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Abstract 

     MapReduce has emerged as a paradigm where massive amounts 
of data are parallel processed with the help of clusters. Hadoop, as 
an open source implementation, has been used in a variety of 
applications such as social networking, video and image processing, 
log analysis and search indexing etc. For enterprises, providing 
MapReduce as a service in the cloud becomes an attractive model. 
Cloud Systems providing MapReduce as a service will allow users to 
access large number of machines in a cost-effectively manner 
without creating the infrastructures of their own. Moving 
MapReduce to the virtualized environment will incur new 
challenges, because the computation model is strongly bound to 
data, its storage, and location which make its behavior rather a 
batch processing. We consider cloud centers where tasks arrive in 
batches or groups of random size and task service times are assumed 
to follow an exponential distribution. This paper also examines the 
cases where the arrival group size has a geometric distribution or a 
deterministic distribution. We examine a new analytical model for 
evaluation of performance of such large scale systems and compute 
the performance benchmarks such as mean waiting time in the 
queue, mean request response time, mean system length and the 
mean number of busy servers in the system. 

     Keywords: Cloud Computing, MapReduce, Hadoop, Performance Evaluation, 
Virtualized data center, Batch processing. 

1      Introduction 
Cloud computing offers a delivery model with virtually unlimited computing and 
storage capacity. Cloud is an attractive option for setting up and maintaining 
large-scale as well as complex infrastructure such as a Hadoop. It is really 
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difficult to justify the bulk investment required in new infrastructure and 
continuous maintenance cost incurred while using a Hadoop cluster. Whereas 
Cloud allows rented model in a ”pay-per-use” manner which is really cost-
effective and hassle free. So, instead of acquiring and maintaining own 
infrastructure, it is affordable and viable to host in cloud.  

MapReduce [3] is a distributed programming platform designed for large scale 
computation over massive amounts of data. Hadoop, as an open source 
implementation is largely used in log analysis, image and video processing, data 
mining in social-networking sites and search indexing [1]. Henceforth, Hadoop 
and MapReduce will be used interchangeably in this article. Hadoop is 
characterized by fault tolerance, high efficiency and the ability to automatically 
parallelize applications on a cluster with thousands of hosts [3, 14]. Even with 
minimal distributed programming experiences, users can easily leverage a large 
cluster. MapReduce framework has formed the stack of technologies in 
empowering big enterprises such as Google, Facebook and Yahoo etc. A recent 
Gartner survey shows that 39% of enterprises have planning IT budgets for cloud 
computing [7]. So, providing MapReduce as a service in the cloud becomes an 
attractive usage model for enterprises [6]. MapReduce as cloud service will allow 
customers to cost-effectively rent a large number of machines in a cluster without 
creating the infrastructures of their own. They will be able to effectively size the 
MapReduce cluster according to their demand. Virtualized data center is the most 
common cloud computing platform. However, moving MapReduce to the 
virtualized environment will incur new challenges. 

This paper focuses on an analytical model through which we obtain mean request 
response time, probability distribution of number of tasks, probability of 
immediate service and other important performance indicators in order to ensure 
the Quality of service(QoS). In order to obtain immediate service for a request, 
the cloud service provider can tune the number of servers to be deployed at the 
service end. To fulfill the service level agreements (SLA), it requires exact 
performance evaluation so that the service providers can decide upon the size of 
resources to be deployed.  

The rest of this paper is described as follows. A brief description of the system 
model is narrated in Section 2 and its analysis for the Cloud computing 
environments hosting BigData applications. Analytical model and its analysis is 
given in Section 3. Section 4 depicts some important performance measures. 
Numerical analysis is done in Section 5 in order to show the efficiency of system 
parameters. Conclusion the paper is in Section 6. 

2 System Model 

The Hadoop programming model is based on the following simple concepts: (i) 
iteration over the input; (ii) computation of key/value pairs from each piece of 
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input; (iii) grouping of all intermediate values by key; (iv) iteration over the 
resulting groups; (v) reduction of each group [3, 11]. Each job is partitioned into a 
number of map and reduce tasks. Each Mapper (map task) runs map functions on 
single data block (128MB / 64MB) and each data block is replicated 3-times. A 
Reducer (reduce task) generates the final results based on the intermediate results 
from the map tasks. There is a barrier synchronization between map and reduce 
phase. It means that all map tasks have to be completed prior to any reduce task 
can start, that is, the computation model is strongly bound to data, its storage, and 
location. This behavior makes MapReduce rather a batch processing than online 
tool. A master (Namenode) and multiple slaves (Datanodes) are there in a typical 
MapReduce program. Management of the framework, job queue organization, 
user interaction and task scheduling are different responsibilities of the Master. In 
order to perform tasks, a fixed number of map and reduce slots are provided to 
each slave. Through a heartbeat protocol, each slave reports regarding the number 
of free task slots available to the job scheduler which is located in the master. 
MapReuce data flow with multiple reduce tasks is represented in the Figure 1. 
 

 
 

 
 

 
 

 
 

 
 

 
 

Fig. 1: MapReuce data flow 

Performance evaluation is very challenging where virtualization is used to provide 
a set of computing resources to the customers [4] and as the degree of 
virtualization (number of VMs running on a single physical box) increases, the 
complexity gets multiplied. Without any performance degradation a single 
physical box can host as many as 200 VMs or 35 tiles as per benchmark done by 
VMware [12]. By default, cloud centers generally host many physical boxes 
where each can host a number of VMs. Load balancing server is the intermediate 
arrangement which routes all incoming requests to one of the underlying physical 
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boxes. One or more VMs can be requested by a user at a time. Here, the system 
allows Batch task arrivals which is similar to the concept of on-demand services 
provided by Amazon EC2. Different varieties of VM (such as small, medium or 
large EC2 instances) are available in the Cloud. VMs pricing differs based on the 
capacity differences of the VMs. So, based on different VM instance types a user 
can have a variety of Hadoop clusters for the same price range. Moreover, 
depending upon workload the heterogeneous cluster solution may look lucrative 
than the homogeneous solution in the range of 26-42% [15].  
A number of theoretical studies for finite/infinite, batch arrival queues have been 
performed with results of varying degrees of complexity in [2, 8, 13]. For a 
M[x]=G=m queue, an approximation was developed in [10]. An approximate 
formula is derived by the authors for the steady-state probability of the number of 
tasks in the system, mean length of the queue and delay probability. But, for batch 
size larger than three, it gives appreciable amount of error. Performance analysis 
of cloud centers under batch task arrivals have been discussed in [9]. So, current 
methods are not suited to be applied for the study of cloud center Overall, existing 
methods are not well suited for the analysis of cloud centers hosting BigData 
applications where the number of servers(VMs) are potentially huge, that is, high 
degree of virtualization and service time distribution is unknown with arrival of 
requests (Map/Reduce Jobs) in a batch manner. 

3      Analytical Model 
We model the cloud center as an Markovian M X/M/c queuing system which 
indicates that tasks (Both MapTasks and ReduceTasks) arrive in batches or groups 
of random size X with P(X = k) = gk (k ≥1) and mean batch size E(X) = ¯g. The 
inter-arrival times of tasks are exponentially distributed with mean 1/ . There 
are c servers (VMs) and service times are independent and exponentially 
distributed with mean service time 1/µ. The service discipline is first-come, first-
served (FCFS) and buffer space is infinite. The traffic intensity of the system is p 

= . Each DataNode is allocated a VM and the batch-size is fixed. Below are 
the characteristics of this model: 

 Cloud Centers where tasks arrive in a batch manner, service time of tasks 
are exponentially distributed and batch-size follows general distribution. 

 Provides number of tasks as well as task response time distribution in the 
system. The probability that immediate service will be provided to a 
request, response time and waiting time for a request is also provided. 

 Cloud Center performance is to be linked with the service time of tasks 
and batch-size. Impact of larger batch sizes on service time resulting in 
response time as well as utilization for cloud providers is be measured. 
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 Impact of Partitioning the incoming requests based on the batch size or 
service time and then allocating different sub-centers (separate VMs) for 
processing. 

A subset of the model can be represented by three queues Q1;Q2;Q3 and three 
service stations S1; S2 and S3 where all are connected in parallel and series 
mode(Figure 2). It is assumed that requests being served through first or second 
stations join the third queue which is in series-connection to the service stations-
S1 and S2. Requests getting served from S1 or S2, join the queue-Q3. Here S1 and 
S2 represents DataNodes representing Mappers whereas S3 is a Reducer. It is 
assumed that the requests (Map-Jobs) in the first two queues are of fixed batch 
size and the mean arrival rates are not time dependent. 

Let us define the steady state probabilities of the system by Pk.  
 
 

 

 
 

 
 

 
 

 
 

Fig. 2: Schematic diagram representing the queuing model 
 

For the system under consideration, the Chapman-Kolmogorov forward 
differential equations at the steady state can be represented as 
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Using recursively (1) - (3), we obtain 

 

 

 

 

 

 

Only unknown P0 can be obtained using normalization condition as 

 

3.1 Specific batch size distributions 

 

If the arrival batch size follows a geometric distribution, then P(X = k) = 

   and mean batch size  Thus, 
we get 

 
 

 

where   and   . 

If the arrival batch size follows a deterministic distribution, then 
 and mean batch size  We obtain Pj as 
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4      Performance measures 
Performance measures are important characteristics of queueing systems as they 
reflect the efficiency of the model under examination. As the steady-state 
probabilities are known, the performance measures of the system may be obtained 
as follows: 

 Average number of requests in the queue is 

 
 The expected number of busy servers is 

 
 The average number of requests in the system is 

 
 Using the Little’s formula [5], the average waiting time of a request in the 

system (Ws) and the average waiting time of a request in the queue (Wq), 
respectively, given by 

 
 The probability that an arriving request has to wait is 

 
 
5      Numerical results 

In this section, numerical results are represented in the form of graphs. It helps 
managers on taking correct decisions through the qualitative aspects involved in 
the queueing system considered here through the numerical examples illustrated 
below. Figure 3 depicts the effect of mean batch size (MBS) on the Traffic-
Intensity p. 
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It is evident that as mean batch size increases, _ increases monotonically. Again, it 
is obvious that the increase in the Traffic-Intensity _ is more when the application 
has less number of servers. Figure 4 plots the impact of mean batch size on Lq for 
different number of servers, that is, VMs. It can be observed that as the mean 
batch size increases, the average queue length (Lq) increases. But for larger 
number of servers the average queue length is less and hence making the waiting 
time less. So, smaller batch size with more number of VMs are preferred. The  
impact of mean batch size on the mean waiting time in the queue (Wq) for various 
numbers of servers is shown in the Figure 5. It is evident from the figure that Wq 
increases as mean batch size increase. Figure 6 indicates that for more number of 
servers with higher service rate (_) the Wq will be less. Further, with fixed number 
of servers, the mean waiting time in the queue decreases when the service rate 
increases. We may setup an admissible service rate and the number of virtual 
machines to employ servers efficiently. 

 
 
 
 

Fig. 3: Impact of Mean-Batch-
Size(MBS) on Traffic Intensity p 
 

Figure 4: Impact of Mean-Batch-
Size ¯g on Lq 
 

Fig. 5: Impact of mean batch size 
on Wq 
 

Fig. 6: Impact of _ on Wq 
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Figure 7 depicts the effect of mean batch size on the expected number of busy 
servers (E(B)) with different number of servers. It is seen that as expected number 
of busy servers increase the mean batch size increase. The expected number of 
busy servers is more when servers are more. Figure 8 plots the impact of p (traffic 
intensity) on the mean waiting time in the queue (Wq) under different mean batch 
sizes. It can be observed that as the traffic intensity increases, the mean waiting 
time in the queue also increases. We can carefully setup p in the system to ensure 
the minimum Wq. 

 
 
 
 

Figure 7 depicts the effect of mean batch size on the expected number of busy 
servers (E(B)) with different number of servers. It is seen that as expected number 
of busy servers increase the mean batch size increase. The expected number of 
busy servers is more when servers are more. Figure 8 plots the impact of p (traffic 
intensity) on the mean waiting time in the queue (Wq) under different mean batch 
sizes. It can be observed that as the traffic intensity increases, the mean waiting 
time in the queue also increases. We can carefully setup p in the system to ensure 
the minimum Wq. From the numerical results, one may determine the effect of 
system parameters on the performance measures. Figure 9 compares the impact of 
number of virtual machines on the average system length for various inter batch  

 
 

Fig. 7: Impact of mean batch size 
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Fig. 9: Impact of c VMs on Ls 
 
 

Fig.10: Effect of c VMs on Lq 
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time distributions with same mean batch size. It is observed that the average 
system length in the case of deterministic distribution is lower as compared to 
other distributions. We further observe that the average system length decreases as 
the number of virtual machines increases and finally reaches to its minimum value 
for all distributions considered here. The effect of the number of virtual machines 
on the average queue length is shown in Figure 10. Again one may see that the 
average queue length decrease as the number of virtual machines increase. As one 
would intuitively expect, the average queue length in the case of arbitrary 
distribution is higher as compared to geometric and deterministic distributions. 

6      Conclusion 
Through Performance evaluation, cloud service providers can tailor their SLAs so 
that mutually agreed benchmark can be achieved for their customers. This paper 
depicts a analytical model for cloud centers providing MapReduce as service, that 
is, batch arrival of Mapper/Reducer requests with no rejection policy. In order to 
map correctly with the cloud centers, the service time for each task contained 
within batch-tasks and batch size is generally distributed with higher degree of 
virtualization, that is, large number of servers (VMs) involved. Important 
performance parameters like mean queue length, mean number of tasks in the 
system, mean waiting and mean response time are accurately calculated by using 
the proposed method here. As per the findings we can conclude about the cloud 
centers allowing broadly varying service times may have longer waiting time in 
the queue with less chance of acquiring immediate service and hence less utilized 
servers (VMs), in comparison with the equivalent cloud centers which deal with 
fixed types of tasks. Moreover, when we have bigger batch size that will lead to 
more waiting time and hence less utilization of resources and thereby making 
more operational cost for the cloud service provider. 

. 
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