA method to the MFCC feature matrices. Then we will apply some 

machine learning methods such as kernel ridge regression method or graph based 

semi-supervised learning method to the transformed MFCC matrices to classify 

the speech samples. This work, to the best of our knowledge, has not been 

investigated up to now. 
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