
Int. J. Advance Soft Compu. Appl, Vol. 8, No. 2, July 2016

ISSN 2074-8523

A Modified Bee Colony Optimization with

Local Search Approach for Job Shop

Scheduling Problems Relevant to Bottleneck

Machines

Wai Mun Choo1, Li-Pei Wong1, Ahamad Tajudin Khader1

1School of Computer Sciences,

Universiti Sains Malaysia, Pulau Pinang, Malaysia

e-mail: cwm13_sk043@student.usm.my, lpwong@usm.my, tajudin@usm.my

Abstract

 The job shop scheduling problem (JSSP) is regarded as one of the
problems which is widely studied. This paper presents a bee colony
optimization (BCO) algorithm with a local search named the
modified two-enhancement scheme with neighbourhood N5
perturbation (BCO+mTESN5) to solve the JSSP. In previous
research, the BCO algorithm with TESN5 local search
(BCO+TESN5) is applied to solve the JSSP. The BCO+TESN5
algorithm uses a brute force strategy in performing the N5
neighbourhood local search. However, the brute force local search
strategy incurs expensive overhead. To address the high overhead
issue, the BCO+mTESN5 algorithm is proposed where the local
search is performed on a targeted bottleneck machine within the N5
neighbourhood structure. The selection of the targeted bottleneck
machine is done based on a list of bottleneck machines identified by
the shifting bottleneck heuristic (SBH). Two selection strategies are
tested to select the targeted bottleneck machine, namely: the greedy
selection and the linear ranking selection. The proposed algorithms
are examined using a set of benchmark problems obtained from the
OR-library. The results show that the proposed BCO+mTESN5 with
linear ranking selection successfully solves 54% of the 82 OR-library
benchmark dataset to ≤ 1% from known optimum and it is
comparable to the BCO+TESN5 algorithm. In terms of
computational time to obtain the best makespan, the proposed
BCO+mTESN5 with linear ranking selection outperforms the
BCO+TESN5 algorithm by 25%.

 Keywords: Bee algorithm, Local search, Neighbourhood search, Selection
strategy, Shifting bottleneck heuristic.

Wai Mun Choo et al. 53

1 Introduction

Rapid growth of global market makes the manufacturing industry a complex yet

dynamic industry. In order to compete in a versatile environment, manufacturers

are attempting very hard to increase productivity and minimize the cycle time of

their products. One of the common issues among the manufacturer is to ensure

that scarce resources are allocated effectively to a set of competing activities. This

is crucial as it maximizes the utilization of the resources (e.g. machines, human

work force) and thus the productivity can be improved.

Job shop scheduling problem (JSSP) is commonly found in manufacturing

industry. Over the last 50 years, there is a considerable amount of literature on

JSSP has been introduced [1]. For instance, exact methods that guarantee the

optimum solution have been extensively applied to address the JSSP. These exact

methods include branch-and-bound [2; 3], and linear programming [4]. However,

exact methods are found to be expensive as they need exponential computational

time for solving large scale scheduling problems. Another group of techniques

used to solve the JSSP is approximate algorithms. An approximate algorithm

employs heuristic and/or iterative improvements during the problem solving

process. Priority dispatching rules are categorized as approximate algorithms.

Priority dispatching rules are frequently applied to solve the JSSP because of their

ease of implementation and low time complexity. The priority dispatching rules

can be based on due dates or processing time such as first in first out (FIFO),

earliest due date (EDD), and shortest processing time (SPT). Priority dispatching

rules perform well in certain cases but there is no guarantee that the rules are able

to generate the optimum solution for all problems [5].

The need for more robust methodologies which can produce reasonably good

solutions within short period of time leads to the development of a new family of

approximate algorithms named meta-heuristic. According to Osman and Laporte,

a meta-heuristic is an iterative generation process which guides a subordinate

heuristic by combining perceptively different concepts for exploring and

exploiting the search space using learning strategies to structure information in

order to find efficient near-optimal solutions [6]. Meta-heuristic are also

considered as high level strategies for exploring search space such that the search

is able to avoid from being trapped in local minima. [5; 7] introduce some meta-

heuristics which are commonly used to solve job shop scheduling problems.

These include genetic algorithm (GA), tabu search (TS), simulated annealing

(SA), particle swarm intelligence (PSO), ant colony optimization (ACO), bee

colony optimization (BCO).

The PSO, ACO, and BCO algorithms are nature inspired meta-heuristics which

model the behavior of different swarms of animals and insects. These three

algorithms (i.e. PSO, ACO, and BCO) were developed based on bird flocking, ant

colony, and honey bees’ behavior respectively. The nature inspired meta-

heuristics have been studied by researcher and they have been applied to solve

real-world problems in different domains including JSSP. In order to enhance the

performance of the algorithms, these meta-heuristics are hybridized with other

54 A Modified Bee Colony Optimization with

techniques (e.g. local search methods or other meta-heuristics). Table 1 shows

some of the recent methods which are employed to solve JSSP. Many of the

methods listed in Table 1 are hybridized with other approaches, to make the

methods more robust.

Table 1: Methods used to solve job shop scheduling problem

Method Year Title

Genetic Algorithm

(GA)

2012
A new hybrid genetic algorithm for job shop scheduling

problem [8]

2014
A new hybrid parallel genetic algorithm for the job-shop

scheduling problem [9]

2015
A new hybrid island model genetic algorithm for job shop

scheduling problem [10]

2015
A local search genetic algorithm for the job shop

scheduling problem with intelligent agents [11]

Tabu Search (TS)

2012
A hybrid genetic tabu search algorithm for solving job

shop scheduling problems: A case study [12]

2015
A tabu search algorithm to minimize total weighted

tardiness for the job shop scheduling problem [13]

2015
A tabu search algorithm to minimize total weighted

tardiness for the job shop scheduling problem [14]

Simulated

Annealing (SA)

2011

A simulated annealing algorithm based on block

properties for the job shop scheduling problem with total

weighted tardiness objective [15]

2012
Improved simulated annealing algorithm used for job

shop scheduling problems [16]

2015
Neighbourhood generation mechanism applied in

simulated annealing to job shop scheduling problems [17]

Particle Swarm

Optimization

(PSO)

2011
An efficient hybrid particle swarm optimization for the

job shop scheduling problem [18]

2012
A two-stage hybrid particle swarm optimization algorithm

for the stochastic job shop scheduling problem [19]

2013

A neighbourhood property for the job shop scheduling

problem with application to hybrid particle swarm

optimization [20]

Ant Colony 2006 A hybrid ant colony optimization technique for job-shop

Wai Mun Choo et al. 55

Optimization

(ACO)

scheduling problems [21]

2008

On the pheromone update rules of ant colony

optimization approaches for the job shop scheduling

problem [22]

2010
Ant colony optimisation with parameterised search space

for the job shop scheduling problem [23]

2013
An ant colony optimization algorithm for job shop

scheduling problem [24]

Bee Colony

Optimization

(BCO)

2006
A bee colony optimization algorithm to job shop

scheduling [25]

2010

Bee colony optimisation algorithm with big valley

landscape exploitation for job shop scheduling problems

[26]

2012
A generic bee colony optimization framework for

combinatorial optimization problems [27]

The BCO algorithm is one of the potential algorithms to solve the JSSP. Chong et

al. proposed a BCO algorithm specifically designed for the JSSP [25]. The BCO

algorithm described in [25] was compared with the ACO algorithm, and the

results shows that the proposed algorithm outperforms the ACO algorithm in

terms of accuracy and speed. Wong proposed the BCO algorithm with TESN5

local search (BCO+TESN5) to solve the JSSP [27], and the results shows that the

BCO+TESN5 algorithm is comparable with PSO algorithm. One of the

limitations of the BCO+TESN5 algorithm is that it employs a brute force strategy

in performing the N5 neighbourhood local search. The details of the N5

neighbourhood structure can be found in Section 4. This causes the TESN5 local

search is expensive in terms of processing overhead. This paper intends to reduce

the high overhead of the TESN5 by performing the local search on a targeted

bottleneck machine only. It describes the work on applying the BCO algorithm

with the modified two-enhancement scheme with neighbourhood N5 perturbation

(mTESN5) to the JSSP.

The organization of this paper is as follows. Section 1 gives introductory

information about this work. Section 2 describes the JSSP. Section 3 highlights

several bee related algorithms. Section 4 presents the N5 neighbourhood structure.

Section 5 presents the proposed work, i.e. the integration of the modified TESN5

in the BCO algorithm to solve the JSSP. Section 6 presents the experimental

results. Section 7 concludes the paper.

2 Job Shop Scheduling Problem

In this section, the JSSP definition, its modelling, and optimization metrics are

described. Let’s consider a JSSP which consists of n jobs, J = (1, 2, …, n). These

56 A Modified Bee Colony Optimization with

jobs will be processed on a set of m machines M = (1, 2, …, m). Each job consists

of several operations and each operation will have to be processed on different

machines according to a pre-defined precedence constraint. The operations are

dependent to precedence operation in each job. This set of operations is denoted

by O = {0, O11, …, O1m, On1, …, Oim, *} where Oij denotes the j-th operation of

job Ji. The cardinality of O is (n x m) + 2 where “0” and “*” indicate the

fabricated starting and last operations respectively. Once an operation is processed

on a machine, it cannot be interrupted until it is finished. A JSSP

schedule/solution illustrates the sequence of the operations on the machines.

A JSSP can be modelled using a disjunctive graph G = {O, ECon ∪ EDis} [28-30].

A set of directed conjunctive arcs which denotes the precedence constraints of

each job is represented as ECon and a set of bi-directional disjunctive arcs which

denotes the capacity constraints is represented as EDis.

For example, given a three-job, three-machine JSSP as shown in Table 2, each

operation of a particular job is denoted by x(y), where x indicates the processing

time and y indicates the operating machine. Each row is a pre-defined machine

precedence order for each job. Let’s take job J1 as an example, the first operation

is to be processed on machine 1 (m1) for five units of time. This is followed by the

second operation which is to be processed on machine 2 (m2) for two units of time.

Finally, the third operation of J1 is to be processed on machine 3 (m3) for four

units of time. By considering jobs J1, J2, and J3, all the operations of these three

jobs can be grouped according to machines as follows: m1 = {O11, O23, O32}, m2 =

{O12, O21, O33}, and m3 = {O13, O22, O31} respectively.

The JSSP described in in Table 2 is illustrated as a disjunctive graph as shown in

Fig. 1. The vertices in the disjunctive graph (Fig. 1) represent the operations while

the arcs represent the given precedence between the operations. Solid directed

arcs represent denote the precedence constraints of each job. For example, in

order to complete job J1, O11 must be processed first, followed by O12, and finally

O13. The dashed bi-directional disjunctive arcs indicate the capacity constraints of

each machine. For example, O12, O21, and O33 are linked by three bi-directional

disjunctive arcs, which indicate these three operations are processed on a same

machine, which is machine 2 (m2).

Table 2: A 3-job x 3-machine JSSP

Job
Operations

O1 O2 O3

J1 5 (1) 2 (2) 4 (3)

J2 3 (2) 7 (3) 3 (1)

J3 2 (3) 3 (1) 7 (2)

Wai Mun Choo et al. 57

Legends:

 Directed conjunctive arc τ – Processing time of Oij

 Bi-directional disjunctive arc Oij – j-th operation of job i

Fig. 1: The 3-job x 3-machine JSSP in Table 2 represented as a disjunctive graph

In the disjunctive graph model, a feasible JSSP schedule can be obtained by

converting the bi-directional disjunctive arcs to become directed arcs such that no

cycle exists in the graph. Fig. 2 shows a feasible schedule for the three-job, three-

machine JSSP in Table 2, after the arcs conversion for each machine is performed.

Take machine 2 as an example, the bi-directional disjunctive arcs are converted

into a set of directed disjunctive arcs such that the operation sequencing within

machine 2 is as follows: O21 is processed first, followed by O12, and finally O33.

Note that the disjunctive graph (as shown in Fig. 2) contains no cycle. In another

word, by sequencing the operation sequence (i.e. arc conversation from bi-

directional disjunctive arc to become directional disjunctive arc) on each machine

such that the operation precedence constraint is fulfilled, a feasible JSSP solution

is obtained.

O *

5 2 4

3 7 3

2 3 7

τ

Oij

58 A Modified Bee Colony Optimization with

Legends:

 Directed conjunctive arc τ – Processing time of Oij

 Directed disjunctive arc Oij – j-th operation of job i

Fig. 2: A directed graph for the 3-job x 3-machine JSSP in Table 2

Critical path denotes the longest sequence of operations in a JSSP which must be

completed on time such that the entire scheduling project to complete on due date

(further description of the critical path method is in Section 5.1). The sum of

processing time of the critical operations indicates the makespan of the whole

schedule. The makespan of a JSSP schedule can be visualized using a Gantt chart.

Gantt chart is a general way of graphically presenting a schedule of jobs on

machines. The x-axis of the chart represents time whereas y-axis represents

machine. Each job’s start and finish time on a particular machine is shown in a

Gantt chart. Fig. 3 is a Gantt chart which shows the makespan and the critical

path for the directed graph in Fig. 2. From Fig. 3, the critical path is highlighted in

grey colour and it can be identified as "0→O11→O32→O33→*". The total

processing time for the critical path is 0 + 5 + 3 + 7 = 15. This indicates the

makespan for this schedule is 15 units of time.

Legend:

Oij – j-th operation of job i Critical Path

Fig. 3: Gantt chart for the directed graph (feasible schedule) in Fig. 2

O *

5 2 4

3 7 3

2 3 7

τ

Oij

Wai Mun Choo et al. 59

A critical path can be decomposed into a set of blocks. Each block contains a set

of well-ordered operation that processed on the same machine [31]. Two

consecutive blocks must contain operations which are processed on different

machines. If the Gantt chart (i.e. Fig. 3) is referred to, the critical path can be

decomposed into two consecutive blocks. The first block consists of O11 and O32.

The second block consists of O33. The block decomposition forms the central idea

in the implementation of the N5 neighbourhood operators. A detailed description

of the block decomposition and N5 neighbourhood structure will be explained in

Section 4.

In a JSSP, there are many different performance metrics which can be optimized.

Some examples of the JSSP performance metrics which are commonly employed

in optimization are listed in Table 3 [1; 32; 33]:

Table 3: Commonly used JSSP performance metrics for optimization

Objective function Symbol Interpretation

Makespan Cmax
The total amount of time required to

completely process all the jobs.

Mean completion time C̄
The average time spent by a job in the

schedule.

Mean flow time F̄

The average time spent by a job in the

schedule and including the processing time,

waiting time and transfer time.

Maximum lateness Lmax
It is defined as the difference between

completion time and due date of the job.

Maximum tardiness Tmax The maximum value of lateness of the jobs.

Number of tardy jobs NT
The number of jobs that complete after their

due date.

3 Bee Colony Optimization

In this section, an introduction to bee behaviour in nature will be presented. The

strong self-organization and division system of honey bee swarm behaviour has

gained the interest of researchers. One of the behaviours is the foraging behaviour

of honey bees. The exchange of information among bees in bee foraging

bahaviour forms collective knowledge to be employed by the entire bee colony.

Each hive has a dancing area which allows the foragers to inform and recruit the

nest mates to the newly found or existing food sources. The communication

between bees is carried out by performing waggle dance on the dancing floor. By

observing the dances, a bee opts for a dance to follow such that in a long run,

more profitable food sources are favored.

60 A Modified Bee Colony Optimization with

Various algorithms inspired by the behaviour of honey bee have been developed.

Some known algorithms based on bee swarm intelligence are the bee system (BS)

algorithm, the artificial bee colony (ABC) algorithm, the bees algorithm (BA), the

marriage bee optimization (MBO) algorithm, and the bee colony optimization

(BCO) algorithm.

Lučić and Teodorović proposed the BS algorithm for solving difficult

combinatorial optimization problem. In their research, they used the BS algorithm

to solve traveling salesman problem (TSP) [34]. The implementation is tested on

eight benchmark TSPs and the proposed BS algorithm is enriched with 2-opt and

3-opt heuristics, which act as a local optimizer to further improve the solutions.

The BA was introduced by Pham et al. [35]. This algorithm is a population-based

algorithm that mimics the foraging behaviour of honeybee. The BA population

agents allocate a larger number of forager and a small number of scouts. The

scouts randomly search the solution space and evaluate the fitness or profitability

of food source while the foragers search the neighbourhood to look for further

fitness improvement. The BA had been applied to train artificial neural networks

[35], to schedule jobs for machine [36], and to solve a timetabling problem [37].

Honey bees exhibit many features that can be computationally realized as a

problem solving model in an intelligent system. Besides foraging behaviours,

other features such as mating, marriage and reproduction of bees are

computationally realized as an algorithmic tool to solve real-world problems.

Abbass presented an optimization algorithm based on the marriage in honey bees

(MBO) [38]. A normal honey bee’s colony consists of queen bee, drones and

workers. Queens represent the main reproductive individuals in a colony by laying

eggs. When this phenomenon is computationally realized to solve an optimization

problem, the queen bee represents a solution, and when the queen bee laid egg,

the eggs are produced with a series of crossover and mutation processes. If the

hatchling is found to be better than the queen, then the hatchling replaces the

current queen and removes its sibling’s solutions. This process repeats until a pre-

defined criterion is met. The MBO had been applied to solve data mining problem

as satisfiability problem [39], and partitioning and scheduling problem in

codesign [40].

The ABC algorithm is one of the popular swarm intelligence algorithms based on

honey bee behaviour. The ABC algorithm was first proposed by Karaboga [41].

This algorithm simulates the foraging behaviour of honey bee. In the ABC

algorithm, employed bees, onlooker bees and scouts bees are the three important

constructs of the algorithm. In the ABC algorithm, position of food source

represents a possible solution to the problem, and the nectar amount of the food

sources corresponds to the quality or fitness of the solution. Initially, all food

sources are discovered by scout bees, then onlooker bees in the hive select the

food sources to exploit. After an onlooker bee selects a food source to go, it

becomes employed bee to fly to the food source and returns to the hive with

collected nectar. When employed bee is exploiting the exhausted food sources, it

will become a scout bee to search for other food sources. The ABC algorithm had

been applied to solve numerical problems [41] and to train neural networks [42].

Wai Mun Choo et al. 61

The BCO algorithm is a population-based algorithm proposed by Teodorović and

Dell’Orco [43]. The BCO algorithm consists of a population of artificial bees and

each of the artificial bees generate one solution to the problem. There are two

alternating phases in this algorithm, namely: the forward pass and backward pass.

In the forward pass phase, every artificial bee explores the search space with

predefined moves. The predefined moves allow the bees to construct or improve

the solution to reproduce a new solution. After having a partial solution from the

forward pass, the artificial bees will return to the hive and start the backward pass

phase. While in the backward pass, artificial bees that return to the hive will

perform a waggle dance in the dance floor to inform other bees about the food

source information (solution) they gained. Every bee will make a decision with a

certain probability either to abandon the created partial solution or to perform a

dance such that other bees are recruited towards to the found food source [44; 45].

Wong proposed a generic BCO framework to address different combinatorial

optimization problems such as the quadratic assignment problem, traveling

salesman problem and JSSP [27]. It computationally realizes the bee foraging

behaviour by first initializing a swarm of artificial bees. These bees will be

searching for food sources aided by a fragmentation transition rule (i.e. as its

path/solution construction mechanism). The fragmentation transition rule is made

up of two elements: arc fitness and heuristic distance. Before a bee starts foraging,

it will probabilistically observe a waggle dance to follow. This dance becomes a

preferred path of the foraging bee. When the bee constructs the path/solution, the

node which appeared in preferred path is with higher arc fitness value and

therefore it has higher chance to be selected by the bee as the next visiting node.

On the other hand, under the influence of the heuristic distance, a bee tends to

select the next nearest node from the current node. When this BCO algorithm is

used to solve JSSP to optimize the makespan (i.e. fitness function), the two-

enhancement scheme with neighbourhood N5 perturbation is also applied to

improve the search precision. The proposed algorithm by Wong [27] is able to

solve 30 JSSP benchmark instances to optimum, out of the 82 benchmark

problems in the OR-Library.

The BCO algorithm that are described in [26; 27; 46] to solve the JSSP have a few

distinctions with the BCO algorithm as described in [44; 45]. The most significant

difference is that in the BCO algorithm described in [27], the bees are required to

explore the search space and only return to the hive after completing a set of path.

This allows the bees exchange the information of a set feasible solution rather

than partial solution via waggle dance.

In this paper, unless it is stated otherwise, the abbreviation of “BCO algorithm”

refers to the BCO algorithm in [27]. Fig. 4 shows the BCO flow proposed in [27].

62 A Modified Bee Colony Optimization with

Fig. 4: The flow chart of the BCO algorithm proposed in [27]

4 N5 Neighbourhood Structure

Local search can be integrated with a meta-heuristic method for solving an

optimization problem. The local search starts from an initial solution and

iteratively improves the solution with a better one in a defined set of

neighbourhood solutions by performing a series of neighbourhood moves. If the

new solution is with a better quality, it will replace the old solution. These steps

continue until no further improvement can be done and at this stage, this solution

is named as the local optimum solution within the defined neighbourhood [5].

In the JSSP domain, several neighbourhood structures are defined such as N1, N2,

N3, N4, N5, and N6 [47]. Based on a particular neighbourhood structure, local

search operator (i.e. the improvement heuristic) can be effectively designed. In

this section, the N5 neighbourhood is described as it is employed as the local

Wai Mun Choo et al. 63

search approach. The block decomposition described in Section 2 forms the

central idea in the implementation of the N5 neighbourhood operators.

Let’s consider a feasible JSSP solution which the critical path (i.e. highlighted in

grey) is decomposed into four blocks as shown in Fig. 5. The N5 neighbourhood

is defined as the interchange of two successive operations in a block structure that

belongs to a critical path. For examples, the N5 neighbourhood swapping is

performed on the first two operations of the last block or the last two operations of

the first block. For intermediate blocks, the swapping can be done by swapping

the first two operations or the last two operations of the block.

Fig. 5: An example solution illustrated as Gantt chart

Fig. 6 illustrates the possible swapping moves which can be performed according

to the example in Fig. 5. There are six possible swapping operations which can be

done within the blocks in critical path as shown in Fig. 6. Two possible swapping

operations for first and last block of critical path positioned at machine 3, two

possible swapping operations on intermediate blocks of critical path positioned at

machine 2 and machine 1 respectively. The N5 neighbourhood structure searches

all of the neighbourhood space in order to achieve a better solution and it has been

successfully applied on solving the scheduling problem with excellent results [31].

However, this local search method is expensive as the number of possible

swapping operation increases when the problem size increased.

64 A Modified Bee Colony Optimization with

Fig. 6: Possible swapping procedure using N5 neighbourhood structure

5 The Modified Two-Enhancement Scheme with
Neighbourhood N5 Perturbation (mTESN5)

In [27], the BCO algorithm which is integrated with the two-enhancement scheme

with neighbourhood N5 perturbation (BCO+TESN5) is applied in solving the

JSSP. The TESN5 local search consists of two phases of local search. The first

phase involves swapping and insertion operations which are based on the

simulated annealing algorithm and the second phase is the minor perturbation

based on N5 neighbourhood structure. In the second phase, the N5 neighbourhood

structure will attempt to swap all the possible operations of the blocks that are in

the critical path according to a brute force manner. This brute force strategy is

very time consuming especially when the problem size increases. Instead of

performing the perturbation on the entire neighbourhood space, the bottleneck

machine is identified such that perturbation in performed on a bottleneck machine

in order to reduce the expensive overhead of the TESN5 local search mechanism.

For example, based on Fig. 6, if the brute force strategy is applied, all the six

possible swapping moves will be performed before determining which move leads

to a better solution. However, if only one bottleneck machine is selected to

perform the swapping procedure, only two moves will be performed. This

decreases 67% of the required swapping moves in the brute force strategy. The

bottleneck machine is identified based on the adaptation of the shifting bottleneck

heuristic (SBH). The descriptions of the bottleneck machine concept and SBH are

presented in Section 5.1. This local search which focuses on bottleneck machine is

named as the modified two-enhancement scheme with neighbourhood N5

Perturbation (mTESN5).

5.1 Bottleneck machines identification

In general, the SBH sequences the machines one at a time, consecutively, by

considering the machine identified as a bottleneck among the machines not yet

Wai Mun Choo et al. 65

sequenced. Every time after a new machine is sequenced, local re-optimization is

performed on all previously established sequences. The SBH decomposes a JSSP

into several one-machine scheduling problems. Both the bottleneck identification

and the local re-optimization procedures are based on repeatedly solving certain

one-machine scheduling problems [1; 48].

This section describes how a list of machines is identified and ranked according to

its maximum lateness using the bottleneck identification steps of the SBH. Let’s

consider the JSSP example shown in Table 2. At the initial state, the operation

sequence for each machine is not determined (i.e. only the operation sequences of

jobs are considered). The critical path method (CPM) [32] is applied to find the

earliest start time and the latest finish time of each operation as shown in Fig. 7.

Legends:

 Directed conjunctive arc

 Oij – j-th operation of job i

 τ – Processing time of Oij

 rj – Earliest start time of Oij

 dj – Latest finish time of Oij

Fig. 7: Critical path method network graph

Next, each machine is treated as a one-machine scheduling problem. These one-

machine problems are solved as 1| rj | Lmax in order to minimize the maximum

lateness, using the earliest due date (EDD) dispatching rule. Based on the CPM

network graph shown in Fig. 7, all the three machines (i.e. m1 = {O11, O23, O32},

m2 = {O12, O21, O33}, and m3 = {O13, O22, O31}) will be solved as three different 1|

rj | Lmax problems.

Taking machine 1 as an example, when the EDD dispatching rule is applied, the

following sequence is obtained: O11 → O32 → O23. This sequence is obtained due

to the EDD dispatching rule with the ready times is applied. Therefore, the

maximum lateness on machine 1 is equal to 2 (as shown in Table 4). If the EDD is

applied without considering the ready times, the following sequence is obtained:

O32 → O11 → O23. The maximum lateness for this sequence is equal to 3 (as

shown in Table 5). Note that the EDD dispatching rule with the ready times is

able to produce a sequence with lower maximum lateness. Thus, it is preferable to

apply the EDD dispatching rule with the ready times. Table 4 and Table 5 show

4

O *

(0,7) (5,9) (7,13)

(0,3) (3,10) (10,13)

(0,3) (2,6) (5,13)

(13,13)

5 2

3 7 3

2 3 7

Oij

(rj, dj)

τ

66 A Modified Bee Colony Optimization with

the 1| rj | Lmax problem and schedule for minimization of Lmax for machine 1, with

the application of different EDD dispatching rules. rj and dj are the earliest start

time and the latest finish time. Sj is the start time of the operation and Cj is the

completion time of the operation according to the job sequence determined by the

EDD dispatching rule. Lmax measures the difference between Cj and dj (i.e. Lmax =

Cj - dj). The highest Lmax among the operations is considered as the Lmax of a

particular machine.

Table 4: The 1| rj | Lmax problem and schedule for minimization of Lmax for

machine 1 using EDD dispatching rule with ready time consideration

Job (J) 1 3 2

Operation O11 O32 O23

Processing time, τ 5 3 3

Earliest start time, rj 0 2 10

Latest finish time, dj 7 6 13

Start time, Sj 0 5 10

Completion time, Cj 5 8 13

Lateness, Lmax -2 2 0

Table 5: The 1| rj | Lmax problem and schedule for minimization of Lmax for

machine 1 using EDD dispatching rule without ready time consideration

Job (J) 3 1 2

 Operation O32 O11 O23

Processing time, τ 3 5 3

Release time, rj 2 0 10

Due date, dj 6 7 13

Start time, Sj 2 5 10

Completion time, Cj 5 10 13

Lateness, Lmax -1 3 0

Once the three 1| rj | Lmax problems are solved, each of these is with a maximum

lateness (i.e. machines 1, 2, and 3 are with the maximum lateness (Lmax) of 2, 0,

and 0 respectively). These machines are ranked according to their Lmax value as a

tardy machine list. Machine 1 has the highest maximum lateness value, thus

Wai Mun Choo et al. 67

machine 1 is ranked at the top position in the tardy machine list. There is a tie

between machines 2 and 3. To break the tie, randomly pick a machine (i.e.

between machines 2 and 3) and rank it at the second position in the tardy machine

list.

5.2 Selection strategy

In the proposed mTESN5 local search algorithm, only one machine will be

selected using a selection strategy such that the machine will undergo the local

perturbation based on N5 neighbourhood structure. The machine will be selected

from a tardy machine list, which the generation of such tardy machine list is

described in Section 5.1. Two selection strategies are implemented and tested,

namely: greedy selection strategy and linear ranking selection strategy. Thus, this

forms two different BCO with mTESN5 algorithms.

If a greedy selection strategy is applied, only the tardiest machine (i.e. the first

position) in the tardy machine list is selected to perform the perturbation based on

N5 neighbourhood structure. Hence, the local search will only be focused on the

tardiest machine, which is the bottleneck machine with the highest maximum

lateness value. This algorithm is denoted by “BCO with GS-TESN5 algorithm”.

If a linear ranking selection is applied, each machine in the tardy machine list is

linearly assigned with a selection probability according to their rank using a linear

function as shown in Equation 1. Hence, the machine with the higher selection

probability (i.e. higher maximum lateness value) tends to be selected to undergo

the local perturbation. At the same time, other machines in the tardy machine list

are having some chance to be selected to undergo the local perturbation. This

algorithm is denoted by “BCO with LRS-TESN5 algorithm”.

(1)

Equation 1 is a linear function where represents a machine’s rank

in this selection strategy. All machines are ranked according to their Lmax value,

i.e., rank 1 is assigned to the machine with highest Lmax and rank N is assigned to

the machine with lowest Lmax value. Parameter SP (i.e. 1 ≤ SP ≤ 2) is used to

control the gradient of the linear selection function. A larger SP value results in a

higher selection pressure for selecting the solution with the highest rank [49].

A parameter tuning experiment is performed to find a suitable SP value for the

linear ranking selection strategy. Four SP values are examined in this parameter

tuning experiment, namely: 1.0, 1.1, 1.5, and 2.0. SP = 1.0 represents uniform

selection pressure, while SP= 1.1, SP = 1.5 and SP = 2.0 represent low, medium

and high selection pressure respectively. 82 JSSP benchmark problems with five

replications are used in the parameter tuning experiment. Table 6 shows the

results of the linear ranking selection with different SP values in the parameter

tuning experiment. M denotes deviation percentage from the best known

makespan and µT denotes the average computational time to obtain the best

makepsan, µT.

68 A Modified Bee Colony Optimization with

Table 6: Results of linear ranking selection with different selection pressures

SP Values 1.0 1.1 1.5 2.0

Average M (%) 3.18 3.21 3.21 3.19

Average µT (s) 343.85 301.88 298.50 254.92

From Table 6, the average deviation percentage from the best known makespan is

similar, for all the four SP values. However, the computational time, µT of

experiment with SP = 2.0 is the shortest. Therefore, linear function with high

selection pressure (i.e. SP = 2.0) is employed in the BCO with LRS-TESN5

algorithm.

6 Experimental Results

The results of the proposed algorithms (i.e. the BCO with GS-TESN5 algorithm

and the BCO with LRS-TESN5 algorithm) are presented in this section. The

proposed algorithms are implemented using JAVA with NetBean IDE 8.0 as the

development tool. The experiments were conducted on a Windows OS cluster

with Intel (R) Core™ i7-4700HQ Processor, and 16GB RAM.

The results based on the BCO model in [27] is also included to compare the

effectiveness of the proposed algorithm, and it is denoted by BCO+TESN5. The

parameter setting used in [27] is adapted in the experiments conducted in this

research as follows: β = 10, λ = 0.9, Κ = 100, ϖ = 25, NBee = 25, and BCMax =

10000. The BCO with LRS-TESN5 algorithm uses a linear function which a

parameter named SP has to be empirically tuned. Via a different parameter tuning

experiment as presented in Section 5.2, the SP value is set at 2.0, in order to

impose higher selection pressure towards the tardiest machine such that the

perturbation is performed on it.

The proposed algorithms are tested on the 82 benchmark instances obtained from

the OR-library. These 82 benchmark problems are categorized into six different

series (i.e. ABZ, ORB, FT/MT, LA, SWV, and YN). The dimension of these 82

benchmark problems range from 6-job x 6-machine up to 50-job x 10-machine.

Five replications of experiment are conducted for each benchmark instance to

obtain average results.

Table 7 shows the results of the BCO+TESN5 algorithm, the BCO with GS-

TESN5 algorithm, and the BCO with LRS-TESN5 algorithm respectively, in

terms of the best makespan and its deviation percentage from the known best

optimum, for the 82 benchmark instances obtained from the OR-library. The first,

second, and the third columns denote the problem instance name, problem

dimension (n-job x m-machine), and the best known optimum. The rest of the

columns denote the best makespan and its deviation percentage from the known

best optimum, based on five replications of algorithm execution.

Wai Mun Choo et al. 69

Table 7: Performance of the BCO+TESN5, BCO with GS-TESN5, and BCO with

LRS-TESN5 algorithms (in terms of the best makespan and its deviation

percentage from the known best optimum)

Problem
Problem

Dimension

Known

Optimum

BCO+TESN5

algorithm

BCO with GS-

TESN5 algorithm

BCO with LRS-

TESN5 algorithm

Best

Makespan
B (%)

Best

Makespan
B (%)

Best

Makespan
B (%)

ABZ5 10 x 10 1234 1234 0.00 1234 0.00 1234 0.16

ABZ6 10 x 10 943 943 0.00 943 0.00 943 0.00

ABZ7 20 x 15 656 694 5.79 695 5.95 690 5.18

ABZ8 20 x 15 665 710 6.77 710 6.77 715 7.52

ABZ9 20 x 15 679 723 6.48 733 7.95 729 7.36

FTP06 6 x 6 55 55 0.00 55 0.00 55 0.00

FTP10 10 x 10 930 937 0.75 937 0.75 937 0.75

FTP20 20 x 5 1165 1165 0.00 1173 0.69 1173 0.69

ORB01 10 x 10 1059 1059 0.00 1059 0.00 1059 0.00

ORB02 10 x 10 888 889 0.11 889 0.11 889 0.11

ORB03 10 x 10 1005 1008 0.30 1005 0.00 1021 1.59

ORB04 10 x 10 1005 1011 0.60 1005 0.00 1011 0.60

ORB05 10 x 10 887 889 0.23 889 0.23 889 0.23

ORB06 10 x 10 1010 1012 0.20 1013 0.30 1019 0.89

ORB07 10 x 10 397 397 0.00 397 0.00 397 0.00

ORB08 10 x 10 899 899 0.00 899 0.00 908 1.00

ORB09 10 x 10 934 934 0.00 934 0.00 934 0.00

ORB10 10 x 10 944 944 0.00 944 0.00 944 0.00

LA01 10 x 5 666 666 0.00 666 0.00 666 0.00

LA02 10 x 5 655 655 0.00 655 0.00 655 0.00

LA03 10 x 5 597 597 0.00 597 0.00 597 0.00

LA04 10 x 5 590 590 0.00 590 0.00 590 0.00

LA05 10 x 5 593 593 0.00 593 0.00 593 0.00

LA06 15 x 5 926 926 0.00 926 0.00 926 0.00

LA07 15 x 5 890 890 0.00 890 0.00 890 0.00

LA08 15 x 5 863 863 0.00 863 0.00 863 0.00

LA09 15 x 5 951 951 0.00 951 0.00 951 0.00

LA10 15 x 5 958 958 0.00 958 0.00 958 0.00

LA11 20 x 5 1222 1222 0.00 1222 0.00 1222 0.00

LA12 20 x 5 1039 1039 0.00 1039 0.00 1039 0.00

LA13 20 x 5 1150 1150 0.00 1150 0.00 1150 0.00

LA14 20 x 5 1292 1292 0.00 1292 0.00 1292 0.00

LA15 20 x 5 1207 1207 0.00 1207 0.00 1207 0.00

LA16 10 x 10 945 945 0.00 945 0.00 945 0.00

LA17 10 x 10 784 784 0.00 784 0.00 784 0.00

LA18 10 x 10 848 848 0.00 848 0.00 848 0.00

70 A Modified Bee Colony Optimization with

Problem
Problem

Dimension

Known

Optimum

BCO+TESN5

algorithm

BCO with GS-

TESN5 algorithm

BCO with LRS-

TESN5 algorithm

Best

Makespan
B (%)

Best

Makespan
B (%)

Best

Makespan
B (%)

LA19 10 x 10 842 842 0.00 849 0.83 842 0.00

LA20 10 x 10 902 902 0.00 907 0.55 907 0.55

LA21 15 x 10 1046 1067 2.01 1055 0.86 1059 1.24

LA22 15 x 10 927 930 0.32 935 0.86 935 0.86

LA23 15 x 10 1032 1032 0.00 1032 0.00 1032 0.00

LA24 15 x 10 935 949 1.50 956 2.25 949 1.50

LA25 15 x 10 977 993 1.64 991 1.43 986 0.92

LA26 20 x 10 1218 1218 0.00 1218 0.00 1218 0.00

LA27 20 x 10 1235 1264 2.35 1269 2.75 1269 2.75

LA28 20 x 10 1216 1226 0.82 1241 2.06 1234 1.48

LA29 20 x 10 1152 1208 4.86 1207 4.77 1214 5.38

LA30 20 x 10 1355 1355 0.00 1355 0.00 1355 0.00

LA31 30 x 10 1784 1784 0.00 1784 0.00 1784 0.00

LA32 30 x 10 1850 1850 0.00 1850 0.00 1850 0.00

LA33 30 x 10 1719 1719 0.00 1719 0.00 1719 0.00

LA34 30 x 10 1721 1721 0.00 1721 0.00 1721 0.00

LA35 30 x 10 1888 1888 0.00 1888 0.00 1888 0.00

LA36 15 x 15 1268 1297 2.29 1291 1.81 1297 2.29

LA37 15 x 15 1397 1418 1.50 1426 2.08 1425 2.00

LA38 15 x 15 1196 1244 4.01 1254 4.85 1230 2.84

LA39 15 x 15 1233 1251 1.46 1264 2.51 1259 2.11

LA40 15 x 15 1222 1244 1.80 1254 2.62 1246 1.96

SWV01 20 x 10 1407 1497 6.40 1502 6.75 1502 6.75

SWV02 20 x 10 1475 1562 5.90 1558 5.63 1565 6.10

SWV03 20 x 10 1398 1537 9.94 1505 7.65 1515 8.37

SWV04 20 x 10 1470 1597 8.64 1609 9.46 1606 9.25

SWV05 20 x 10 1424 1540 8.15 1586 11.38 1577 10.74

SWV06 20 x 15 1678 1832 9.18 1842 9.77 1843 9.83

SWV07 20 x 15 1600 1722 7.63 1739 8.69 1735 8.44

SWV08 20 x 15 1756 1946 10.82 1955 11.33 1970 12.19

SWV09 20 x 15 1661 1818 9.45 1860 11.98 1866 12.34

SWV10 20 x 15 1754 1904 8.55 1937 10.43 1922 9.58

SWV11 50 x 10 2991 3375 12.84 3399 13.64 3371 12.70

SWV12 50 x 10 3003 3333 10.99 3356 11.75 3375 12.39

SWV13 50 x 10 3104 3463 11.57 3491 12.47 3481 12.15

SWV14 50 x 10 2968 3257 9.74 3271 10.21 3259 9.80

SWV15 50 x 10 2904 3208 10.47 3222 10.95 3216 10.74

SWV16 50 x 10 2924 2924 0.00 2924 0.00 2924 0.00

SWV17 50 x 10 2794 2794 0.00 2794 0.00 2794 0.00

Table 7 (continued)

Wai Mun Choo et al. 71

Problem
Problem

Dimension

Known

Optimum

BCO+TESN5

algorithm

BCO with GS-

TESN5 algorithm

BCO with LRS-

TESN5 algorithm

Best

Makespan
B (%)

Best

Makespan
B (%)

Best

Makespan
B (%)

SWV18 50 x 10 2852 2852 0.00 2852 0.00 2852 0.00

SWV19 50 x 10 2843 2843 0.00 2843 0.00 2843 0.00

SWV20 50 x 10 2823 2823 0.00 2823 0.00 2823 0.00

YN1 20 x 20 885 930 5.08 934 5.54 934 5.54

YN2 20 x 20 909 946 4.07 965 6.16 968 6.49

YN3 20 x 20 892 941 5.49 951 6.61 942 5.61

YN4 20 x 20 968 1054 8.88 1034 6.82 1047 8.16

Table 8 shows the results on the relative performance of makespan in terms of

percentage for the algorithms. The results show the average, best, and worst

percentage difference from the best known makespan and the average

computational time to obtain the best result. They are denoted by M, B, W, and µT

respectively.

Table 8: Overall performance of BCO+TESN5, BCO with GS-TESN5, and BCO

with LRS-TESN5 algorithms

BCO+TESN5

algorithm

BCO+mTESN5 algorithms

BCO with GS-

TESN5 algorithm

BCO with LRS-

TESN5 algorithm

Average B (%) 2.56 2.81 2.79

Average M (%) 3.03 3.24 3.19

Average W (%) 3.46 3.64 3.56

Average µT (s) 340.77 307.37 257.38

Number of instances

that are solved to

optimum

30 29 30

Number of instances

that are solved to ≤ 1%

from known optimum/

upper bound

46 45 44

The BCO+TESN5 algorithm is able to solves 30 problem instances to optimum

[27]. This is equivalent to 37% of the 82 problem instances are solved to optimum.

About 56% of the 82 problem instances, which is equivalent to 46 problem

instances, are solved to <=1% deviation from known optimum. The averages of B,

M, and W for the BCO+TESN5 algorithm are 2.56%, 3.03%, and 3.46%

respectively (as listed in Table 8).

The BCO with GS-TESN5 algorithm solves 29 problem instances to optimum.

This is equivalent to 35% of the 82 problem instances are solved to optimum.

About 56% of the 82 problem instances, which is equivalent to 46 problem

instances, are solved to <=1% deviation from known optimum. On the other hand,

the BCO with LRS-TESN5 solves 30 problem instances to optimum. This is

equivalent to 37% of the 82 problem instances are solved to optimum. About 54%

Table 7 (continued)

72 A Modified Bee Colony Optimization with

of the 82 problem instances, which is equivalent to 44 problem instances, are

solved to <=1% deviation from known optimum.

From Table 8, it is noted that the average M of the BCO with GS-TESN5 and

BCO with LRS-TESN5 is close to the BCO+TESN5 algorithm proposed in [27]

with 0.21% and 0.05% difference respectively. On the other hand, the average µT

for BCO with GS-TESN5 algorithm is 307.37s. The BCO with GS-TESN5

algorithm reduces the average µT for roughly 33.4s, which is approximately 10%

compared with the BCO+TESN5 algorithm. For the BCO with LRS-TESN5

algorithm, the average µT is 257.38s, which is 83.39s different from the

BCO+TESN5 algorithm. The BCO with LRS-TESN5 algorithm successfully

reduces approximately 25% of the µT compared with the BCO+TESN5 algorithm.

Next, the results are further analyzed according to six different problem series (i.e.

ABZ, ORB, FT/MT, LA, SWV, and YN). In general, problem instances in FTP,

ORB, and LA series are considered as easy problems whereas problem instances

in ABZ, SWV, and YN series are considered as hard problems. Table 9 compares

the performance in term of solution accuracy and µT of the three algorithms

according to this series.

Table 9: Performance of BCO+TESN5, BCO with GS-TESN5, and BCO with

LRS-TESN5 algorithms by series

Series Instances

BCO+TESN5

algorithm

BCO with GS-

TESN5 algorithm

BCO with LRS-

TESN5 algorithm

Average of Average of Average of

M (%) µT (s) M (%) µT (s) M (%) µT (s)

ABZ 5 4.58 411.52 4.85 308.65 4.66 262.48

FTP 3 0.61 125.69 0.84 140.22 1.02 64.71

ORB 10 0.56 112.45 0.59 117.51 0.69 76.25

LA 40 0.84 128.30 0.96 126.64 0.88 102.19

SWV 20 7.81 782.07 8.31 711.58 8.20 609.26

YN 4 7.16 902.66 7.19 691.96 7.34 590.46

In terms of the solution accuracy, the averages M for all the three algorithms are

within the same range. In terms of computational time, all the three algorithms

require lesser µT to solve the problems from the FTP, ORB, and LA series. In

contrary, ABZ, SWV, and YN series require longer µT to obtain the best solution.

Table 9 shows that the BCO+TESN5 algorithm uses 782.07s on average to solve

the SWV problems, while BCO with GS-TESN5 and BCO with LRS-TESN5 uses

approximate 9.01% and 22.1% lesser time to solve the SWV series problem

respectively. For YN problem series, the BCO+TESN5 algorithm uses 902.66s on

average to solve the problems. On the other hand, BCO with GS-TESN5 and

BCO with LRS-TESN5 use approximate 23.34% and 34.59% lesser time to solve

the problems of YN series respectively. All these show that the BCO with GS-

TESN5 and BCO with LRS-TESN5 algorithms are able to shorten the average µT

to solve the hard benchmark problem series (i.e. ABZ, SWV and YN problem

series).

A comparison study which involves the BCO with GS-TESN5, BCO with LRS-

TESN5, ACO algorithm [24] and Tabu Search [31] is presented in Table 10.

Wai Mun Choo et al. 73

Based on the 40 problems in the LA series, the comparison results show that both

of the BCO with GS-TESN5, BCO with LRS-TESN5 algorithms outperform the

ACO algorithm but underperform the Tabu Search algorithm. On average, the

BCO with GS-TESN5 and BCO with LRS-TESN5 algorithms solve the 40

instances to 0.76% and 0.61% from the known optimum respectively. The ACO

and Tabu Search algorithms solve the 40 instances to an average of 3.96% and

0.43% from the known optimum respectively.

Table 10: Comparison study which involves the algorithms of BCO with GS-

TESN5, BCO with LRS-TESN5, ACO [24] and Tabu Search [31]

Problem
Known

Optimum

ACO [24] Tabu Search [31] BCO with GS-TESN5
BCO with LRS-

TESN5

Best
Makespan

B (%)
Best

Makespan
B (%)

Best
Makespan

B (%)
Best

Makespan
B (%)

LA01 666 666 0.00 666 0.00 666 0.00 666 0.00

LA02 655 669 2.13 655 0.00 655 0.00 655 0.00

LA03 597 623 4.36 597 0.00 597 0.00 597 0.00

LA04 590 611 3.56 593 0.51 590 0.00 590 0.00

LA05 593 593 0.00 593 0.00 593 0.00 593 0.00

LA06 926 926 0.00 926 0.00 926 0.00 926 0.00

LA07 890 890 0.00 892 0.22 890 0.00 890 0.00

LA08 863 863 0.00 863 0.00 863 0.00 863 0.00

LA09 951 951 0.00 951 0.00 951 0.00 951 0.00

LA10 958 958 0.00 958 0.00 958 0.00 958 0.00

LA11 1222 1222 0.00 1222 0.00 1222 0.00 1222 0.00

LA12 1039 1039 0.00 1039 0.00 1039 0.00 1039 0.00

LA13 1150 1150 0.00 1150 0.00 1150 0.00 1150 0.00

LA14 1292 1292 0.00 1292 0.00 1292 0.00 1292 0.00

LA15 1207 1212 0.41 1207 0.00 1207 0.00 1207 0.00

LA16 945 1005 6.35 946 0.11 945 0.00 945 0.00

LA17 784 812 3.57 785 0.13 784 0.00 784 0.00

LA18 848 885 4.36 861 1.53 848 0.00 848 0.00

LA19 842 875 3.92 848 0.71 849 0.83 842 0.00

LA20 902 912 1.11 902 0.00 907 0.55 907 0.55

LA21 1046 1107 5.38 1055 0.86 1055 0.86 1059 1.24

LA22 927 1018 9.82 954 2.91 935 0.86 935 0.86

LA23 1032 1051 1.84 1032 0.00 1032 0.00 1032 0.00

LA24 935 1011 8.13 948 1.39 956 2.25 949 1.50

LA25 977 1062 8.70 988 1.13 991 1.43 986 0.92

LA26 1218 1296 6.40 1218 0.00 1218 0.00 1218 0.00

LA27 1235 1362 10.28 1259 1.94 1269 2.75 1269 2.75

LA28 1216 1330 9.38 1216 0.00 1241 2.06 1234 1.48

LA29 1152 1339 15.73 1164 1.04 1207 4.77 1214 5.38

LA30 1355 1410 4.06 1355 0.00 1355 0.00 1355 0.00

LA31 1784 1798 0.78 1784 0.00 1784 0.00 1784 0.00

LA32 1850 1868 0.97 1850 0.00 1850 0.00 1850 0.00

LA33 1719 1731 0.70 1719 0.00 1719 0.00 1719 0.00

LA34 1721 1788 3.89 1721 0.00 1721 0.00 1721 0.00

LA35 1888 1913 1.32 1888 0.00 1888 0.00 1888 0.00

LA36 1268 1396 10.09 1275 0.55 1291 1.81 1297 2.29

LA37 1397 1517 8.59 1422 1.79 1426 2.08 1425 2.00

LA38 1196 1315 9.95 1209 1.09 1254 4.85 1230 2.84

LA39 1233 1304 5.76 1235 0.16 1264 2.51 1259 2.11

74 A Modified Bee Colony Optimization with

Problem
Known

Optimum

ACO [24] Tabu Search [31] BCO with GS-TESN5
BCO with LRS-

TESN5

Best
Makespan

B (%)
Best

Makespan
B (%)

Best
Makespan

B (%)
Best

Makespan
B (%)

LA40 1222 1307 6.96 1234 0.98 1254 2.62 1246 1.96

Average of 40 instances 3.96 0.43 0.76 0.65

7 Conclusion

A BCO algorithm with modified two-enhancement scheme with neighbourhood

N5 perturbation (BCO+mTESN5) local search is proposed to solve the job shop

scheduling problem (JSSP). The mTESN5 local search is designed such that the

perturbation is only performed on a targeted bottleneck machine. A list of

machines is identified and ranked according to its maximum lateness using the

bottleneck identification steps of the shifting bottleneck heuristic (SBH). Two

selection strategies (i.e. greedy and linear ranking selection strategies) are

implemented and examined to select a targeted bottleneck machine from the list.

Thus, two different algorithms are obtained based on the selection strategy as

follows: the BCO+mTESN5 algorithm with greedy selection (denoted by BCO

with GS-TESN5) and the BCO+mTESN5 algorithm with linear ranking selection

(denoted by BCO with LRS-TESN5). The proposed algorithms are tested on a set

of 82 JSSP benchmark problems. The results show that the BCO with GS-TESN5

algorithm reduces the computational time by 10% compared with the

BCO+TESN5 algorithm. The BCO with LRS-TESN5 algorithm reduces the

computational time by 25% compared with BCO+TESN5. In tackling hard

problem such as ABZ, SWV and YN series of the benchmark problem, the BCO

with LRS-TESN5 algorithm is able to shorten the average computational time to

obtain the best result compared with the BCO+TESN5 algorithm.

As for the future work, the BCO algorithm can be applied in SBH algorithm

during re-scheduling process. During the re-scheduling process in the classic SBH,

algorithm such as the EDD dispatching rule or branch-and-bound algorithm are

used. The BCO algorithm can be used to replace the EDD dispatching rule or

branch-and-bound algorithm, in solving the one-machine problems.

ACKNOWLEDGEMENT

This work was supported by the Collaborative Research in Engineering, Science

and Technology (CREST) R&D Grant (Grant No: 304/PKOMP/650652/C121).

References

[1] Pinedo, M. L. 2012. Scheduling: theory, algorithms, and systems. Springer

Science & Business Media.

[2] Brucker, P., Jurisch, B. and Sievers, B. 1994. A branch and bound algorithm

for the job-shop scheduling problem. Discrete applied mathematics, Vol. 49,

No. 1, pp. 107-127.

[3] Land, A. H. and Doig, A. G. 2010. An automatic method for solving discrete

programming problems. In: 50 Years of Integer Programming 1958-2008.

Springer, pp. 105-132.

Wai Mun Choo et al. 75

[4] Dantzig, G. B. 2002. Linear programming. Operations Research, Vol. 50, No.

1, pp. 42-47.

[5] Zobolas, G. I., Tarantilis, C. D. and Ioannou, G. 2008. Exact, heuristic and

meta-heuristic algorithms for solving shop scheduling problems. In: Xhafa, F.

and Abraham, A. eds. Metaheuristics for Scheduling in Industrial and

Manufacturing Applications. Vol. 128 2008. Springer, pp. 1-40.

[6] Osman, I. H. and Laporte, G. 1996. Metaheuristics: A bibliography. Annals of

Operations research, Vol. 63, No. 5, pp. 511-623.

[7] Błażewicz, J., Ecker, K. H., Pesch, E., Schmidt, G. and Węglarz, J. 2007.

Scheduling in Job Shops. In: Handbook on Scheduling: From Theory to

Applications. pp. 345-396.

[8] Ren, Q.-D.-E.-J. and Wang, Y. 2012. A new hybrid genetic algorithm for job

shop scheduling problem. Computers & Operations Research, Vol. 39, No. 10,

pp. 2291-2299.

[9] Spanos, A. C., Ponis, S. T., Tatsiopoulos, I. P., Christou, I. T. and Rokou, E.

2014. A new hybrid parallel genetic algorithm for the job-shop scheduling

problem. International Transactions in Operational Research, Vol. 21, No. 3,

pp. 479-499.

[10]Kurdi, M. 2015. A new hybrid island model genetic algorithm for job shop

scheduling problem. Computers & Industrial Engineering, Vol. 88, No., pp.

273-283.

[11]Asadzadeh, L. 2015. A local search genetic algorithm for the job shop

scheduling problem with intelligent agents. Computers & Industrial

Engineering, Vol. 85, No., pp. 376-383.

[12]Meeran, S. and Morshed, M. S. 2012. A hybrid genetic tabu search algorithm

for solving job shop scheduling problems: A case study. Journal of Intelligent

Manufacturing, Vol. 23, No. 4, pp. 1063-1078.

[13]Lin, Y. K. and Chong, C. S. 2015. A tabu search algorithm to minimize total

weighted tardiness for the job shop scheduling problem. Journal of Industrial

and Management Optimization, Vol. 12, No. 2, pp. 703-717.

[14]Peng, B., Lu, Z. and Cheng, T. C. E. 2015. A tabu search/path relinking

algorithm to solve the job shop scheduling problem. Computers & Operations

Research, Vol. 53, No., pp. 154-164.

[15]Zhang, R. and Wu, C. 2011. A simulated annealing algorithm based on block

properties for the job shop scheduling problem with total weighted tardiness

objective. Computers & Operations Research, Vol. 38, No. 5, pp. 854-867.

[16]Song, S.-Z., Ren, J.-J. and Fan, J.-X. 2012. Improved simulated annealing

algorithm used for job shop scheduling problems. In: Xie, A. and Huang, X.

eds. Advances in Electrical Engineering and Automation. Vol. 139. pp. 17-25.

76 A Modified Bee Colony Optimization with

[17]Antonio Cruz-Chavez, M. 2015. Neighbourhood generation mechanism

applied in simulated annealing to job shop scheduling problems. International

Journal of Systems Science, Vol. 46, No. 15, pp. 2673-2685.

[18]Zhang, X.-F., Koshimura, M., Fujita, H. and Hasegawa, R. 2011. An efficient

hybrid particle swarm optimization for the job shop scheduling problem. In:

Proceedings of the 2011 IEEE International Conference on Fuzzy Systems. pp.

622-626.

[19]Zhang, R., Song, S. and Wu, C. 2012. A two-stage hybrid particle swarm

optimization algorithm for the stochastic job shop scheduling problem.

Knowledge-Based Systems, Vol. 27, No., pp. 393-406.

[20]Zhang, R. and Wu, C. 2013. A neighbourhood property for the job shop

scheduling problem with application to hybrid particle swarm optimization.

IMA Journal of Management Mathematics, Vol. 24, No. 1, pp. 111-134.

[21]Yoshikawa, M. and Terai, H. 2006. A hybrid ant colony optimization

technique for job-shop scheduling problems. In: Baik, D.K. et al. eds.

Proceedings of Fourth International Conference on Software Engineering

Research, Management and Applications. pp. 95-100.

[22]Duc, D. D., Dinh, H. Q. and Xuan, H. H. 2008. On the pheromone update

rules of ant colony optimization approaches for the job shop scheduling

problem. In: Bui, T.D. et al. eds. Proceedings of Intelligent Agents and Multi-

Agent Systems. Vol. 5357. pp. 153-160.

[23]Seo, M. and Kim, D. 2010. Ant colony optimisation with parameterised

search space for the job shop scheduling problem. International Journal of

Production Research, Vol. 48, No. 4, pp. 1143-1154.

[24]Flórez, E., Gómez, W. and Bautista, L. 2013. An ant colony optimization

algorithm for job shop scheduling problem. International Journal of Artificial

Intelligence & Applications, Vol. 4, No. 4, pp. 53-66.

[25]Chong, C. S., Low, M. Y. H., Sivakumar, A. I. and Gay, K. L. 2006. A bee

colony optimization algorithm to job shop scheduling. In: Proceedings of the

2006 Winter Simulation Conference, Vols 1-5. IEEE, pp. 1954-1961.

[26]Wong, L.-P., Puan, C. Y., Low, M. Y. H., Wong, Y. W. and Chong, C. S.

2010. Bee colony optimisation algorithm with big valley landscape

exploitation for job shop scheduling problems. International Journal of Bio-

Inspired Computation, Vol. 2, No. 2, pp. 85-99.

[27]Wong, L.-P. 2012. A generic bee colony optimization framework for

combinatorial optimization problems. PhD Thesis, School of Computer

Engineering, Nanyang Technological University, Singapore.

[28]Roy, B. and Sussmann, B. 1964. Les problemes d’ordonnancement avec

contraintes disjonctives. Technical Report 9, SEMA, Note D.S., Paris.

[29]Balas, E. 1969. Machine sequencing via disjunctive graphs: an implicit

enumeration algorithm. Operations Research, Vol. 17, No. 6, pp. 941-957.

Wai Mun Choo et al. 77

[30]Abdelmaguid, T. F. 2009. Permutation-induced acyclic networks for the job

shop scheduling problem. Applied Mathematical Modelling, Vol. 33, No. 3, pp.

1560-1572.

[31]Nowicki, E. and Smutnicki, C. 1996. A fast taboo search algorithm for the job

shop problem. Management Science, Vol. 42, No. 6, pp. 797-813.

[32]Alharkan, I. M. 2005. Job shop scheduling. In: Algorithms for Sequencing and

Scheduling. Industrial Engineering Department, King Saud University,

Riyadh, Saudi Arabia.

[33]Hart, E., Ross, P. and Corne, D. 2005. Evolutionary scheduling: A review.

Genetic Programming and Evolvable Machines, Vol. 6, No. 2, pp. 191-220.

[34]Lučić, P. and Teodorović, D. 2002. Transportation modeling: An artificial life

approach. In: Proceedings of the 14th IEEE International Conference

onTools with Artificial Intelligence, 2002.(ICTAI 2002). IEEE, pp. 216-223.

[35]Pham, D. T., Ghanbarzadeh, A., Koc, E., Otri, S., Rahim, S. and Zaidi, M.

2006. The bees Algorithm – A novel tool for complex optimisation. In:

Proceedings of 2006 Virtual International Conference on Intelligent

Production Machines and Systems (IPROMS 2006). pp. 454-461.

[36]Pham, D. T., Koc, E., Lee, J. Y. and Phrueksanant, J. 2007. Using the bees

algorithm to schedule jobs for a machine. In: Proceedings of the 8th

International Conference on Laser Metrology, CMM and Machine Tool

Performance, (LAMDAMAP) Euspen, UK, Cardiff. pp. 430-439.

[37]Lara, C., Flores, J. J. and Calderón, F. 2008. Solving a school timetabling

problem using a bee algorithm. In: Proceedings of the 2008 Advances in

Artificial Intelligence (MICAI 2008). Springer, pp. 664-674.

[38]Abbass, H. 2001. MBO: Marriage in honey bees optimization - A

haplometrosis polygynous swarming approach. In: Proceedings of the 2001

Congress on Evolutionary Computation IEEE, pp. 207-214.

[39]Benatchba, K., Admane, L. and Koudil, M. 2005. Using bees to solve a data-

mining problem expressed as a max-sat one. In: Mira, J. and Álvarez, J.R. eds.

Artificial Intelligence and Knowledge Engineering Applications: A

Bioinspired Approach. Vol. 3562. Springer, pp. 212-220.

[40]Koudil, M., Benatchba, K., Tarabet, A. and Sahraoui, E. B. 2007. Using

artificial bees to solve partitioning and scheduling problems in codesign.

Applied Mathematics and Computation, Vol. 186, No. 2, pp. 1710-1722.

[41]Karaboga, D. 2005. An idea based on honey bee swarm for numerical

optimization. Technical Report-TR06, Erciyes University, Engineering

Faculty, Computer Engineering Department.

[42]Karaboga, D., Akay, B. and Ozturk, C. 2007. Artificial bee colony (ABC)

optimization algorithm for training feed-forward neural networks. In:

Modeling Decisions for Artificial Intelligence. Springer, pp. 318-329.

78 A Modified Bee Colony Optimization with

[43]Teodorović, D. and Dell’Orco, M. 2005. Bee colony optimization - A

cooperative learning approach to complex transportation problems. In:

Proceedings of 16th Mini–EURO Conference and 10th Meeting of EWGT

(Advanced OR and AI Methods in Transportation). Poznan, Poland. pp. 51-60.

[44]Teodorović, D. 2009. Bee colony optimization (BCO). In: Lim, C.P. et al. eds.

Innovations in Swarm Intelligence. Springer, pp. 39-60.

[45]Teodorović, D., Lučić, P., Marković, G. and Dell'Orco, M. 2006. Bee colony

optimization: Principles and applications. In: Proceedings of 8th Seminar on

Neural Network Applications in Electrical Engineering (NEUREL 2006).

Belgrade, Serbia & Montenegro. IEEE, pp. 151-156.

[46]Wong, L.-P., Puan, C. Y., Low, M. Y. H. and Chong, C. S. 2008. Bee colony

optimization algorithm with big valley landscape exploitation for job shop

scheduling problems. In: Proceedings of 2008 Winter Simulation Conference

(WSC 2008). IEEE, pp. 2050-2058.

[47]Błażewicz, J., Domschke, W. and Pesch, E. 1996. The job shop scheduling

problem: Conventional and new solution techniques. European Journal of

Operational Research, Vol. 93, No. 1, pp. 1-33.

[48]Adams, J., Balas, E. and Zawack, D. 1988. The shifting bottleneck procedure

for job shop scheduling. Management Science, Vol. 34, No. 3, pp. 391-401.

[49]Alijla, B. O., Wong, L.-P., Lim, C. P., Khader, A. T. and Al-Betar, M. A.

2014. A modified intelligent water drops algorithm and its application to

optimization problems. Expert Systems with Applications, Vol. 41, No. 15, pp.

6555-6569.

