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Abstract 

     The job shop scheduling problem (JSSP) is regarded as one of the 
problems which is widely studied. This paper presents a bee colony 
optimization (BCO) algorithm with a local search named the 
modified two-enhancement scheme with neighbourhood N5 
perturbation (BCO+mTESN5) to solve the JSSP. In previous 
research, the BCO algorithm with TESN5 local search 
(BCO+TESN5) is applied to solve the JSSP. The BCO+TESN5 
algorithm uses a brute force strategy in performing the N5 
neighbourhood local search. However, the brute force local search 
strategy incurs expensive overhead. To address the high overhead 
issue, the BCO+mTESN5 algorithm is proposed where the local 
search is performed on a targeted bottleneck machine within the N5 
neighbourhood structure. The selection of the targeted bottleneck 
machine is done based on a list of bottleneck machines identified by 
the shifting bottleneck heuristic (SBH). Two selection strategies are 
tested to select the targeted bottleneck machine, namely: the greedy 
selection and the linear ranking selection. The proposed algorithms 
are examined using a set of benchmark problems obtained from the 
OR-library. The results show that the proposed BCO+mTESN5 with 
linear ranking selection successfully solves 54% of the 82 OR-library 
benchmark dataset to ≤  1% from known optimum and it is 
comparable to the BCO+TESN5 algorithm. In terms of 
computational time to obtain the best makespan, the proposed 
BCO+mTESN5 with linear ranking selection outperforms the 
BCO+TESN5 algorithm by 25%. 

     Keywords: Bee algorithm, Local search, Neighbourhood search, Selection 
strategy, Shifting bottleneck heuristic. 
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1      Introduction 

Rapid growth of global market makes the manufacturing industry a complex yet 

dynamic industry. In order to compete in a versatile environment, manufacturers 

are attempting very hard to increase productivity and minimize the cycle time of 

their products. One of the common issues among the manufacturer is to ensure 

that scarce resources are allocated effectively to a set of competing activities. This 

is crucial as it maximizes the utilization of the resources (e.g. machines, human 

work force) and thus the productivity can be improved. 

Job shop scheduling problem (JSSP) is commonly found in manufacturing 

industry. Over the last 50 years, there is a considerable amount of literature on 

JSSP has been introduced [1]. For instance, exact methods that guarantee the 

optimum solution have been extensively applied to address the JSSP. These exact 

methods include branch-and-bound [2; 3], and linear programming [4]. However, 

exact methods are found to be expensive as they need exponential computational 

time for solving large scale scheduling problems. Another group of techniques 

used to solve the JSSP is approximate algorithms. An approximate algorithm 

employs heuristic and/or iterative improvements during the problem solving 

process. Priority dispatching rules are categorized as approximate algorithms. 

Priority dispatching rules are frequently applied to solve the JSSP because of their 

ease of implementation and low time complexity. The priority dispatching rules 

can be based on due dates or processing time such as first in first out (FIFO), 

earliest due date (EDD), and shortest processing time (SPT). Priority dispatching 

rules perform well in certain cases but there is no guarantee that the rules are able 

to generate the optimum solution for all problems [5].   

The need for more robust methodologies which can produce reasonably good 

solutions within short period of time leads to the development of a new family of 

approximate algorithms named meta-heuristic. According to Osman and Laporte, 

a meta-heuristic is an iterative generation process which guides a subordinate 

heuristic by combining perceptively different concepts for exploring and 

exploiting the search space using learning strategies to structure information in 

order to find efficient near-optimal solutions [6]. Meta-heuristic are also 

considered as high level strategies for exploring search space such that the search 

is able to avoid from being trapped in local minima. [5; 7] introduce some meta-

heuristics which are commonly used to solve job shop scheduling problems. 

These include genetic algorithm (GA), tabu search (TS), simulated annealing 

(SA), particle swarm intelligence (PSO), ant colony optimization (ACO), bee 

colony optimization (BCO).  

The PSO, ACO, and BCO algorithms are nature inspired meta-heuristics which 

model the behavior of different swarms of animals and insects. These three 

algorithms (i.e. PSO, ACO, and BCO) were developed based on bird flocking, ant 

colony, and honey bees’ behavior respectively. The nature inspired meta-

heuristics have been studied by researcher and they have been applied to solve 

real-world problems in different domains including JSSP. In order to enhance the 

performance of the algorithms, these meta-heuristics are hybridized with other 
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techniques (e.g. local search methods or other meta-heuristics). Table 1 shows 

some of the recent methods which are employed to solve JSSP. Many of the 

methods listed in Table 1 are hybridized with other approaches, to make the 

methods more robust. 

Table 1: Methods used to solve job shop scheduling problem  

Method Year Title 

Genetic Algorithm 

(GA) 

2012 
A new hybrid genetic algorithm for job shop scheduling 

problem [8] 

2014 
A new hybrid parallel genetic algorithm for the job-shop 

scheduling problem [9] 

2015 
A new hybrid island model genetic algorithm for job shop 

scheduling problem [10] 

2015 
A local search genetic algorithm for the job shop 

scheduling problem with intelligent agents [11] 

Tabu Search (TS) 

2012 
A hybrid genetic tabu search algorithm for solving job 

shop scheduling problems: A case study [12] 

2015 
A tabu search algorithm to minimize total weighted 

tardiness for the job shop scheduling problem [13] 

2015 
A tabu search algorithm to minimize total weighted 

tardiness for the job shop scheduling problem [14] 

Simulated 

Annealing (SA) 

2011 

A simulated annealing algorithm based on block 

properties for the job shop scheduling problem with total 

weighted tardiness objective [15] 

2012 
Improved simulated annealing algorithm used for job 

shop scheduling problems [16] 

2015 
Neighbourhood generation mechanism applied in 

simulated annealing to job shop scheduling problems [17] 

Particle Swarm 

Optimization 

(PSO) 

2011 
An efficient hybrid particle swarm optimization for the 

job shop scheduling problem [18] 

2012 
A two-stage hybrid particle swarm optimization algorithm 

for the stochastic job shop scheduling problem [19] 

2013 

A neighbourhood property for the job shop scheduling 

problem with application to hybrid particle swarm 

optimization [20] 

Ant Colony 2006 A hybrid ant colony optimization technique for job-shop 
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Optimization 

(ACO) 

scheduling problems [21] 

2008 

On the pheromone update rules of ant colony 

optimization approaches for the job shop scheduling 

problem [22] 

2010 
Ant colony optimisation with parameterised search space 

for the job shop scheduling problem [23] 

2013 
An ant colony optimization algorithm for job shop 

scheduling problem [24] 

Bee Colony 

Optimization 

(BCO) 

2006 
A bee colony optimization algorithm to job shop 

scheduling [25] 

2010 

Bee colony optimisation algorithm with big valley 

landscape exploitation for job shop scheduling problems 

[26] 

2012 
A generic bee colony optimization framework for 

combinatorial optimization problems [27] 

The BCO algorithm is one of the potential algorithms to solve the JSSP. Chong et 

al. proposed a BCO algorithm specifically designed for the JSSP [25]. The BCO 

algorithm described in [25] was compared with the ACO algorithm, and the 

results shows that the proposed algorithm outperforms the ACO algorithm in 

terms of accuracy and speed. Wong proposed the BCO algorithm with TESN5 

local search (BCO+TESN5) to solve the JSSP [27], and the results shows that the 

BCO+TESN5 algorithm is comparable with PSO algorithm. One of the 

limitations of the BCO+TESN5 algorithm is that it employs a brute force strategy 

in performing the N5 neighbourhood local search. The details of the N5 

neighbourhood structure can be found in Section 4. This causes the TESN5 local 

search is expensive in terms of processing overhead. This paper intends to reduce 

the high overhead of the TESN5 by performing the local search on a targeted 

bottleneck machine only. It describes the work on applying the BCO algorithm 

with the modified two-enhancement scheme with neighbourhood N5 perturbation 

(mTESN5) to the JSSP.  

The organization of this paper is as follows. Section 1 gives introductory 

information about this work. Section 2 describes the JSSP. Section 3 highlights 

several bee related algorithms. Section 4 presents the N5 neighbourhood structure. 

Section 5 presents the proposed work, i.e. the integration of the modified TESN5 

in the BCO algorithm to solve the JSSP. Section 6 presents the experimental 

results. Section 7 concludes the paper. 

2      Job Shop Scheduling Problem 

In this section, the JSSP definition, its modelling, and optimization metrics are 

described. Let’s consider a JSSP which consists of n jobs, J = (1, 2, …, n). These 
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jobs will be processed on a set of m machines M = (1, 2, …, m). Each job consists 

of several operations and each operation will have to be processed on different 

machines according to a pre-defined precedence constraint. The operations are 

dependent to precedence operation in each job. This set of operations is denoted 

by O = {0, O11, …, O1m, On1, …, Oim, *} where Oij denotes the j-th operation of 

job Ji. The cardinality of O is (n x m) + 2 where “0” and “*” indicate the 

fabricated starting and last operations respectively. Once an operation is processed 

on a machine, it cannot be interrupted until it is finished. A JSSP 

schedule/solution illustrates the sequence of the operations on the machines.  

A JSSP can be modelled using a disjunctive graph G = {O, ECon ∪ EDis} [28-30]. 

A set of directed conjunctive arcs which denotes the precedence constraints of 

each job is represented as ECon and a set of bi-directional disjunctive arcs which 

denotes the capacity constraints is represented as EDis. 

For example, given a three-job, three-machine JSSP as shown in Table 2, each 

operation of a particular job is denoted by x(y), where x indicates the processing 

time and y indicates the operating machine. Each row is a pre-defined machine 

precedence order for each job. Let’s take job J1 as an example, the first operation 

is to be processed on machine 1 (m1) for five units of time. This is followed by the 

second operation which is to be processed on machine 2 (m2) for two units of time. 

Finally, the third operation of J1 is to be processed on machine 3 (m3) for four 

units of time. By considering jobs J1, J2, and J3, all the operations of these three 

jobs can be grouped according to machines as follows: m1 = {O11, O23, O32}, m2 = 

{O12, O21, O33}, and m3 = {O13, O22, O31} respectively.  

The JSSP described in in Table 2 is illustrated as a disjunctive graph as shown in 

Fig. 1. The vertices in the disjunctive graph (Fig. 1) represent the operations while 

the arcs represent the given precedence between the operations. Solid directed 

arcs represent denote the precedence constraints of each job. For example, in 

order to complete job J1, O11 must be processed first, followed by O12, and finally 

O13.  The dashed bi-directional disjunctive arcs indicate the capacity constraints of 

each machine. For example, O12, O21, and O33 are linked by three bi-directional 

disjunctive arcs, which indicate these three operations are processed on a same 

machine, which is machine 2 (m2). 

Table 2: A 3-job x 3-machine JSSP 

Job 
Operations  

O1 O2 O3 

J1 5 (1) 2 (2) 4 (3) 

J2 3 (2) 7 (3) 3 (1) 

J3 2 (3) 3 (1) 7 (2) 
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Legends: 

 Directed conjunctive arc   τ – Processing time of Oij 

 Bi-directional disjunctive arc   Oij – j-th operation of job i 

 

Fig. 1: The 3-job x 3-machine JSSP in Table 2 represented as a disjunctive graph 

In the disjunctive graph model, a feasible JSSP schedule can be obtained by 

converting the bi-directional disjunctive arcs to become directed arcs such that no 

cycle exists in the graph. Fig. 2 shows a feasible schedule for the three-job, three-

machine JSSP in Table 2, after the arcs conversion for each machine is performed. 

Take machine 2 as an example, the bi-directional disjunctive arcs are converted 

into a set of directed disjunctive arcs such that the operation sequencing within 

machine 2 is as follows: O21 is processed first, followed by O12, and finally O33. 

Note that the disjunctive graph (as shown in Fig. 2) contains no cycle. In another 

word, by sequencing the operation sequence (i.e. arc conversation from bi-

directional disjunctive arc to become directional disjunctive arc) on each machine 

such that the operation precedence constraint is fulfilled, a feasible JSSP solution 

is obtained. 
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Legends: 

 Directed conjunctive arc  τ – Processing time of Oij 

 Directed disjunctive arc  Oij – j-th operation of job i 
 

Fig. 2: A directed graph for the 3-job x 3-machine JSSP in Table 2 

Critical path denotes the longest sequence of operations in a JSSP which must be 

completed on time such that the entire scheduling project to complete on due date 

(further description of the critical path method is in Section 5.1). The sum of 

processing time of the critical operations indicates the makespan of the whole 

schedule. The makespan of a JSSP schedule can be visualized using a Gantt chart. 

Gantt chart is a general way of graphically presenting a schedule of jobs on 

machines. The x-axis of the chart represents time whereas y-axis represents 

machine. Each job’s start and finish time on a particular machine is shown in a 

Gantt chart. Fig. 3  is a Gantt chart which shows the makespan and the critical 

path for the directed graph in Fig. 2. From Fig. 3, the critical path is highlighted in 

grey colour and it can be identified as "0→O11→O32→O33→*". The total 

processing time for the critical path is 0 + 5 + 3 + 7 = 15. This indicates the 

makespan for this schedule is 15 units of time. 

Legend: 

Oij – j-th operation of job i   Critical Path 

Fig. 3: Gantt chart for the directed graph (feasible schedule) in Fig. 2 
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A critical path can be decomposed into a set of blocks. Each block contains a set 

of well-ordered operation that processed on the same machine [31]. Two 

consecutive blocks must contain operations which are processed on different 

machines. If the Gantt chart (i.e. Fig. 3) is referred to, the critical path can be 

decomposed into two consecutive blocks. The first block consists of O11 and O32. 

The second block consists of O33. The block decomposition forms the central idea 

in the implementation of the N5 neighbourhood operators. A detailed description 

of the block decomposition and N5 neighbourhood structure will be explained in 

Section 4. 

In a JSSP, there are many different performance metrics which can be optimized. 

Some examples of the JSSP performance metrics which are commonly employed 

in optimization are listed in Table 3 [1; 32; 33]: 

Table 3: Commonly used JSSP performance metrics for optimization  

Objective function Symbol Interpretation 

Makespan Cmax 
The total amount of time required to 

completely process all the jobs. 

Mean completion time C̄  
The average time spent by a job in the 

schedule. 

Mean flow time F̄  

The average time spent by a job in the 

schedule and including the processing time, 

waiting time and transfer time. 

Maximum lateness Lmax 
It is defined as the difference between 

completion time and due date of the job. 

Maximum tardiness Tmax The maximum value of lateness of the jobs. 

Number of tardy jobs NT 
The number of jobs that complete after their 

due date. 

3      Bee Colony Optimization 

In this section, an introduction to bee behaviour in nature will be presented. The 

strong self-organization and division system of honey bee swarm behaviour has 

gained the interest of researchers. One of the behaviours is the foraging behaviour 

of honey bees. The exchange of information among bees in bee foraging 

bahaviour forms collective knowledge to be employed by the entire bee colony. 

Each hive has a dancing area which allows the foragers to inform and recruit the 

nest mates to the newly found or existing food sources. The communication 

between bees is carried out by performing waggle dance on the dancing floor. By 

observing the dances, a bee opts for a dance to follow such that in a long run, 

more profitable food sources are favored.  
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Various algorithms inspired by the behaviour of honey bee have been developed. 

Some known algorithms based on bee swarm intelligence are the bee system (BS) 

algorithm, the artificial bee colony (ABC) algorithm, the bees algorithm (BA), the 

marriage bee optimization (MBO) algorithm, and the bee colony optimization 

(BCO) algorithm. 

Lučić and Teodorović proposed the BS algorithm for solving difficult 

combinatorial optimization problem. In their research, they used the BS algorithm 

to solve traveling salesman problem (TSP) [34]. The implementation is tested on 

eight benchmark TSPs and the proposed BS algorithm is enriched with 2-opt and 

3-opt heuristics, which act as a local optimizer to further improve the solutions. 

The BA was introduced by Pham et al. [35]. This algorithm is a population-based 

algorithm that mimics the foraging behaviour of honeybee. The BA population 

agents allocate a larger number of forager and a small number of scouts. The 

scouts randomly search the solution space and evaluate the fitness or profitability 

of food source while the foragers search the neighbourhood to look for further 

fitness improvement. The BA had been applied to train artificial neural networks 

[35], to schedule jobs for machine [36], and to solve a timetabling problem [37]. 

Honey bees exhibit many features that can be computationally realized as a 

problem solving model in an intelligent system. Besides foraging behaviours, 

other features such as mating, marriage and reproduction of bees are 

computationally realized as an algorithmic tool to solve real-world problems. 

Abbass presented an optimization algorithm based on the marriage in honey bees 

(MBO)  [38]. A normal honey bee’s colony consists of queen bee, drones and 

workers. Queens represent the main reproductive individuals in a colony by laying 

eggs. When this phenomenon is computationally realized to solve an optimization 

problem, the queen bee represents a solution, and when the queen bee laid egg, 

the eggs are produced with a series of crossover and mutation processes. If the 

hatchling is found to be better than the queen, then the hatchling replaces the 

current queen and removes its sibling’s solutions. This process repeats until a pre-

defined criterion is met. The MBO had been applied to solve data mining problem 

as satisfiability problem [39], and partitioning and scheduling problem in 

codesign [40].  

The ABC algorithm is one of the popular swarm intelligence algorithms based on 

honey bee behaviour. The ABC algorithm was first proposed by Karaboga [41]. 

This algorithm simulates the foraging behaviour of honey bee. In the ABC 

algorithm, employed bees, onlooker bees and scouts bees are the three important 

constructs of the algorithm. In the ABC algorithm, position of food source 

represents a possible solution to the problem, and the nectar amount of the food 

sources corresponds to the quality or fitness of the solution. Initially, all food 

sources are discovered by scout bees, then onlooker bees in the hive select the 

food sources to exploit. After an onlooker bee selects a food source to go, it 

becomes employed bee to fly to the food source and returns to the hive with 

collected nectar. When employed bee is exploiting the exhausted food sources, it 

will become a scout bee to search for other food sources. The ABC algorithm had 

been applied to solve numerical problems [41] and to train neural networks [42]. 
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The BCO algorithm is a population-based algorithm proposed by Teodorović and 

Dell’Orco [43]. The BCO algorithm consists of a population of artificial bees and 

each of the artificial bees generate one solution to the problem. There are two 

alternating phases in this algorithm, namely: the forward pass and backward pass. 

In the forward pass phase, every artificial bee explores the search space with 

predefined moves. The predefined moves allow the bees to construct or improve 

the solution to reproduce a new solution. After having a partial solution from the 

forward pass, the artificial bees will return to the hive and start the backward pass 

phase. While in the backward pass, artificial bees that return to the hive will 

perform a waggle dance in the dance floor to inform other bees about the food 

source information (solution) they gained. Every bee will make a decision with a 

certain probability either to abandon the created partial solution or to perform a 

dance such that other bees are recruited towards to the found food source [44; 45]. 

Wong proposed a generic BCO framework to address different combinatorial 

optimization problems such as the quadratic assignment problem, traveling 

salesman problem and JSSP [27]. It computationally realizes the bee foraging 

behaviour by first initializing a swarm of artificial bees. These bees will be 

searching for food sources aided by a fragmentation transition rule (i.e. as its 

path/solution construction mechanism). The fragmentation transition rule is made 

up of two elements: arc fitness and heuristic distance. Before a bee starts foraging, 

it will probabilistically observe a waggle dance to follow. This dance becomes a 

preferred path of the foraging bee. When the bee constructs the path/solution, the 

node which appeared in preferred path is with higher arc fitness value and 

therefore it has higher chance to be selected by the bee as the next visiting node. 

On the other hand, under the influence of the heuristic distance, a bee tends to 

select the next nearest node from the current node. When this BCO algorithm is 

used to solve JSSP to optimize the makespan (i.e. fitness function), the two-

enhancement scheme with neighbourhood N5 perturbation is also applied to 

improve the search precision. The proposed algorithm by Wong [27] is able to 

solve 30 JSSP benchmark instances to optimum, out of the 82 benchmark 

problems in the OR-Library.  

The BCO algorithm that are described in [26; 27; 46] to solve the JSSP have a few 

distinctions with the BCO algorithm as described in [44; 45]. The most significant 

difference is that in the BCO algorithm described in [27], the bees are required to 

explore the search space and only return to the hive after completing a set of path. 

This allows the bees exchange the information of a set feasible solution rather 

than partial solution via waggle dance.  

In this paper, unless it is stated otherwise, the abbreviation of “BCO algorithm” 

refers to the BCO algorithm in [27]. Fig. 4 shows the BCO flow proposed in [27]. 
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Fig. 4: The flow chart of the BCO algorithm proposed in [27] 

4      N5 Neighbourhood Structure 

Local search can be integrated with a meta-heuristic method for solving an 

optimization problem. The local search starts from an initial solution and 

iteratively improves the solution with a better one in a defined set of 

neighbourhood solutions by performing a series of neighbourhood moves. If the 

new solution is with a better quality, it will replace the old solution. These steps 

continue until no further improvement can be done and at this stage, this solution 

is named as the local optimum solution within the defined neighbourhood [5]. 

In the JSSP domain, several neighbourhood structures are defined such as N1, N2, 

N3, N4, N5, and N6 [47]. Based on a particular neighbourhood structure, local 

search operator (i.e. the improvement heuristic) can be effectively designed. In 

this section, the N5 neighbourhood is described as it is employed as the local 
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search approach. The block decomposition described in Section 2 forms the 

central idea in the implementation of the N5 neighbourhood operators.  

Let’s consider a feasible JSSP solution which the critical path (i.e. highlighted in 

grey) is decomposed into four blocks as shown in Fig. 5. The N5 neighbourhood 

is defined as the interchange of two successive operations in a block structure that 

belongs to a critical path. For examples, the N5 neighbourhood swapping is 

performed on the first two operations of the last block or the last two operations of 

the first block. For intermediate blocks, the swapping can be done by swapping 

the first two operations or the last two operations of the block.  

 
Fig. 5: An example solution illustrated as Gantt chart 

Fig. 6 illustrates the possible swapping moves which can be performed according 

to the example in Fig. 5. There are six possible swapping operations which can be 

done within the blocks in critical path as shown in Fig. 6. Two possible swapping 

operations for first and last block of critical path positioned at machine 3, two 

possible swapping operations on intermediate blocks of critical path positioned at 

machine 2 and machine 1 respectively. The N5 neighbourhood structure searches 

all of the neighbourhood space in order to achieve a better solution and it has been 

successfully applied on solving the scheduling problem with excellent results [31]. 

However, this local search method is expensive as the number of possible 

swapping operation increases when the problem size increased. 
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Fig. 6: Possible swapping procedure using N5 neighbourhood structure 

5      The Modified Two-Enhancement Scheme with 
Neighbourhood N5 Perturbation (mTESN5) 

In [27], the BCO algorithm which is integrated with the two-enhancement scheme 

with neighbourhood N5 perturbation (BCO+TESN5) is applied in solving the 

JSSP. The TESN5 local search consists of two phases of local search. The first 

phase involves swapping and insertion operations which are based on the 

simulated annealing algorithm and the second phase is the minor perturbation 

based on N5 neighbourhood structure. In the second phase, the N5 neighbourhood 

structure will attempt to swap all the possible operations of the blocks that are in 

the critical path according to a brute force manner. This brute force strategy is 

very time consuming especially when the problem size increases. Instead of 

performing the perturbation on the entire neighbourhood space, the bottleneck 

machine is identified such that perturbation in performed on a bottleneck machine 

in order to reduce the expensive overhead of the TESN5 local search mechanism.  

For example, based on Fig. 6, if the brute force strategy is applied, all the six 

possible swapping moves will be performed before determining which move leads 

to a better solution. However, if only one bottleneck machine is selected to 

perform the swapping procedure, only two moves will be performed. This 

decreases 67% of the required swapping moves in the brute force strategy. The 

bottleneck machine is identified based on the adaptation of the shifting bottleneck 

heuristic (SBH). The descriptions of the bottleneck machine concept and SBH are 

presented in Section 5.1. This local search which focuses on bottleneck machine is 

named as the modified two-enhancement scheme with neighbourhood N5 

Perturbation (mTESN5).  

5.1      Bottleneck machines identification 

In general, the SBH sequences the machines one at a time, consecutively, by 

considering the machine identified as a bottleneck among the machines not yet 
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sequenced. Every time after a new machine is sequenced, local re-optimization is 

performed on all previously established sequences. The SBH decomposes a JSSP 

into several one-machine scheduling problems. Both the bottleneck identification 

and the local re-optimization procedures are based on repeatedly solving certain 

one-machine scheduling problems [1; 48].   

This section describes how a list of machines is identified and ranked according to 

its maximum lateness using the bottleneck identification steps of the SBH. Let’s 

consider the JSSP example shown in Table 2. At the initial state, the operation 

sequence for each machine is not determined (i.e. only the operation sequences of 

jobs are considered). The critical path method (CPM) [32] is applied to find the 

earliest start time and the latest finish time of each operation as shown in Fig. 7. 

 

Legends: 

   Directed conjunctive arc 

   Oij – j-th operation of job i 

   τ – Processing time of Oij  

   rj – Earliest start time of Oij  

   dj – Latest finish time of Oij  

 

Fig. 7: Critical path method network graph 

Next, each machine is treated as a one-machine scheduling problem. These one-

machine problems are solved as 1| rj | Lmax in order to minimize the maximum 

lateness, using the earliest due date (EDD) dispatching rule. Based on the CPM 

network graph shown in Fig. 7, all the three machines (i.e. m1 = {O11, O23, O32}, 

m2 = {O12, O21, O33}, and m3 = {O13, O22, O31}) will be solved as three different 1| 

rj | Lmax problems. 

Taking machine 1 as an example, when the EDD dispatching rule is applied, the 

following sequence is obtained: O11 → O32 → O23. This sequence is obtained due 

to the EDD dispatching rule with the ready times is applied. Therefore, the 

maximum lateness on machine 1 is equal to 2 (as shown in Table 4). If the EDD is 

applied without considering the ready times, the following sequence is obtained: 

O32 → O11  → O23. The maximum lateness for this sequence is equal to 3 (as 

shown in Table 5). Note that the EDD dispatching rule with the ready times is 

able to produce a sequence with lower maximum lateness. Thus, it is preferable to 

apply the EDD dispatching rule with the ready times. Table 4 and Table 5 show 

4
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the 1| rj | Lmax problem and schedule for minimization of Lmax for machine 1, with 

the application of different EDD dispatching rules. rj and dj are the earliest start 

time and the latest finish time. Sj is the start time of the operation and Cj is the 

completion time of the operation according to the job sequence determined by the 

EDD dispatching rule. Lmax measures the difference between Cj and dj (i.e. Lmax =  

Cj - dj). The highest Lmax among the operations is considered as the Lmax of a 

particular machine. 

Table 4: The 1| rj | Lmax problem and schedule for minimization of Lmax for 

machine 1 using EDD dispatching rule with ready time consideration 

Job (J) 1 3 2 

Operation O11 O32 O23 

Processing time, τ 5 3 3 

Earliest start time, rj 0 2 10 

Latest finish time, dj 7 6 13 

Start time, Sj 0 5 10 

Completion time, Cj 5 8 13 

Lateness, Lmax  -2 2 0 

 

Table 5: The 1| rj | Lmax problem and schedule for minimization of Lmax for 

machine 1 using EDD dispatching rule without ready time consideration 

Job (J) 3 1 2 

 Operation  O32 O11 O23 

Processing time, τ 3 5 3 

Release time, rj 2 0 10 

Due date, dj 6 7 13 

Start time, Sj 2 5 10 

Completion time, Cj 5 10 13 

Lateness, Lmax  -1 3 0 

Once the three 1| rj | Lmax problems are solved, each of these is with a maximum 

lateness (i.e. machines 1, 2, and 3 are with the maximum lateness (Lmax) of 2, 0, 

and 0 respectively).  These machines are ranked according to their Lmax value as a 

tardy machine list. Machine 1 has the highest maximum lateness value, thus 
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machine 1 is ranked at the top position in the tardy machine list. There is a tie 

between machines 2 and 3. To break the tie, randomly pick a machine (i.e. 

between machines 2 and 3) and rank it at the second position in the tardy machine 

list. 

5.2      Selection strategy 

In the proposed mTESN5 local search algorithm, only one machine will be 

selected using a selection strategy such that the machine will undergo the local 

perturbation based on N5 neighbourhood structure. The machine will be selected 

from a tardy machine list, which the generation of such tardy machine list is 

described in Section 5.1. Two selection strategies are implemented and tested, 

namely: greedy selection strategy and linear ranking selection strategy. Thus, this 

forms two different BCO with mTESN5 algorithms.  

If a greedy selection strategy is applied, only the tardiest machine (i.e. the first 

position) in the tardy machine list is selected to perform the perturbation based on 

N5 neighbourhood structure. Hence, the local search will only be focused on the 

tardiest machine, which is the bottleneck machine with the highest maximum 

lateness value. This algorithm is denoted by “BCO with GS-TESN5 algorithm”. 

If a linear ranking selection is applied, each machine in the tardy machine list is 

linearly assigned with a selection probability according to their rank using a linear 

function as shown in Equation 1. Hence, the machine with the higher selection 

probability (i.e. higher maximum lateness value) tends to be selected to undergo 

the local perturbation. At the same time, other machines in the tardy machine list 

are having some chance to be selected to undergo the local perturbation. This 

algorithm is denoted by “BCO with LRS-TESN5 algorithm”. 

          

                        

(1) 

Equation 1 is a linear function where  represents a machine’s rank 

in this selection strategy. All machines are ranked according to their Lmax value, 

i.e., rank 1 is assigned to the machine with highest Lmax and rank N is assigned to 

the machine with lowest Lmax value. Parameter SP (i.e. 1 ≤ SP ≤ 2) is used to 

control the gradient of the linear selection function. A larger SP value results in a 

higher selection pressure for selecting the solution with the highest rank [49].  

A parameter tuning experiment is performed to find a suitable SP value for the 

linear ranking selection strategy. Four SP values are examined in this parameter 

tuning experiment, namely: 1.0, 1.1, 1.5, and 2.0. SP = 1.0 represents uniform 

selection pressure, while SP= 1.1, SP = 1.5 and SP = 2.0 represent low, medium 

and high selection pressure respectively. 82 JSSP benchmark problems with five 

replications are used in the parameter tuning experiment. Table 6 shows the 

results of the linear ranking selection with different SP values in the parameter 

tuning experiment. M denotes deviation percentage from the best known 

makespan and µT denotes the average computational time to obtain the best 

makepsan, µT.  
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Table 6: Results of linear ranking selection with different selection pressures 

SP Values 1.0 1.1 1.5 2.0 

Average M (%) 3.18 3.21 3.21 3.19 

Average µT (s) 343.85 301.88 298.50 254.92 

From Table 6, the average deviation percentage from the best known makespan is 

similar, for all the four SP values. However, the computational time, µT of 

experiment with SP = 2.0 is the shortest. Therefore, linear function with high 

selection pressure (i.e. SP = 2.0) is employed in the BCO with LRS-TESN5 

algorithm. 

6      Experimental Results 

The results of the proposed algorithms (i.e. the BCO with GS-TESN5 algorithm 

and the BCO with LRS-TESN5 algorithm) are presented in this section. The 

proposed algorithms are implemented using JAVA with NetBean IDE 8.0 as the 

development tool. The experiments were conducted on a Windows OS cluster 

with Intel (R) Core™ i7-4700HQ Processor, and 16GB RAM. 

The results based on the BCO model in [27] is also included to compare the 

effectiveness of the proposed algorithm, and it is denoted by BCO+TESN5. The 

parameter setting used in [27] is adapted in the experiments conducted in this 

research as follows: β = 10, λ = 0.9, Κ = 100, ϖ = 25, NBee = 25, and BCMax = 

10000. The BCO with LRS-TESN5 algorithm uses a linear function which a 

parameter named SP has to be empirically tuned. Via a different parameter tuning 

experiment as presented in Section 5.2, the SP value is set at 2.0, in order to 

impose higher selection pressure towards the tardiest machine such that the 

perturbation is performed on it.  

The proposed algorithms are tested on the 82 benchmark instances obtained from 

the OR-library. These 82 benchmark problems are categorized into six different 

series (i.e. ABZ, ORB, FT/MT, LA, SWV, and YN). The dimension of these 82 

benchmark problems range from 6-job x 6-machine up to 50-job x 10-machine. 

Five replications of experiment are conducted for each benchmark instance to 

obtain average results. 

Table 7 shows the results of the BCO+TESN5 algorithm, the BCO with GS-

TESN5 algorithm, and the BCO with LRS-TESN5 algorithm respectively, in 

terms of the best makespan and its deviation percentage from the known best 

optimum, for the 82 benchmark instances obtained from the OR-library. The first, 

second, and the third columns denote the problem instance name, problem 

dimension (n-job x m-machine), and the best known optimum. The rest of the 

columns denote the best makespan and its deviation percentage from the known 

best optimum, based on five replications of algorithm execution. 
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Table 7: Performance of the BCO+TESN5, BCO with GS-TESN5, and BCO with 

LRS-TESN5 algorithms (in terms of the best makespan and its deviation 

percentage from the known best optimum) 

Problem 
Problem 

Dimension 

Known 

Optimum 

BCO+TESN5 

algorithm 

BCO with GS-

TESN5 algorithm 

BCO with LRS-

TESN5 algorithm 

Best 

Makespan 
B (%) 

Best 

Makespan 
B (%) 

Best 

Makespan 
B (%) 

ABZ5 10 x 10 1234 1234 0.00 1234 0.00 1234 0.16 

ABZ6 10 x 10 943 943 0.00 943 0.00 943 0.00 

ABZ7 20 x 15 656 694 5.79 695 5.95 690 5.18 

ABZ8 20 x 15 665 710 6.77 710 6.77 715 7.52 

ABZ9 20 x 15 679 723 6.48 733 7.95 729 7.36 

FTP06 6 x 6 55 55 0.00 55 0.00 55 0.00 

FTP10 10 x 10 930 937 0.75 937 0.75 937 0.75 

FTP20 20 x 5 1165 1165 0.00 1173 0.69 1173 0.69 

ORB01 10 x 10 1059 1059 0.00 1059 0.00 1059 0.00 

ORB02 10 x 10 888 889 0.11 889 0.11 889 0.11 

ORB03 10 x 10 1005 1008 0.30 1005 0.00 1021 1.59 

ORB04 10 x 10 1005 1011 0.60 1005 0.00 1011 0.60 

ORB05 10 x 10 887 889 0.23 889 0.23 889 0.23 

ORB06 10 x 10 1010 1012 0.20 1013 0.30 1019 0.89 

ORB07 10 x 10 397 397 0.00 397 0.00 397 0.00 

ORB08 10 x 10 899 899 0.00 899 0.00 908 1.00 

ORB09 10 x 10 934 934 0.00 934 0.00 934 0.00 

ORB10 10 x 10 944 944 0.00 944 0.00 944 0.00 

LA01 10 x 5 666 666 0.00 666 0.00 666 0.00 

LA02 10 x 5 655 655 0.00 655 0.00 655 0.00 

LA03 10 x 5 597 597 0.00 597 0.00 597 0.00 

LA04 10 x 5 590 590 0.00 590 0.00 590 0.00 

LA05 10 x 5 593 593 0.00 593 0.00 593 0.00 

LA06 15 x 5 926 926 0.00 926 0.00 926 0.00 

LA07 15 x 5 890 890 0.00 890 0.00 890 0.00 

LA08 15 x 5 863 863 0.00 863 0.00 863 0.00 

LA09 15 x 5 951 951 0.00 951 0.00 951 0.00 

LA10 15 x 5 958 958 0.00 958 0.00 958 0.00 

LA11 20 x 5 1222 1222 0.00 1222 0.00 1222 0.00 

LA12 20 x 5 1039 1039 0.00 1039 0.00 1039 0.00 

LA13 20 x 5 1150 1150 0.00 1150 0.00 1150 0.00 

LA14 20 x 5 1292 1292 0.00 1292 0.00 1292 0.00 

LA15 20 x 5 1207 1207 0.00 1207 0.00 1207 0.00 

LA16 10 x 10 945 945 0.00 945 0.00 945 0.00 

LA17 10 x 10 784 784 0.00 784 0.00 784 0.00 

LA18 10 x 10 848 848 0.00 848 0.00 848 0.00 
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Problem 
Problem 

Dimension 

Known 

Optimum 

BCO+TESN5 

algorithm 

BCO with GS-

TESN5 algorithm 

BCO with LRS-

TESN5 algorithm 

Best 

Makespan 
B (%) 

Best 

Makespan 
B (%) 

Best 

Makespan 
B (%) 

LA19 10 x 10 842 842 0.00 849 0.83 842 0.00 

LA20 10 x 10 902 902 0.00 907 0.55 907 0.55 

LA21 15 x 10 1046 1067 2.01 1055 0.86 1059 1.24 

LA22 15 x 10 927 930 0.32 935 0.86 935 0.86 

LA23 15 x 10 1032 1032 0.00 1032 0.00 1032 0.00 

LA24 15 x 10 935 949 1.50 956 2.25 949 1.50 

LA25 15 x 10 977 993 1.64 991 1.43 986 0.92 

LA26 20 x 10 1218 1218 0.00 1218 0.00 1218 0.00 

LA27 20 x 10 1235 1264 2.35 1269 2.75 1269 2.75 

LA28 20 x 10 1216 1226 0.82 1241 2.06 1234 1.48 

LA29 20 x 10 1152 1208 4.86 1207 4.77 1214 5.38 

LA30 20 x 10 1355 1355 0.00 1355 0.00 1355 0.00 

LA31 30 x 10 1784 1784 0.00 1784 0.00 1784 0.00 

LA32 30 x 10 1850 1850 0.00 1850 0.00 1850 0.00 

LA33 30 x 10 1719 1719 0.00 1719 0.00 1719 0.00 

LA34 30 x 10 1721 1721 0.00 1721 0.00 1721 0.00 

LA35 30 x 10 1888 1888 0.00 1888 0.00 1888 0.00 

LA36 15 x 15 1268 1297 2.29 1291 1.81 1297 2.29 

LA37 15 x 15 1397 1418 1.50 1426 2.08 1425 2.00 

LA38 15 x 15 1196 1244 4.01 1254 4.85 1230 2.84 

LA39 15 x 15 1233 1251 1.46 1264 2.51 1259 2.11 

LA40 15 x 15 1222 1244 1.80 1254 2.62 1246 1.96 

SWV01 20 x 10 1407 1497 6.40 1502 6.75 1502 6.75 

SWV02 20 x 10 1475 1562 5.90 1558 5.63 1565 6.10 

SWV03 20 x 10 1398 1537 9.94 1505 7.65 1515 8.37 

SWV04 20 x 10 1470 1597 8.64 1609 9.46 1606 9.25 

SWV05 20 x 10 1424 1540 8.15 1586 11.38 1577 10.74 

SWV06 20 x 15 1678 1832 9.18 1842 9.77 1843 9.83 

SWV07 20 x 15 1600 1722 7.63 1739 8.69 1735 8.44 

SWV08 20 x 15 1756 1946 10.82 1955 11.33 1970 12.19 

SWV09 20 x 15 1661 1818 9.45 1860 11.98 1866 12.34 

SWV10 20 x 15 1754 1904 8.55 1937 10.43 1922 9.58 

SWV11 50 x 10 2991 3375 12.84 3399 13.64 3371 12.70 

SWV12 50 x 10 3003 3333 10.99 3356 11.75 3375 12.39 

SWV13 50 x 10 3104 3463 11.57 3491 12.47 3481 12.15 

SWV14 50 x 10 2968 3257 9.74 3271 10.21 3259 9.80 

SWV15 50 x 10 2904 3208 10.47 3222 10.95 3216 10.74 

SWV16 50 x 10 2924 2924 0.00 2924 0.00 2924 0.00 

SWV17 50 x 10 2794 2794 0.00 2794 0.00 2794 0.00 

Table 7 (continued) 
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Problem 
Problem 

Dimension 

Known 

Optimum 

BCO+TESN5 

algorithm 

BCO with GS-

TESN5 algorithm 

BCO with LRS-

TESN5 algorithm 

Best 

Makespan 
B (%) 

Best 

Makespan 
B (%) 

Best 

Makespan 
B (%) 

SWV18 50 x 10 2852 2852 0.00 2852 0.00 2852 0.00 

SWV19 50 x 10 2843 2843 0.00 2843 0.00 2843 0.00 

SWV20 50 x 10 2823 2823 0.00 2823 0.00 2823 0.00 

YN1 20 x 20 885 930 5.08 934 5.54 934 5.54 

YN2 20 x 20 909 946 4.07 965 6.16 968 6.49 

YN3 20 x 20 892 941 5.49 951 6.61 942 5.61 

YN4 20 x 20 968 1054 8.88 1034 6.82 1047 8.16 

Table 8 shows the results on the relative performance of makespan in terms of 

percentage for the algorithms. The results show the average, best, and worst 

percentage difference from the best known makespan and the average 

computational time to obtain the best result. They are denoted by M, B, W, and µT 

respectively. 

Table 8: Overall performance of BCO+TESN5, BCO with GS-TESN5, and BCO 

with LRS-TESN5 algorithms 

 
BCO+TESN5 

algorithm 

BCO+mTESN5 algorithms 

BCO with GS-

TESN5 algorithm 

BCO with LRS-

TESN5 algorithm 

Average B (%) 2.56 2.81 2.79 

Average M (%) 3.03 3.24 3.19 

Average W (%) 3.46 3.64 3.56 

Average µT (s) 340.77 307.37 257.38 

Number of instances 

that are solved to 

optimum 

30 29 30 

Number of instances 

that are solved to ≤ 1% 

from known optimum/ 

upper bound 

46 45 44 

The BCO+TESN5 algorithm is able to solves 30 problem instances to optimum 

[27]. This is equivalent to 37% of the 82 problem instances are solved to optimum. 

About 56% of the 82 problem instances, which is equivalent to 46 problem 

instances, are solved to <=1% deviation from known optimum. The averages of B, 

M, and W for the BCO+TESN5 algorithm are 2.56%, 3.03%, and 3.46% 

respectively (as listed in Table 8).  

The BCO with GS-TESN5 algorithm solves 29 problem instances to optimum. 

This is equivalent to 35% of the 82 problem instances are solved to optimum. 

About 56% of the 82 problem instances, which is equivalent to 46 problem 

instances, are solved to <=1% deviation from known optimum. On the other hand, 

the BCO with LRS-TESN5 solves 30 problem instances to optimum. This is 

equivalent to 37% of the 82 problem instances are solved to optimum. About 54% 

Table 7 (continued) 
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of the 82 problem instances, which is equivalent to 44 problem instances, are 

solved to <=1% deviation from known optimum.  

From Table 8, it is noted that the average M of the BCO with GS-TESN5 and 

BCO with LRS-TESN5 is close to the BCO+TESN5 algorithm proposed in [27] 

with 0.21% and 0.05% difference respectively. On the other hand, the average µT 

for BCO with GS-TESN5 algorithm is 307.37s. The BCO with GS-TESN5 

algorithm reduces the average µT for roughly 33.4s, which is approximately 10% 

compared with the BCO+TESN5 algorithm. For the BCO with LRS-TESN5 

algorithm, the average µT is 257.38s, which is 83.39s different from the 

BCO+TESN5 algorithm. The BCO with LRS-TESN5 algorithm successfully 

reduces approximately 25% of the µT compared with the BCO+TESN5 algorithm. 

Next, the results are further analyzed according to six different problem series (i.e. 

ABZ, ORB, FT/MT, LA, SWV, and YN). In general, problem instances in FTP, 

ORB, and LA series are considered as easy problems whereas problem instances 

in ABZ, SWV, and YN series are considered as hard problems. Table 9 compares 

the performance in term of solution accuracy and µT of the three algorithms 

according to this series. 

Table 9: Performance of BCO+TESN5, BCO with GS-TESN5, and BCO with 

LRS-TESN5 algorithms by series 

Series Instances 

BCO+TESN5 

algorithm 

BCO with GS-

TESN5 algorithm 

BCO with LRS-

TESN5 algorithm 

Average of Average of Average of 

M (%) µT (s) M (%) µT (s) M (%) µT (s) 

ABZ 5 4.58 411.52 4.85 308.65 4.66 262.48 

FTP 3 0.61 125.69 0.84 140.22 1.02 64.71 

ORB 10 0.56 112.45 0.59 117.51 0.69 76.25 

LA 40 0.84 128.30 0.96 126.64 0.88 102.19 

SWV 20 7.81 782.07 8.31 711.58 8.20 609.26 

YN 4 7.16 902.66 7.19 691.96 7.34 590.46 

In terms of the solution accuracy, the averages M for all the three algorithms are 

within the same range. In terms of computational time, all the three algorithms 

require lesser µT to solve the problems from the FTP, ORB, and LA series. In 

contrary, ABZ, SWV, and YN series require longer µT to obtain the best solution. 

Table 9 shows that the BCO+TESN5 algorithm uses 782.07s on average to solve 

the SWV problems, while BCO with GS-TESN5 and BCO with LRS-TESN5 uses 

approximate 9.01% and 22.1% lesser time to solve the SWV series problem 

respectively. For YN problem series, the BCO+TESN5 algorithm uses 902.66s on 

average to solve the problems. On the other hand, BCO with GS-TESN5 and 

BCO with LRS-TESN5 use approximate 23.34% and 34.59% lesser time to solve 

the problems of YN series respectively. All these show that the BCO with GS-

TESN5 and BCO with LRS-TESN5 algorithms are able to shorten the average µT 

to solve the hard benchmark problem series (i.e. ABZ, SWV and YN problem 

series). 

A comparison study which involves the BCO with GS-TESN5, BCO with LRS-

TESN5, ACO algorithm [24] and Tabu Search [31] is presented in Table 10. 
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Based on the 40 problems in the LA series, the comparison results show that both 

of the BCO with GS-TESN5, BCO with LRS-TESN5 algorithms outperform the 

ACO algorithm but underperform the Tabu Search algorithm. On average, the 

BCO with GS-TESN5 and BCO with LRS-TESN5 algorithms solve the 40 

instances to 0.76% and 0.61% from the known optimum respectively. The ACO 

and Tabu Search algorithms solve the 40 instances to an average of 3.96% and 

0.43% from the known optimum respectively. 

Table 10: Comparison study which involves the algorithms of BCO with GS-

TESN5, BCO with LRS-TESN5, ACO [24] and Tabu Search [31] 

Problem 
Known 

Optimum 

ACO [24] Tabu Search [31] BCO with GS-TESN5 
BCO with LRS-

TESN5 

Best 
Makespan 

B (%) 
Best 

Makespan 
B (%) 

Best 
Makespan 

B (%) 
Best 

Makespan 
B (%) 

LA01 666 666 0.00 666 0.00 666 0.00 666 0.00 

LA02 655 669 2.13 655 0.00 655 0.00 655 0.00 

LA03 597 623 4.36 597 0.00 597 0.00 597 0.00 

LA04 590 611 3.56 593 0.51 590 0.00 590 0.00 

LA05 593 593 0.00 593 0.00 593 0.00 593 0.00 

LA06 926 926 0.00 926 0.00 926 0.00 926 0.00 

LA07 890 890 0.00 892 0.22 890 0.00 890 0.00 

LA08 863 863 0.00 863 0.00 863 0.00 863 0.00 

LA09 951 951 0.00 951 0.00 951 0.00 951 0.00 

LA10 958 958 0.00 958 0.00 958 0.00 958 0.00 

LA11 1222 1222 0.00 1222 0.00 1222 0.00 1222 0.00 

LA12 1039 1039 0.00 1039 0.00 1039 0.00 1039 0.00 

LA13 1150 1150 0.00 1150 0.00 1150 0.00 1150 0.00 

LA14 1292 1292 0.00 1292 0.00 1292 0.00 1292 0.00 

LA15 1207 1212 0.41 1207 0.00 1207 0.00 1207 0.00 

LA16 945 1005 6.35 946 0.11 945 0.00 945 0.00 

LA17 784 812 3.57 785 0.13 784 0.00 784 0.00 

LA18 848 885 4.36 861 1.53 848 0.00 848 0.00 

LA19 842 875 3.92 848 0.71 849 0.83 842 0.00 

LA20 902 912 1.11 902 0.00 907 0.55 907 0.55 

LA21 1046 1107 5.38 1055 0.86 1055 0.86 1059 1.24 

LA22 927 1018 9.82 954 2.91 935 0.86 935 0.86 

LA23 1032 1051 1.84 1032 0.00 1032 0.00 1032 0.00 

LA24 935 1011 8.13 948 1.39 956 2.25 949 1.50 

LA25 977 1062 8.70 988 1.13 991 1.43 986 0.92 

LA26 1218 1296 6.40 1218 0.00 1218 0.00 1218 0.00 

LA27 1235 1362 10.28 1259 1.94 1269 2.75 1269 2.75 

LA28 1216 1330 9.38 1216 0.00 1241 2.06 1234 1.48 

LA29 1152 1339 15.73 1164 1.04 1207 4.77 1214 5.38 

LA30 1355 1410 4.06 1355 0.00 1355 0.00 1355 0.00 

LA31 1784 1798 0.78 1784 0.00 1784 0.00 1784 0.00 

LA32 1850 1868 0.97 1850 0.00 1850 0.00 1850 0.00 

LA33 1719 1731 0.70 1719 0.00 1719 0.00 1719 0.00 

LA34 1721 1788 3.89 1721 0.00 1721 0.00 1721 0.00 

LA35 1888 1913 1.32 1888 0.00 1888 0.00 1888 0.00 

LA36 1268 1396 10.09 1275 0.55 1291 1.81 1297 2.29 

LA37 1397 1517 8.59 1422 1.79 1426 2.08 1425 2.00 

LA38 1196 1315 9.95 1209 1.09 1254 4.85 1230 2.84 

LA39 1233 1304 5.76 1235 0.16 1264 2.51 1259 2.11 
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Problem 
Known 

Optimum 

ACO [24] Tabu Search [31] BCO with GS-TESN5 
BCO with LRS-

TESN5 

Best 
Makespan 

B (%) 
Best 

Makespan 
B (%) 

Best 
Makespan 

B (%) 
Best 

Makespan 
B (%) 

LA40 1222 1307 6.96 1234 0.98 1254 2.62 1246 1.96 

Average of 40 instances 3.96  0.43  0.76  0.65 

7      Conclusion 

A BCO algorithm with modified two-enhancement scheme with neighbourhood 

N5 perturbation (BCO+mTESN5) local search is proposed to solve the job shop 

scheduling problem (JSSP). The mTESN5 local search is designed such that the 

perturbation is only performed on a targeted bottleneck machine. A list of 

machines is identified and ranked according to its maximum lateness using the 

bottleneck identification steps of the shifting bottleneck heuristic (SBH). Two 

selection strategies (i.e. greedy and linear ranking selection strategies) are 

implemented and examined to select a targeted bottleneck machine from the list. 

Thus, two different algorithms are obtained based on the selection strategy as 

follows: the BCO+mTESN5 algorithm with greedy selection (denoted by BCO 

with GS-TESN5) and the BCO+mTESN5 algorithm with linear ranking selection 

(denoted by BCO with LRS-TESN5). The proposed algorithms are tested on a set 

of 82 JSSP benchmark problems. The results show that the BCO with GS-TESN5 

algorithm reduces the computational time by 10% compared with the 

BCO+TESN5 algorithm. The BCO with LRS-TESN5 algorithm reduces the 

computational time by 25% compared with BCO+TESN5. In tackling hard 

problem such as ABZ, SWV and YN series of the benchmark problem, the BCO 

with LRS-TESN5 algorithm is able to shorten the average computational time to 

obtain the best result compared with the BCO+TESN5 algorithm.  

As for the future work, the BCO algorithm can be applied in SBH algorithm 

during re-scheduling process. During the re-scheduling process in the classic SBH, 

algorithm such as the EDD dispatching rule or branch-and-bound algorithm are 

used. The BCO algorithm can be used to replace the EDD dispatching rule or 

branch-and-bound algorithm, in solving the one-machine problems. 
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