

Int. J. Advance Soft Compu. Appl, Vol. 7, No. 3, November 2015

ISSN 2074-8523

Predicting the Relevance of Search Results

for E-Commerce Systems

Mohammed Zuhair Al-Taie
1
, Siti Mariyam Shamsuddin

1
, and

 Joel Pinho Lucas
2

1
UTM Big Data Centre

Universiti Teknologi Malaysia (UTM),

Skudai, 81310 Johor, Malaysia

e-mail: mza004@live.aul.edu.lb, mariyam@utm.my

2
Tail Target

Av. Pedroso de Morais, 1619 - Pinheiros,

 São Paulo - SP, 05419-001, Brazil

e-mail: joelpl@gmail.com

Abstract

 Search engines (e.g. Google.com, Yahoo.com, and Bing.com) have
become the dominant model of online search. Large and small e-
commerce provide built-in search capability to their visitors to examine
the products they have. While most large business are able to hire the
necessary skills to build advanced search engines, small online
business still lack the ability to evaluate the results of their search
engines, which means losing the opportunity to compete with larger
business. The purpose of this paper is to build an open-source model
that can measure the relevance of search results for online businesses
as well as the accuracy of their underlined algorithms. We used data
from a Kaggle.com competition in order to show our model running on
real data.

Keywords: CrowdFlower, E-Commerce, Kaggle Competition, Random
Forest, Relevance Prediction, Scikit-learn, Support Vector Machines.

1 Introduction

In this work, we show the use of machine-learning algorithms, as well as the use

and implementation of preprocessing methods, applied to the prediction of text

search relevance. For this purpose, the paper describes first some basic concepts

about data preprocessing and text retrieval. In this context, some properties of tf-

idf are described next. Then, we describe the dataset used for this study (from

Mohammed Zuhair Al-Taie et al. 86

CrowdFlower) as well as some proposal and hypothesis for data preprocessing

towards feature extraction. Afterwards, we describe the application of two

machine-learning algorithms on the processed data. Finally, on the last section, we

show benchmark results we obtained on running four combinations of feature

extraction methods and machine-learning algorithms.

2 Data Preprocessing

Data preprocessing usually consists of four steps: data cleaning (a.k.a. data

cleansing or scrubbing) which aims at removing noise, filling missing values and

correcting inconsistencies in data. This step also involves the identification and

removal of outliers [1]. Data integration seeks to combine data from varied and

different sources into coherent data storage. This task is not simple and requires

matching the schema from different sources. However, data from CrowdFlower is

already integrated in a single dataset. Thus, in this study we will not perform data

integration. Data transformation aims at converting data to a more appropriate

form. The goal is to have more efficient data mining operations by making the

data more understandable [1]. Finally, data reduction aims at reducing the size of

data while minimizing any possible loss of information.

3 Text Retrieval Systems

Text retrieval involves retrieving the documents that contain particular keywords

for a given query [3]. Strings are traditionally known as consisting of a series of

characters. Given a string T=t1 t2…tn, and a particular keyword pattern P=p1

p2…pm, the goal is to verify whether P is a substring of T.

Pattern matching can be applied in two ways: forward pattern matching, where the

text and pattern are matched in the forward direction; and backward pattern

matching, where the matching process is done from right to left.

3.1 TF-IDF

Term Frequency-Inverse Document Frequency (TF-IDF) [4] is basically a

combination of two earlier methods: Term Frequency (TF) and Inverse Document

Frequency (IDF). �� − ��� produces a weight for each term fi in each document

dj, as defined in Eq. 1:

 �� − ������ , �	
 = ���	 ∗ ���	(��)

The �� measure is one of the earliest term selection methods. It assumes that

documents using similar words should belong to the same topic. While it

considers the very frequent terms that are normally distributed across different

topics, it looks at the very rare terms, stop words, and uninformative words as

should be ignored. �� is defined as in Eq. 2:

 (1)

87 Predicting the Relevance of Search

 ��(��) = ∑ ���		∈���

where ��� is the documents that contain ��, and ���	 is the frequency of �� in

document �.
On the other hand, ��� measures the weight of terms by assigning high values to

the rare terms and low values to the highly frequent terms across all documents. It

was designed to deal with the shortcomings associated with the implementation of

��, which assigns the same weight to all selected terms. This means that

distinguishing between frequent words appearing in a small set of documents is

not possible, even if the terms have discriminative power. ��� is defined as in Eq.

3:

���(��) = ��� |�|
�����

where |D|	is the total number of documents and �D� � is the number of documents

that have the term ��.
In this way, �� − ��� gives greater values to the terms that occur frequently only

in a small set of documents, and gives lower values to the terms that occur in

more documents. In this way, the higher the term frequency of a document is, the

lower its t� − ��� is.

4 The CrowdFlower Dataset

Having the right data to apply analysis has been always an issue for researchers

who want to test their algorithms.

Kaggle.com provides avenue for researchers and companies to present their data.

Statisticians and data miners can experiment their approaches and compete against

each other in order produce the best machine learning models. Submissions from

participants are scored immediately for most competitions based on a hidden test

dataset. Finally, the competition hosts give the winners compensation, which can

be money, job vacancies or knowledge.

The dataset used in this study has been hosted by CrowdFlower, which is a data

mining, data enriching and crowdsourcing company. CrowdFlower created its

dataset with the help of its crowd who rated a list of products from a handle of

ecommerce websites on a scale from 1 to 4, where 4 indicates the product

completely satisfied the search query (it was the product the user was looking for)

or 1 to indicate that the result did not match the query search (irrelevant content

for the user). CrowdFlower generated 261 search terms for this goal.

The dataset originally encompassed six attributes: id, query text, product title,

product description, median relevance and relevance variance of the query. The

train file that was made available by CrowdFlower contains 10,158 rows in total.

 (2)

 (3)

Mohammed Zuhair Al-Taie et al. 88

For this challenge, CrowdFlower also provided a test file containing another

portion of data with the same attributes, except the attributes related to the query

relevance, which is the label attribute to be predicted.

Since the provided dataset is raw and has some noise, it was necessary to apply

data preprocessing, which included removing undesired content to improve data

quality and make it ready for mining and analysis. If any of the data preprocessing

phases is not properly handled, machine-learning algorithms will result in

inaccurate predictions or even will not run.

5 Data Cleaning and Transformation

At this point, the CrowdFlower dataset described in last section is just an amount

of raw tuples related to text queries and product descriptions. In this way, we need

to pre-process the data in order to extract some value and then transform it to

provide an input for some machine learning algorithms.

To this end, the first task to be accomplished is feature extraction. We need to

transform raw text search attributes in valuable features for running in machine

learning algorithms.

Subsequently, we describe, with the use of two methods, how we extracted some

features from the dataset.

5.1 Word Match Counting

As the dataset encompasses text attributes related to textual searches, the first and

most straightforward method to extract feature is counting how many words, in

each text search, match the product title and product description. In this way, we

are able to acquire two numerical features for this study.

In order to implement word match counting, we took in advantage facilities and

expressiveness of the Python language, along with some widely employed built-in

packages for data manipulation, such as NumPy [7] and SciPy [8]. In this way, we

firstly extracted word tokens from text (i.e.: splitting text by spaces). Secondly,

we removed non-alphanumeric characters from text. Words with just one or two

characters (mostly articles and prepositions) were also removed. Afterwards, we

transformed each list of words (from search text attributes) in an array and, then,

Numpy methods were applied for intersecting the search word vector with product

title and product description vectors, respectively. At this point we simply counted

how many words remained in each intersection. As described below,

S={t1,t2,…,tn} is the search words (terms) vector, D={t1,t2,…,tn} the product

description words vector and T={t1,t2,…,tn} the product title words vector,

respectively:

Feature1 = count (T ⊂ S)

Feature2 = count (D ⊂ S)
 (4)

89 Predicting the Relevance of Search

 At this point, we have got Feature1 and Feature2, which will be the features we

are going to use as input for machine learning algorithms.

5.2 Improving Word Match counting with tf-idf

Since t� − ��� weight-based algorithms are broadly employed by e-commerce

and publishing companies (such as Google and Yahoo) for text retrieval and

searching, we decided to make use of it for enhancing the expressiveness of two

features we acquired so far. In this way, instead of simply expressing numeric

values related to the number of word intersections, now we can express such

intersections taking into account word weights.

In order to acquire word weights we used the TfidfVectorizer class available in

scikit-learn Python package. scikit-learn [5] is a machine learning library for

Python to serve different purposes such as classification, regression and

clustering. Examples of incorporated algorithms include Naïve Bayes, Support

Vector Machines, Logistic regression, k-means and DBSCAN. The project started

in 2007 as a Google Summer of Code project, and was maintained later by a

number of volunteers. It is an easy to use bundle of tools, and has a rich and well-

organized documentation [6]. The library is largely written in Python and is

designed particularly to work with NumPy and SciPy libraries.

Thus, we only need to provide the text as input and then we can make use of the

attributes from this class, including idf weights. For calculating such weights from

words, stop words are ignored, which means that irrelevant words for searching,

such as articles, prepositions and pronouns, are ignored.

Now features we extracted are much more expressive, since they take into account

weights of word terms, where higher weights are related to rare terms and lower

weights are related to high frequent terms across all documents.

Feature values are now the sum of all intersection word weights. Instead of merely

using a string to represent words in vectors, now we use Python dictionary to

represent words along with their weights, where words are the keys and weights

are the values in dictionaries. In this way, we have a search dictionary

Sdict={t1→w1, t2→w2, …, tn→wn}, a product description words dictionary

Ddict={t1→w1, t2→w2, …, tn→wn}, and a product title words dictionary

Tdict={t1→w1,t2→w2,…,tn→wn}. We may also represent, as vectors, the keys from

dictonary: Skeys={tk1, tk2, …, tkn}. Thus, features are calculated as follows:

Feature1 = sum(values(Tkeys ⊂ Skeys))

Feature2 = sum(values(Dkeys ⊂ Skeys))

 (5)

Mohammed Zuhair Al-Taie et al. 90

6 Data Analysis and Prediction using Machine Learning

After acquiring the two new features described previously, we are now able to

apply machine-learning algorithms. The main goal with CrowdFlower data is to

predict the relevance of search queries. In this way, the label attribute for this

study will be the median relevance of the search.

In this context, we first tried to predict the values of median relevance from

CrowdFlower test set rows employing the (SVM) Support Vector Machine [9]

implementation from scikit-learn. SVMs are also called Support Vector Networks

and consist of a supervised learning algorithm, which is based on the concept of

decision hyper plane defining decision boundaries. Thus, SVMs take labeled

training data and output an optimal hyper plane categorizing new (text) examples.

As SVM is a simple and straightforward algorithm, we also tried CrowdFlower

data with a more sophisticated algorithm. In this way, we chose an ensemble

learning method that is largely employed in machine learning and scikit-learn user

communities: the Random Forest, which was developed by Breiman [10] and

Cutler [11]. Random Forests combine bootstrap aggregating and random selection

of features in order to build a set of decision trees with controlled variance. In

other words, each decision tree is constructed by using a random subset of the

training data. In this way, a random forest fits a set of decision tree classifiers on

multiple sub-samples of the data and then uses averaging to control over-fitting

and enhance accuracy.

Applying both SVM and Random Forests is a straightforward task in Python

using scikit-learn as both algorithms share a common named functions for

training. Thus, after acquiring the training data, and storing it properly in data

frame, learning in scikit-learn should be taken in three simple steps: initializing

the model, fitting it to the training data, and predicting new values. At this

moment, we store the train set provided by CrowdFlower, but using our extracted

features, in a data frame and provide it as input for both algorithms. After

initializing and fitting train data, we can now predict the label attribute (search

terms median relevance). It is important to highlight that both algorithms only

work with numeric feature. Such scenarios satisfy completely the features we

extracted in this study.

Both implementations (feature extraction and machine learning algorithms use in

the scope of CrowdFlower data) are public and freely available in a Github

repository[1].

6.1 Learning Models Benchmark

In this section we describe the resulted scores we obtained running the four

combination methods we applied: SVM with word match counting based features,

SVM with tf-idf based features, Random Forest with word match counting based

91 Predicting the Relevance of Search

 features and, Random Forest with tf-idf based features. Bellow, on table 1, we

show the scores obtained when submitting, for the Kaggle platform, the

CrowdFlower test set filled with their respective predicted median relevance

values (label attribute).

Table 1: Achieved Scores

 Match Counting tf-idf

SVM 0.51241 0.57654

Random Forest 0.53834 0.59211

As shown on table 1, the best score was obtained with Random Forest with tf-idf

based features. We can also notice that Random Forest obtained better score than

SVM and, conversely, that tf-idf obtained better results than word match counting

based features. However, the impact of applying tf-idf on preprocessing was

substantially higher than Random Forest over SVM.

7 Big Data Implementation Concerns

In spite of the CrowdFlower dataset being small, we could so far demonstrate and

reproduce learning approaches that can be applied similarly in much bigger

datasets. Moreover, numerous big data approaches are tested and demonstrated on

small data before scale, since it is much cheaper, easy to retest and feasible to run

algorithms several times. Nevertheless, some considerations need to be stated

relatively to scalability.

Firstly, in the preprocessing point of view, we need to scale out (i.e.: adding more

hardware as needed) the proposed methods. For merely counting word matches,

the strategy is simple and straightforward, since we only need to equally distribute

rows data to be processed across multiple machines. This positive scenario exists

because word matches are identified and counted locally, separately in each row.

On the other hand, tf-idf cannot be run locally in each row, since it needs to

calculate, for each word, the total frequency among all rows. In this context, we

would probably need to develop a tf-idf implementation out of the scikit-learn

package, but still making use of NumPy and SciPy packages facilities. Moreover,

in order to scale out, counting word frequencies on the top of a map-reduce

paradigm is straightforward. In this context, mappers emit, for each word, a pair

of words and the number 1 (i.e.: <word,1>). Subsequently, reducers take as input

mappers output with the same key (word) and sum up their values (in this case,

number one) in order to output a pair <word, count> representing a word

frequency pair among all rows.

From the point of view of the applied machine learning algorithms, Random

Forests are more sensible for big data as two common problems are associated

with decision tree implementation with large databases: first, the very large

Mohammed Zuhair Al-Taie et al. 92

number of candidate splitting conditions, and second the recursive nature of the

algorithm [12]. However, for both SVM and Random Forests we are able to train

an effective model using only a representative part of the dataset. In this way, the

challenge here is to find a representative portion of data. It may be chosen

randomly, or filtering rows according to given criteria over row attributes or even

combining both strategies.

8 Conclusion

In this paper, we were able to show the whole cycle and steps for performing a

data analysis on real world data, from data preprocessing until feature prediction.

Moreover, as described on the last section, such approaches can be effectively

applied on large datasets conversely.

Throughout this study, we could testify scikit-learn package, as well as other

built-in Python packages, saves substantial development time. With our

benchmark on CrowdFlower test set, we could attest that Random Forest is an

efficient machine-learning algorithm. It shown better accuracy compared to a

simple SVM implementation. This, in part, is due to the ensemble nature of

Random Forest, which allows multiple learning algorithms to be run. Beside this

fact, the nature of the dataset is also another reason for SVM disadvantage, since

such algorithm is likely to provider poorer performances when the number of

features is much greater than the number of samples. This was exactly the

configuration of the CrowdFlower dataset.

Finally, we could also testify that the preprocessing step is crucial for the whole

data analysis. It also consumes most of the time and implementation efforts

needed on the whole analysis. Moreover, our study also shown that preprocessing

may be more critical for precision than the machine-learning algorithm itself,

since SVM combined with tf-idf have shown higher score than Radom Forest

combined with word matches counting.

In this way, we can argue that employing tf-idf for preprocessing features and,

subsequently, employing Random Forest is a powerful and effective approach for

predicting, and measuring, the relevance of text search in e-commerce scenarios.

Such approach suits entirely this kind of needs even for small e-commerce

businesses emerged in big data necessities.

ACKNOWLEDGEMENTS
This work is supported by Universiti Teknologi Malaysia under the Flagship

Project: UTM E-Learning Big Data Analytics. The authors would like to thanks

Research Management Centre (RMC), Universiti Teknologi Malaysia (UTM) for

the support in R & D, and Soft Computing Research Group (SCRG) for the

inspiration in making the study a success. The authors would also like to thank the

anonymous reviewers who have contributed enormously to this work.

93 Predicting the Relevance of Search

 References

[1] Han, J., et al. (2006). Data mining, southeast Asia edition: Concepts and

techniques, Morgan Kaufmann.

[2] García, S., et al. (2015). Data Preprocessing in Data Mining, Springer.

[3] Melichar, B., et al. (2005). "Text searching algorithms." Available

on:http://stringology.org/athens.

[4] Luhn, H. P. (1957). "A statistical approach to mechanized encoding and

searching of literary information." IBM Journal of research and

development 1(4): 309-317.

[5] Pedregosa, F., et al. (2011). "Scikit-learn: Machine learning in Python."

The Journal of Machine Learning Research 12: 2825-2830.

[6] Bressert, E. (2012). SciPy and NumPy: An Overview for Developers,"

O'Reilly Media, Inc.".

[7] Walt, S.; Colbert, S. C.; Varoquaux, G. The NumPy Array: A Structure for

Efficient Numerical Computation, Computing in Science &

Engineering, 13, 22-30 (2011), DOI:10.1109/MCSE.2011.37

[8] Jones, E.; Oliphant, E.; Peterson, P., et al. SciPy: Open Source Scientific

Tools for Python, 2001-, http://www.scipy.org/

[9] Cortes, C.; Vapnik, V. (1995). Support-vector networks. Machine Learning

20 (3): 273

[10] Breiman, Leo (2001). Random Forests. Machine Learning 45 (1): 5–32.

DOI:10.1023/A:1010933404324

[11] Cutler, A.; Cutler, D. R; Stevens, J. R. (2012). Random Forests. Ensemble

Machine Learning. 157-175. Springer US

[12] Aggarwal, C. C. (2014). Data classification: algorithms and applications,

CRC Press.

