
Int. J. Advance Soft Compu. Appl, Vol. 7, No. 3, November 2015

ISSN 2074-8523

Lightweight Symmetric Encryption Algorithm

In Big Data

Majid Bakhtiari1, Anazida Zainal2, Saeid Bakhtiari2 ,

and Hazinah Kutty Mammi2

1Advanced Informatics School

Universiti Teknologi Malaysia, Kuala Lumpur, Malaysia

e-mail:bakhtiari@utm.my
2Faculty of Computing,

Universiti Teknologi Malaysia, Johor, Malaysia

e-mail: anazida@utm.my, bsaeid3@live.utm.my

and hazinah@utm.my

Abstract

 Comprehensive coverage of network has enabled many applications
to be online. Growth in technology has produced IoT where almost
every gadget is Internet enabled and this has produced massive data.
Many data analytics tools and techniques have been developed to mine
the data and get meaningful information out of it. With this
sophisticated tools, there is a possibility that data are leaked, learned,
tampered and shared beyond anticipation of data owner. Therefore,
security and privacy issue is critical to big data. Due to its
extraordinary scale, traditional encryption algorithms cannot be used
to provide privacy protection in big data environment. Big data
requires efficient encryption and decryption algorithms, encrypted
information retrieval, attribute based encryption to provide data
confidentiality and integrity. The focus of this paper is on data
encryption to protect user privacy in big data environment. We
proposed a symmetric lightweight encryption algorithm for faster
encryption and decryption. The algorithm can support encryption for
multitude of data in huge shared environment like cloud by providing
efficient and fast encryption/decryption processes.

 Keywords: Symmetric Encryption, Lightweight, Big data, Efficient, security,
Fast Encryption.

Majid Bakhtiari et al. 46

1 Introduction

Modern technology has enabled people around the world to be connected and do

online transactions and activities are aided by sensors. Continuously, there is an

increase in the volume and detail of data captured, such as the rise of social media,

Internet of Things (IoT), multimedia, has produced an overwhelming flow of data

in either structured or unstructured format. Data produced from communications,

these transactions and activities happened in every millisecond. Each day, there is

about 2.5 quintillion bytes of data created[1]. Big data is described by its velocity,

volume and its variety. Data comes in stream, huge quantity and it is in different

formats.

Big data is characterized by 3V’s; volume (data are numerous), variety (data cannot

be categorized into regular relational databases and velocity (data are generated,

captured and processed rapidly). The terms, volume, variety and velocity was

introduced by Gartner to describe the characteristics of big data. The term big data

technologies describes a new generation of technologies and architectures, designed

to economically extract value from very large volumes of a wide variety of data, by

enabling high-velocity capture, discovery , and /or analysis[2]. Big data brings the

benefits of providing more opportunities to mine knowledge from this massive data

and therefore, more accurate information can be obtained and predicted. However,

big data has brought with it some security challenges[3][4]. The value of

information is solely depends on authenticity of the data and the success of mining

data will also depends if users are willing to share their data. Sharing the data will

not happen if users are worried that their data can easily be leaked or tampered. In

general, to achieve authenticity and confidentiality, the basic protection mechanism

is signature and encryption[4]. Besides, traditional encryption is not practical to

encrypt massive data because encryption will take a long time to encrypt huge data.

Therefore, it degrades system performance and may affect users’ satisfaction

towards the service provided by data storage (i.e in cloud this is referred as SLA-

service level agreement). Big data requires a fast encryption algorithm as not to

impose lengthy retrieval, processing and storing of data. This paper is focusing on

lightweight encryption that can provide efficient and fast encryption/decryption on

massive data. The rest of the paper is organized as follows. Section 2 presents

related works. Section 3 discusses on our cipher design. Section 4 focuses on cipher

operation. Section 5 evaluates and tests the strength and security of our proposed

lightweight encryption algorithm. Finally section 6 concludes the paper.

2 Related Works in Data Privacy and Cipher Design

To secure massive data from insiders as well as outsiders is a major challenge in

big data. Preventing data leakage during transmission and processing is another

challenging task. Therefore, privacy preserving is among the major concern when

data becomes massive and demand for better processing and storing.

47 Lightweight Symmetric Encryption Algorithm

Wei et al [4] solved the confidentiality and authenticity in big data by proposing a

new identity based generalized signcryption scheme. The scheme offers encryption,

signature and both as big data may require different security services.

The authors claim that the proposed scheme is suitable to be used in big data

environment since it does not have complicated certificate management compared

to traditional cryptographic schemes. Unfortunately the scheme utilizes asymmetric

encryption algorithm. Most of the public key infrastructure encryption algorithms

suffer from lengthy encryption or decryption process. Apparently this is undesirable

when handling massive data. Besides, by adopting Diffie –Hellman key exchange

algorithm, it is susceptible to man-in-the-middle attack. Meanwhile, Cheng et al.[5]

opts for using hash values and argue that encryption and decryption processes are

time consuming and not suitable to be used in big data environment. The authors

claim that their work focuses on protecting the privacy for cloud big data tenant.

The proposed a big data preprocessing model that decompose data into n-parts

according to some criteria (i.e data type). Each part will be hashed. Data parts will

be packed into data blocks then uploaded to the cloud storage centers. These hash

values are used to claim the data parts from the cloud storage. This approach of

protecting the privacy is focusing on just providing data integrity but it doesn’t

provide privacy and it cannot prevent data leakage. Addressing the issue of privacy

from different angle, Shrivastva et al [6] use differential privacy which is a noise

based approach in providing privacy for big data. Differential privacy is defined as

an approach where the probability of output of two different data sets will be nearly

be the same. To create similar output, their approach perturbs the output. The

amount of noise embedded into the output is proportional to the sensitivity level of

the data set. Therefore, adversary cannot determine the targeted data set by any

quasi identifier.

Finally, popular public key cryptographic systems like ECC and RSA suffer from

lengthy encryption process and decryption process respectively.

Meanwhile, Stream ciphers are very popular due to their many attractive features:

they are generally fast, can typically be efficiently implemented in hardware, have

no error propagation, and are particularly suitable for use in environments where

no buffering is available and/or plaintext elements need to be processed

individually. Recent years have witnessed an increase in the research of design and

analysis of stream ciphers, primarily motivated by eSTREAM, the ECRYPT

Stream Cipher Project[7]. eSTREAM was a multi-year project, which started in

2004, and had the objective of selecting a portfolio of promising stream cipher

designs. According to specific applications identified for stream ciphers of

algorithm design, there are classified in two usage portfolio as follows:

i) Profile 1: stream ciphers for software applications with high throughput.

ii) Profile 2: stream ciphers for hardware applications with highly restricted

resources.

Majid Bakhtiari et al. 48

8-bit

128-bit Initial

4 round of merging process

The project received 34 submissions, of which 16 were selected to the final phase[8].

The final portfolio was announced in April 2008, containing eight ciphers; four in

profile 1 and four in profile 2 [9]. However, the portfolio was later revised, due to

new cryptanalytic results [10] against one of the selected ciphers in profile 2

(namely, the F-FSCR-H stream cipher). Despite the end of the eSTREAM project,

the research area of analysis and design of stream ciphers remains active, with

particularly eSTREAM portfolio ciphers continuing to attract much attention of the

cryptographic community [11].

Big data paradigm demands for faster and efficient encryption/decryption process.

Following the trend, this paper is proposing a new lightweight stream cipher. The

algorithm presents a simple and potentially scalable design, and is particularly

suitable for big data environment. In brief, this proposed algorithm takes a 263- bit

secret key and a 128-bit IV (if desired) as input and generates for each iteration an

output block of 32 random bits from a combination of 65 bits of parallel random

number generator. Encryption/decryption is done by XOR the random data with the

plaintext/ciphertext. This following section will discuss on Cipher Design and a

brief overview of the main component (Design criteria, Parallel Random Number

Generator, Substitution box, Initial Vector) will be given.

3 The Proposed Cipher Design

In this section, the main design criteria of lightweight stream cipher is explained.

The major components of the design are; Parallel Random Number Generator,

Substitution Box, Initial Vector and as well as the detail of the cipher specification.

3.1 Design Criteria

This algorithm is designed in two basic stages. There are parallel random number

generator (PRNG) and cascaded substitution boxes. Fig. 1 shows basic diagram of

the proposed algorithm.

7x13-bit LFSR 14x7-bit LFSR 6x11-bit LFSR

�� × ����

 4
0

-

b
it

 2
5

-

b
it

49 Lightweight Symmetric Encryption Algorithm

8-bit

 ��	�
 ��	�
 ��	� ��	� �	�� ��	��

Fig. 1: Basic diagram of lightweight stream cipher algorithm

3.2 Parallel Random Number Generator

This part of the algorithm generates 65 bits stream from one linear feedback shift

register, as shown in Fig 2. It should be noticed that an important advantage of this

kind of LFSR configuration is isolation of each random bit streams from each other.

While in normal LFSR, the sequence length of random stream bit is very close to

each other, which is susceptible to correlation, and algebraic attacks of algorithm.

 ��	��

 … … …

Fig. 2: Parallel Random Number Generator

Equation 1 shows the primitive polynomial equation of Fig 2, which is the main

seed of parallel random number generator.

 ���� = ���� + ���� + 1����� + 1������� + 1�� (1)

3.3 Substitution Box

In this algorithm we implemented a total of 16 S-Boxes as shown in Figure 3. In

fact, all of S-Boxes play a role of ��
�� 	→ ��

��. With consider that each two bit of

output generated by one S-Box and one extra bit (LSB) passed to next S-Box.

Therefore, for each S-Box, four bit directly feed from PRNG. Fig 3 shows the

combination of S-Boxes are put together to generate 32-bit random key stream

vector. Table 1 shows the transfer mapping of each S-Box	��
� 	→ ��

�.

Table 1: Transfer mapping of each S-Box

5-bit Input 3-bit Output

From 00000 to 11111

[07, 02, 01, 06, 04, 00, 03, 05, 00, 07,

06, 01, 05, 03, 02, 04, 03, 00, 04, 05,

07, 02, 06, 01, 00, 07, 01, 06, 05, 04,

02, 03]

 3
2

-b
it

13-bit 7-bit 13-bit 7-bit 11-bit 11-bit

Majid Bakhtiari et al. 50

 65-bit from PRNG

 …..

 …..

 ……
 ��					��					�							�
				� 						�!														�
�				�
�			#$

Fig. 3: The S-Box configuration

3.4 Initial Vector

Stream cipher cryptosystems suffer from key management. It is because most of

stream ciphers use XOR function for encrypting and decrypting. Therefore, if two

massages are encrypted with one secret key, eavesdropper can obtain XOR'ed of

two plain text as shows in Equation 2.

%� 	⊕	%� = �'� ⊕(�� ⊕ �'� ⊕(�� = '� ⊕'� (2)

Therefore, initial vector (IV) and the method of merging it to secret key in stream

ciphering are very important. In this regard, most stream ciphers use two keys to

generate a key-stream sequence. They are secret key and an additional parameter

named the initial value (IV), which generally broadcast in public. The initial vector

is a block of bits that is required to allow one cryptosystem to be executed in several

operational modes to produce a unique key-stream, independent from other key-

streams that are produced by the same secret key, without changing secret key.

However, the size of the IV is important. Usually it depends on the encryption

algorithm in use.

Shannon published the concepts of confusion and diffusion as fundamental

concepts for achieving security in cryptosystems [12]. Confusion is reflected in the

nonlinearity of cryptosystem parts, with notice that the linear systems are generally

easy to break. Diffusion is achieved by ensuring that a small change in the input is

spread out to make a large change in the output. This part of algorithm engaged

with secret key in founds of processing

� − ����

� − ����

� − ���

� − ����!

51 Lightweight Symmetric Encryption Algorithm

3.5 Specification of the Proposed Lightweight Algorithm

This stream cipher algorithm has designed on the base of key variety equal to 2263

and Initial Vector 2128. The encryption/decryption speed is >70 mega bit per second

(mb/s) on normal personal computer. However, it can be increased until 100mb/s if

this algorithm implemented on FPGA. The main structure of algorithm has

designed on two major parts, which are parallel random number generator and

cascaded substitution boxes.

4 Cipher Operation

In this section the key stream generation and initialization process will be described.

4.1 Key Stream Generation

This algorithm generates 32-bit random bit as key stream, in each iteration. In fact

two bits of key stream are generating from one S-Box. Each S-Box is generating 3-

bit which one least significant bit (LSB) is using by next S-Box. In other word, each

5-bit input data for a S-Box are equal to one bit from former S-Box and 4-bit directly

from PRNG.

4.2 Initialization Process

Since the impact of initial vector (IV) is regarded as high, the initialization of the

proposed lightweight algorithm is started with initialization of secret key with the

length of 263-bit and the 128-bit initial vector (IV). The pseudo-code of the

initialization algorithm is shown in Fig 4.

 __

Input-1 : 263-bit of initial Secret Key

Input-2 : 128-bit of Initial Vector

Output : 32-bit key stream

Start of Initialization

1. Divide IV to four 32-bit as IV1, IV2, IV3 and IV4
2. Fill 263-bit of secret key to PRNG
3. Run PRNG 13 clock pulses
4. First 32 bit of PRNG = IV1 ⊕ (32 bits of latest
generated key stream)
5. Second 32 bit of PRNG =IV2 ⊕ (second 32 bits of PRNG)
6. Run PRNG 19 clock pulses.
7. Third 32 bit of PRNG = IV3 ⊕ (32 bits of latest
generated key stream)

Majid Bakhtiari et al. 52

8. Fourth 32 bit of PRNG =IV4 ⊕ (fourth 32 bits of PRNG)
9. Run PRNG 127 clock pulses.
10. Fifth 32 bit of PRNG = IV4 ⊕ (32 bits of latest
generated key stream)
11.Run PRNG 127 clock pulses.

End of Initialization
__

Fig. 4: Initialization Algorithm

5 Security Evaluation and Test

For testing and evaluation, we used two well-known statistical package tests on the

proposed algorithm by generating 100 samples of key streams. There are Diehard

Suite and NIST Suite of statistical tests. These tests have been performed with key

stream size of 108 - byte each, where each one was generated with different secret

key. Afterward, we tested each output of key stream. However, different parts of

algorithm were also tested by correlation immunity test, non-linearity test, algebraic

test and autocorrelation test.

5.1 Statistical Test

The proposed algorithm has successfully passed all the 16 NIST Suite tests.

Furthermore, each of S-Box bit have been tested separately. Table 2 shows the

result of each test.

Table 2: Result of statistical test

Test Name Result

Non-Linearity =12 (Maximum level for 5-

bit)

Correlation Immunity Passed successfully

Algebraic Degree = 4 (Maximum level for 5-bit)

Result of Statistical NIST tests Passed successfully

Confusion and Diffusion test on IV & secret

key

Passed successfully

5.2 Diehart Suite Tests

The algorithm has successfully passed all of Diehard Suite Tests. Diehard suite tests

are the latest cryptography package test which consists of 15 tests proposed by

George Marsaglia/Florida State University.

53 Lightweight Symmetric Encryption Algorithm

5.3 Comparison with Other Stream Ciphers

Some ciphers aim for high speed in software or hardware. The aim of the proposed

algorithm is to provide high security level in comparison with other stream cipher

algorithms in big data environment. Table 3 shows a bigger key length used by the

proposed algorithm, can provide higher security while keeping internal state small.

It is important to note that internal state bit is the number of memory bit cells used

by the algorithm. As much as lower internal state has direct relationship to

processing speed of the algorithm. Meanwhile, the encryption speed of the proposed

algorithm is >70 mb/s in normal PC.

Table 3: Comparison between the proposed algorithm and other well-known stream

cipher algorithms

Algorithm Key Length bit IV Length bit Internal State

A5/1 54 114 64

A5/2 54 114 64

E0 8 ≤ (≤ 128 48 202

RC4 8 < (< 256 24 2064

Grain v1 [13] 80 64 160

Trivium [13] 80 80 288

MICKEY-128 [13] 128 128 320

Grain-128 [14] 128 96 256

HC-128 128 128 N/A

Rabbit 128 64 513

Salsa-20 128 64 512

Sosemanuk 128 128 384

Proposed algorithm 263 128 263

6 Conclusion

Security and privacy issue is important for big data. It’s 3Vs criteria demands a new

encryption algorithm that can provide efficient and fast encryption/decryption

process. This paper has proposed a lightweight stream cipher for big data encryption

which can support >70 mb/s with security of 2263. With this speed, encrypting data

to be transmitted, processing and data at rest in big data environment will provide

seamless data privacy protection. Finally, the proposed lightweight stream cipher

has been tested with the standard testing procedure and it has outperformed other

stream cipher algorithms in terms of security and it is suitable to be used in big data

environment where users are fully confident that data leakage is hardly happen if

not impossible.

Majid Bakhtiari et al. 54

ACKNOWLEDGEMENTS.

The authors would like to express their appreciation for the support of the sponsors

of the Research Grant University (Project Vot No. PY/2014/03207) entitled

“Copyright Protection of Digital Campus” from the Ministry of Education,

Malaysia and Universiti Teknologi Malaysia, managed by the Research

Management Center, Universiti Teknologi Malaysia.

We would also like to express our gratitude to the editor and anonymous reviewers

who reviewed this paper.

References

[1] Cloud Security Alliance (CSA) 2012. Top Ten Big Data Security and Provacy

Challenges.https://downloads.cloudsecurityalliance.org/initiatives/bdwg/Big_

Data_Top_Ten_v1.pdf

[2] Cavoukian, A. and Jonas, J. 2012. Privacy by Design in the Age of Big Data.

https://privacybydesign.ca/content/uploads/2012/06/pbd-big_data.pdf

[3] Indrajit, R, Srinath, T, V,S, Kilzer, A, Shmatikov, V, and Witchel, E. 2010.

Airavat: Security and Privacy for Mapreduce. NSDI, 297-312

[4] Wei, G., Shao, J., Xiang, Y. Zhu, P. and Lu, R. 2015. Obtain Confidentiality

or/and Authenticity in Big Data by ID-based Generalized Signcryption.

Information Sciences.Vol. 318,11-122

[5] Cheng, H., Wang, W. and Rong, C. 2014. Privacy Protection Beyond

Encryption for Cloud Big Data. IEEE 2nd International Conference on

Information Technology and Electronic Commerce (ICITEC 2014) Dalian,

China.188-191.

[6] Shrivasta, K., M., Rizvi, M., A. and Singh, S. 2014. Big Data Privacy based on

Differential Provacy a Hope for Big Data. IEEE 6th International Conference

on Computational Intelligence and Communication Networks. 776-781.

[7] Smart, N. 2010. ECRYPT II yearly report on algorithms and keysizes (2009-

2010). Framework, www.ecrypt.eu.org/documents/D.SPA.13.pdf

[8] Robshaw, M. and Billet, O. 2008. New stream cipher designs: the eSTREAM

finalists, Springer-Verlag New York Inc

[9] Babbage S.and Dodd, M. 2008 The MICKEY Stream Ciphers. In New Stream

Cipher Designs: The eSTREAM Finalists, number 4986 in LNCS, Berlin,

Heidelberg. Springer-Verlag. 191-209

[10]Hell, M. and Johansson, T. 2008. Breaking the F-FCSR-H stream cipher in real

time. Advances in Cryptology-ASIACRYPT 2008, 557-569.

[11]Cid, C. and Robshaw, M. 2009. The eSTREAM portfolio 2009 annual update,

eSTREAM, ECRYPT Stream Cipher Project, Tech. Rep., Jul 2009.

55 Lightweight Symmetric Encryption Algorithm

[12]Cusick, T. W. and Stănică, P. 2009. Cryptographic Boolean functions and

applications, Academic Press.

[13]Gaj, K., Southern, G. and Bachimanchi, R. 2009. Comparison of hardware

performance of selected Phase II eSTREAM candidates, eSTREAM, ECRYPT

Stream Cipher Project, Report (2007)

[14]Hwang, D., Chaney, M., Karanam, S., Ton, N., and Gaj, K. 2008. Comparison

of FPGA targeted hardware implementations of eSTREAM stream cipher

candidates. The State of the Art of Stream Ciphers, 151–162.

