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Abstract 

 Search engines (e.g. Google.com, Yahoo.com, and Bing.com) have 
become the dominant model of online search. Large and small e-
commerce provide built-in search capability to their visitors to examine 
the products they have. While most large business are able to hire the 
necessary skills to build advanced search engines, small online 
business still lack the ability to evaluate the results of their search 
engines, which means losing the opportunity to compete with larger 
business. The purpose of this paper is to build an open-source model 
that can measure the relevance of search results for online businesses 
as well as the accuracy of their underlined algorithms. We used data 
from a Kaggle.com competition in order to show our model running on 
real data. 

Keywords: CrowdFlower, E-Commerce, Kaggle Competition, Random 
Forest, Relevance Prediction, Scikit-learn, Support Vector Machines.  

1       Introduction 

In this work, we show the use of machine-learning algorithms, as well as the use 

and implementation of preprocessing methods, applied to the prediction of text 

search relevance. For this purpose, the paper describes first some basic concepts 

about data preprocessing and text retrieval. In this context, some properties of tf-

idf are described next. Then, we describe the dataset used for this study (from 
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CrowdFlower) as well as some proposal and hypothesis for data preprocessing 

towards feature extraction. Afterwards, we describe the application of two 

machine-learning algorithms on the processed data. Finally, on the last section, we 

show benchmark results we obtained on running four combinations of feature 

extraction methods and machine-learning algorithms. 

2      Data Preprocessing  

Data preprocessing usually consists of four steps: data cleaning (a.k.a. data 

cleansing or scrubbing) which aims at removing noise, filling missing values and 

correcting inconsistencies in data. This step also involves the identification and 

removal of outliers [1]. Data integration seeks to combine data from varied and 

different sources into coherent data storage. This task is not simple and requires 

matching the schema from different sources. However, data from CrowdFlower is 

already integrated in a single dataset. Thus, in this study we will not perform data 

integration. Data transformation aims at converting data to a more appropriate 

form. The goal is to have more efficient data mining operations by making the 

data more understandable [1]. Finally, data reduction aims at reducing the size of 

data while minimizing any possible loss of information. 

3      Text Retrieval Systems 

Text retrieval involves retrieving the documents that contain particular keywords 

for a given query [3]. Strings are traditionally known as consisting of a series of 

characters. Given a string T=t1 t2…tn, and a particular keyword pattern P=p1 

p2…pm, the goal is to verify whether P is a substring of T. 

Pattern matching can be applied in two ways: forward pattern matching, where the 

text and pattern are matched in the forward direction; and backward pattern 

matching, where the matching process is done from right to left. 

3.1      TF-IDF 

Term Frequency-Inverse Document Frequency (TF-IDF) [4] is basically a 

combination of two earlier methods: Term Frequency (TF) and Inverse Document 

Frequency (IDF). �� − ��� produces a weight for each term fi in each document 

dj, as defined in Eq. 1: 

      �� − ������ , �	
 = ���	 ∗ ���	(��)
                  

 

The �� measure is one of the earliest term selection methods. It assumes that 

documents using similar words should belong to the same topic. While it 

considers the very frequent terms that are normally distributed across different 

topics, it looks at the very rare terms, stop words, and uninformative words as 

should be ignored. �� is defined as in Eq. 2: 

 (1) 
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 ��(��) = ∑ ���		∈���
 

where ��� is the documents that contain ��, and ���	 is the frequency of �� in 

document �.  
On the other hand, ��� measures the weight of terms by assigning high values to 

the rare terms and low values to the highly frequent terms across all documents. It 

was designed to deal with the shortcomings associated with the implementation of 

��, which assigns the same weight to all selected terms. This means that 

distinguishing between frequent words appearing in a small set of documents is 

not possible, even if the terms have discriminative power. ��� is defined as in Eq. 

3: 

���(��) = ��� |�|
�����

   

where |D|	is the total number of documents and �D� � is the number of documents 

that have the term ��. 
In this way, �� − ��� gives greater values to the terms that occur frequently only 

in a small set of documents, and gives lower values to the terms that occur in 

more documents. In this way, the higher the term frequency of a document is, the 

lower its t� − ��� is. 

4      The CrowdFlower Dataset 

Having the right data to apply analysis has been always an issue for researchers 

who want to test their algorithms.  

Kaggle.com provides avenue for researchers and companies to present their data. 

Statisticians and data miners can experiment their approaches and compete against 

each other in order produce the best machine learning models. Submissions from 

participants are scored immediately for most competitions based on a hidden test 

dataset. Finally, the competition hosts give the winners compensation, which can 

be money, job vacancies or knowledge.  

The dataset used in this study has been hosted by CrowdFlower, which is a data 

mining, data enriching and crowdsourcing company. CrowdFlower created its 

dataset with the help of its crowd who rated a list of products from a handle of 

ecommerce websites on a scale from 1 to 4, where 4 indicates the product 

completely satisfied the search query (it was the product the user was looking for) 

or 1 to indicate that the result did not match the query search (irrelevant content 

for the user). CrowdFlower generated 261 search terms for this goal. 

The dataset originally encompassed six attributes: id, query text, product title, 

product description, median relevance and relevance variance of the query. The 

train file that was made available by CrowdFlower contains 10,158 rows in total. 

 (2) 
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For this challenge, CrowdFlower also provided a test file containing another 

portion of data with the same attributes, except the attributes related to the query 

relevance, which is the label attribute to be predicted. 

Since the provided dataset is raw and has some noise, it was necessary to apply 

data preprocessing, which included removing undesired content to improve data 

quality and make it ready for mining and analysis. If any of the data preprocessing 

phases is not properly handled, machine-learning algorithms will result in 

inaccurate predictions or even will not run. 

5      Data Cleaning and Transformation 

At this point, the CrowdFlower dataset described in last section is just an amount 

of raw tuples related to text queries and product descriptions. In this way, we need 

to pre-process the data in order to extract some value and then transform it to 

provide an input for some machine learning algorithms. 

To this end, the first task to be accomplished is feature extraction. We need to 

transform raw text search attributes in valuable features for running in machine 

learning algorithms.  

Subsequently, we describe, with the use of two methods, how we extracted some 

features from the dataset. 

5.1      Word Match Counting  

As the dataset encompasses text attributes related to textual searches, the first and 

most straightforward method to extract feature is counting how many words, in 

each text search, match the product title and product description. In this way, we 

are able to acquire two numerical features for this study.  

In order to implement word match counting, we took in advantage facilities and 

expressiveness of the Python language, along with some widely employed built-in 

packages for data manipulation, such as NumPy [7] and SciPy [8]. In this way, we 

firstly extracted word tokens from text (i.e.: splitting text by spaces). Secondly, 

we removed non-alphanumeric characters from text. Words with just one or two 

characters (mostly articles and prepositions) were also removed. Afterwards, we 

transformed each list of words (from search text attributes) in an array and, then, 

Numpy methods were applied for intersecting the search word vector with product 

title and product description vectors, respectively. At this point we simply counted 

how many words remained in each intersection. As described below, 

S={t1,t2,…,tn} is the search words (terms) vector, D={t1,t2,…,tn} the product 

description words vector and T={t1,t2,…,tn} the product title words vector, 

respectively: 

Feature1 = count (T ⊂ S) 

Feature2  = count (D ⊂ S) 
 (4) 
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 At this point, we have got Feature1 and Feature2, which will be the features we 

are going to use as input for machine learning algorithms. 

5.2      Improving Word Match counting with tf-idf 

Since t� − ��� weight-based algorithms are broadly employed by e-commerce 

and publishing companies (such as Google and Yahoo) for text retrieval and 

searching, we decided to make use of it for enhancing the expressiveness of two 

features we acquired so far. In this way, instead of simply expressing numeric 

values related to the number of word intersections, now we can express such 

intersections taking into account word weights.  

In order to acquire word weights we used the TfidfVectorizer class available in 

scikit-learn Python package. scikit-learn [5] is a machine learning library for 

Python to serve different purposes such as classification, regression and 

clustering. Examples of incorporated algorithms include Naïve Bayes, Support 

Vector Machines, Logistic regression, k-means and DBSCAN. The project started 

in 2007 as a Google Summer of Code project, and was maintained later by a 

number of volunteers. It is an easy to use bundle of tools, and has a rich and well-

organized documentation [6]. The library is largely written in Python and is 

designed particularly to work with NumPy and SciPy libraries. 

Thus, we only need to provide the text as input and then we can make use of the 

attributes from this class, including idf weights. For calculating such weights from 

words, stop words are ignored, which means that irrelevant words for searching, 

such as articles, prepositions and pronouns, are ignored. 

Now features we extracted are much more expressive, since they take into account 

weights of word terms, where higher weights are related to rare terms and lower 

weights are related to high frequent terms across all documents. 

Feature values are now the sum of all intersection word weights. Instead of merely 

using a string to represent words in vectors, now we use Python dictionary to 

represent words along with their weights, where words are the keys and weights 

are the values in dictionaries. In this way, we have a search dictionary 

Sdict={t1→w1, t2→w2, …, tn→wn}, a product description words dictionary 

Ddict={t1→w1, t2→w2, …, tn→wn}, and a product title words dictionary 

Tdict={t1→w1,t2→w2,…,tn→wn}. We may also represent, as vectors, the keys from 

dictonary: Skeys={tk1, tk2, …, tkn}. Thus, features are calculated as follows: 

 

Feature1 = sum(values(Tkeys ⊂ Skeys)) 

Feature2 = sum(values(Dkeys ⊂ Skeys)) 

 

 

 (5) 
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6   Data Analysis and Prediction using Machine Learning 

After acquiring the two new features described previously, we are now able to 

apply machine-learning algorithms. The main goal with CrowdFlower data is to 

predict the relevance of search queries. In this way, the label attribute for this 

study will be the median relevance of the search.  

In this context, we first tried to predict the values of median relevance from 

CrowdFlower test set rows employing the (SVM) Support Vector Machine [9] 

implementation from scikit-learn. SVMs are also called Support Vector Networks 

and consist of a supervised learning algorithm, which is based on the concept of 

decision hyper plane defining decision boundaries. Thus, SVMs take labeled 

training data and output an optimal hyper plane categorizing new (text) examples.  

As SVM is a simple and straightforward algorithm, we also tried CrowdFlower 

data with a more sophisticated algorithm. In this way, we chose an ensemble 

learning method that is largely employed in machine learning and scikit-learn user 

communities: the Random Forest, which was developed by Breiman [10] and 

Cutler [11]. Random Forests combine bootstrap aggregating and random selection 

of features in order to build a set of decision trees with controlled variance. In 

other words, each decision tree is constructed by using a random subset of the 

training data. In this way, a random forest fits a set of decision tree classifiers on 

multiple sub-samples of the data and then uses averaging to control over-fitting 

and enhance accuracy.  

Applying both SVM and Random Forests is a straightforward task in Python 

using scikit-learn as both algorithms share a common named functions for 

training. Thus, after acquiring the training data, and storing it properly in data 

frame, learning in scikit-learn should be taken in three simple steps: initializing 

the model, fitting it to the training data, and predicting new values. At this 

moment, we store the train set provided by CrowdFlower, but using our extracted 

features, in a data frame and provide it as input for both algorithms. After 

initializing and fitting train data, we can now predict the label attribute (search 

terms median relevance). It is important to highlight that both algorithms only 

work with numeric feature. Such scenarios satisfy completely the features we 

extracted in this study. 

Both implementations (feature extraction and machine learning algorithms use in 

the scope of CrowdFlower data) are public and freely available in a Github 

repository[1]. 

6.1 Learning Models Benchmark 

In this section we describe the resulted scores we obtained running the four 

combination methods we applied: SVM with word match counting based features, 

SVM with tf-idf based features, Random Forest with word match counting based 
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 features and, Random Forest with tf-idf based features. Bellow, on table 1, we 

show the scores obtained when submitting, for the Kaggle platform, the 

CrowdFlower test set filled with their respective predicted median relevance 

values (label attribute). 

Table 1: Achieved Scores 

 Match Counting tf-idf 

SVM 0.51241 0.57654 

Random Forest 0.53834 0.59211 

As shown on table 1, the best score was obtained with Random Forest with tf-idf 

based features. We can also notice that Random Forest obtained better score than 

SVM and, conversely, that tf-idf obtained better results than word match counting 

based features. However, the impact of applying tf-idf on preprocessing was 

substantially higher than Random Forest over SVM. 

7      Big Data Implementation Concerns 

In spite of the CrowdFlower dataset being small, we could so far demonstrate and 

reproduce learning approaches that can be applied similarly in much bigger 

datasets. Moreover, numerous big data approaches are tested and demonstrated on 

small data before scale, since it is much cheaper, easy to retest and feasible to run 

algorithms several times. Nevertheless, some considerations need to be stated 

relatively to scalability.  

Firstly, in the preprocessing point of view, we need to scale out (i.e.: adding more 

hardware as needed) the proposed methods. For merely counting word matches, 

the strategy is simple and straightforward, since we only need to equally distribute 

rows data to be processed across multiple machines. This positive scenario exists 

because word matches are identified and counted locally, separately in each row.  

On the other hand, tf-idf cannot be run locally in each row, since it needs to 

calculate, for each word, the total frequency among all rows. In this context, we 

would probably need to develop a tf-idf implementation out of the scikit-learn 

package, but still making use of NumPy and SciPy packages facilities. Moreover, 

in order to scale out, counting word frequencies on the top of a map-reduce 

paradigm is straightforward. In this context, mappers emit, for each word, a pair 

of words and the number 1 (i.e.: <word,1>). Subsequently, reducers take as input 

mappers output with the same key (word) and sum up their values (in this case, 

number one) in order to output a pair <word, count> representing a word 

frequency pair among all rows.  

From the point of view of the applied machine learning algorithms, Random 

Forests are more sensible for big data as two common problems are associated 

with decision tree implementation with large databases: first, the very large 
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number of candidate splitting conditions, and second the recursive nature of the 

algorithm [12]. However, for both SVM and Random Forests we are able to train 

an effective model using only a representative part of the dataset. In this way, the 

challenge here is to find a representative portion of data. It may be chosen 

randomly, or filtering rows according to given criteria over row attributes or even 

combining both strategies. 

8      Conclusion 

In this paper, we were able to show the whole cycle and steps for performing a 

data analysis on real world data, from data preprocessing until feature prediction. 

Moreover, as described on the last section, such approaches can be effectively 

applied on large datasets conversely.  

Throughout this study, we could testify scikit-learn package, as well as other 

built-in Python packages, saves substantial development time. With our 

benchmark on CrowdFlower test set, we could attest that Random Forest is an 

efficient machine-learning algorithm. It shown better accuracy compared to a 

simple SVM implementation. This, in part, is due to the ensemble nature of 

Random Forest, which allows multiple learning algorithms to be run. Beside this 

fact, the nature of the dataset is also another reason for SVM disadvantage, since 

such algorithm is likely to provider poorer performances when the number of 

features is much greater than the number of samples. This was exactly the 

configuration of the CrowdFlower dataset. 

Finally, we could also testify that the preprocessing step is crucial for the whole 

data analysis. It also consumes most of the time and implementation efforts 

needed on the whole analysis. Moreover, our study also shown that preprocessing 

may be more critical for precision than the machine-learning algorithm itself, 

since SVM combined with tf-idf have shown higher score than Radom Forest 

combined with word matches counting.  

In this way, we can argue that employing tf-idf for preprocessing features and, 

subsequently, employing Random Forest is a powerful and effective approach for 

predicting, and measuring, the relevance of text search in e-commerce scenarios. 

Such approach suits entirely this kind of needs even for small e-commerce 

businesses emerged in big data necessities. 
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