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Abstract 

      Calculating similarity in text is a fundamental task in many natural language 
processing studies such as text summarization and it is still work in progress. In 
this paper, we propose a high-performance computing approach for building 
dependency trees and calculating the Tree Edit Distance technique (TED) for 
determining the similarity to links of dependency for n-gram syntactic and 
grammatical that shows the soft similarity between a set of related sentences text. 
Building dependency trees and determining tree edit distances for a large data set 
takes a lot of time, but creating a dependency tree for one sentence is 
independent of creating a dependency tree for another sentence. For example, 
generating a dependency tree for sentence three does not depend on generating a 
dependency tree for sentence four furthermore the edit distance computation 
between two dependency trees of sentences is independent of the computation of 
the edit distance between two other dependency trees of sentences. These 
operations calculating TED and creating sentence dependency trees can be 
implemented in parallel using multiprocessing which could greatly reduce the 
time. 

     Keywords: Tree Edit Distance, High-Performance Computing, Text Similarity. 

1      Introduction 
Finding the similarity between a group of related sentences is a fundamental step or stage 
in several Natural Language Processing (NLP) application areas, including Information 
Retrieval, Question Answering (QA) response selection, Text summarization, Plagiarism 
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Detection, Paraphrase Identification (PI), Recognizing Textual Entailment (RTE), and 
many other NLP tasks [4, 2, 3, 25, 19, 13,31,32] rely on text similarity. In general, the 
methods of finding the similarity between a set of related sentences depend on the 
representation of sentences. There are two ways for sentence representation: a syntactic 
representation of sentences and a bag-of-words representation. The structure of the text 
can be expressed using syntactic representation, which can also discriminate between 
events and their surroundings in the text. The same entities or events can be expressed in 
numerous viewpoints using a broad set of relations between the events and their 
participants. With these features, a dependency tree is constructed for each sentence in 
the text and one of the problems with the bag-of-words model is solved in that it ignores 
the relationship between the words in a sentence. We use the following example to 
demonstrate the issue:  

1) “Ahmad gets Ali’s vote. 
2) ” 2) “Ali gets Ahmad’s vote.” 

 Both statements are identical in the bag-of-words representation. The statements, 
however, are distinct according to dependency tree relations since they have various tree 
representations. Also, the bag-of-words model fails to capture structural relationships and 
PoS classification. Consider the following two scenarios. “Ahmad and Ali count votes,” 
and “Ahmad votes for Ali,” for example. The word “votes” is a noun in the first sentence 
but a verb in the second. In this paper, TED depends on dependency trees to represent 
grammatical and syntactic relationships between words to compute similarity to solve the 
bag-of-words problem. For a huge set of related sentences collection. It takes a long time 
to calculate tree edit distances and construct dependency trees. However, constructing a 
dependency tree for one sentence does not rely on creating one for constructing (for 
example, constructing a dependency tree for statement 2 does not construct a dependency 
tree for sentence 1). Furthermore, determining the tree edit distance between two 
sentences is independent of determining the tree edit distance between two additional 
sentences. These tasks (constructing sentence dependency trees and calculating TED) can 
be completed simultaneously (completed in parallel).  

2      Related Work 

In algorithmic research, calculating TED [1, 15, 12, 18, 14, 5, 28] has received a lot of 
attention. For example [1] indicates that one of the most fundamental activities of 
bioinformatics, such as networks of phylogenetic RNA 2 secondary structures evaluating 
glycans, uses TED extensively when comparing structured tree data. In addition, 
Fukagawa in [12] offered a method for calculating the edit distance among unordered 
rooted trees that were both appealing and practical. The problem of estimating the 
distance across unordered trees is transformed into the maximum clique problem for 
locating RNN glycan similarity structures. Recently, TED-based methods have been 
increasingly popular in NLP assignments [26, 21, 10]. For example, the TED research by 
kouylekov and magnini [17] is designed to identify textual entailment through 
dependency trees. The authors also examine various approaches to calculating the edit 
distance algorithms' cost functions. Also, in NLP tasks such as research for answering 
question systems and text entailment [27] produced structured latent variables with 
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probabilistic models for tree editing. The tree edits conditional random field model has 
been used by the authors of this study to assess the semantic similarity between phrase 
pairs. The generalized TED was used by the authors to demonstrate how to embed 
alignments, such as structured latent variables, in a probabilistic model. 

3      The Proposed Method 

In Natural Language Processing (NLP) applications such as Paraphrase Identification 
(PI), Plagiarism Detection and other domains linked to text processing, such as 
Information Retrieval, the computation of text similarity is a fundamental operation. In 
general, there are two ways for calculating text similarity: strings comparison (bag of 
words comparison) and syntactic n-grams (syntactic tree comparison). Some algorithms, 
such as LexRank [22], treat sentences as collections of words. This depiction may miss 
certain linguistically related information, decreasing the quality of the summary. For 
summarizing, some researchers use a supervised probabilistic model over syntactic trees 
to address the bag-of-words representation (e.g. [16]). Others use semantic frames and 
syntactic dependencies to tackle this issue, which indicate significant semantic and 
grammatical links in the text. [23]. Figure 1 shows the proposed method. 

 The preprocessing steps in this research are: tokenization, segmentation, and extracting 
semantic and syntactic dependencies using the Stanford Dependency parser [20], then 
building a dependency tree for each sentence. Figure 2 is an example of Stanford's 
semantic and syntactic dependency relations. Figure 3 is the dependency tree for the 
sentence in figure 2. 

 After preprocessing steps, calculating multiprocessing of TED is performed for finding 
text similarity that handles the bag-of-words problem. But in the previous related work, 
Dependency parsing was formerly used to locate common information among sentences 
to achieve sentence fusion [6, 11] and for sentence compression, TED was used to 
recognize uninformative sections of sentences [29]. TED is the most popular calculating 
model for finding the similarity between structures in natural language processing and 
information retrieval. In big data, calculating the tree edit distance between two sentences 
and constructing grammatical trees take a long time. On the other hand, calculating the 
tree edit distance between two sentences is unrelated to calculating the tree edit distance 
between two further sentences so these tasks (constructing dependency trees for a set of 
sentences and calculating TED) can be done at the same time in parallel to reduce time 
complexity and do more NLP takes in faster. Finally, multiprocessing for calculating the 
summary is performed. In general, there are two methods for generating a summary: 
extractive and abstractive summarization [27, 24]. The language in the document is 
initialized by abstractive summarization, and if necessary, additional words or phrases 
are added to the summary. Extractive summarization constructs a summary using only a 
part of the text’s statements. This research implemented two types of summarizations. 
The proposed clique abstractive method consists of the following steps: After choosing a 
smaller group of candidate sentences that have the most common grammatical relations, 
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the main step is to generate a sentence similarity graph, in which its nodes representing 
sentences and TED scores indicate the similarities between vertices (unigrams and 
bigrams). The second step is to search the similarity sentence graph for all cliques 
subgraphs, which are complete subgraphs of a graph with each node related to every 
other. In the second extractive clique approach, we pick the single sentence from each 
cluster with the lowest cluster-specific TED similarity average. 

  Figure 1: Proposed Method. 

Figure 2: Stanford Semantic and Syntactic Dependency Relations. 



 

 
181                                                              High-Performance Computing of Building …             

 

Figure 3: Stanford Semantic and Syntactic Dependency Relations 

4 High-Performance Computing for Building Dependency 
Trees 

Before constructing dependency trees, the Stanford dependency grammar representation 
has been retrieved for all sentences in the text. These representations comprise 
grammatical and syntactic relationships between words in a sentence. From these 
relations, the dependency tree for each sentence is built to find the similarity of 
sentences. A dependency tree T is a data structure generated from a set of nodes N(T) 
and edges E(T) ⊆N(T) ×N(T). T should have the following constraints: 
1) T does not have any cycles and every node has at most one incoming edge. 
2) T has a single root that is a node without incoming edges 
3) every node of T has just one incoming edge 
4) a path from the root to each node N(T) is unique. 

We keep a queue of nodes (words) to process while creating the dependency tree. A 
queue is initially empty. To pick up the root node of the dependency tree, start with the 
root relation. Create a queue for the root node. Second, delete node X from the top of the 
queue, discover all words related to the node from relations, and add them as children 
(as new nodes) to the node with edges that show the types of relations. Add all newly 
added nodes to the queue’s end. Third, repeat the second process recursively for new 
words (nodes) until the tree is complete. 

Since building the dependency tree for a specific sentence does not depend on 
another dependency tree, the multiprocessing task using Python is used to achieve high 
performance and reduce time complexity. Figure 4 shows python functions that describe 
the multiprocessing task for building a dependency tree. 

5 High-performance computing for calculating TED and 
finding text similarity 

The creation of a list of candidate sentences is the stage that is most crucial in the 
summarizing process. The candidate sentences are valuable when they are represented as 
a collection of dependency trees because these representations show semantic and 
syntactic relationships that are valuable for summarization. The candidate sentences in 
this study are represented as 5 a collection of dependency trees, then TED is used to 
determine the degree of similarity between sentences. Zhang and Shasha in 1989 
developed an algorithm for choosing the optimal matching tree solution for a pair of 
trees, whereas Tai in 1979 proposed a criterion for matching nodes between tree 
representations. 

The TED algorithm is dependent on ordered labeled trees. Ordered labeled trees are 
those in which the relationship between siblings is important, starting from the left to the 
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right. The difference in tree edit costs between two trees is known as the tree edit 
distance. The following edit operations are used: removing a node and linking its 
children to its parent while maintaining order, inserting a node between an existing node 
and a series of this node’s subsequent. 

 

Figure 4: Function that Describes the Multiprocessing for Building a Dependency Tree. 
 
children, and renaming a node’s label. The cost of each operation is determined by a cost 
function γ. An edit script S between two trees T1 and T2 is a sequence of edit operations 
turning T1 into T2. The total cost of all the operations in S is the cost of S. The most 
popular dynamic programming algorithm for calculating the edit distance among two 
ordered trees is the Zhang-Shasha method [30]. 

Table 1: F-ROUGE-Average Measures 
ROUGE Average Lex-Rank Cliques Abstractive 

Method 
cliques Extractive 

Method 
ROUGE-1 : 0.45 0.55 0.58 
ROUGE-2 : 0.24 0.38 0.40 
ROUGE-3 : 0.18 0.28 0.34 
ROUGE-4 : 0.15 0.19 0.30 
ROUGE-L : 0.39 0.51 0.52 
ROUGE-W : 0.12 0.21 0.25 
ROUGE-SU : 0.20 0.25 0.29 
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6 Results and dissection 
The proposed method was evaluated on DUC 2004 (Task 4 and Task 3) data set [9]. The 
data set contains news documents in English together with human-generated summaries 
for the documents. We selected DUC 2004 data set because it has been used in many 
previous NLP-related works, e.g., [10, 7]. 
 

The ROUGE Perl tool [8] was used to compare the automatically generated summary 
to the manually generated summary. Many additional researchers employed ROUGE to 
analyze their summarization algorithms. In ROUGE, we choose the option to use 
Porter’s stemmer on the input. 

 
We give each evaluation metric an F-score. F-ROUGE will offer an accurate 

comparison because the summary length is not rigidly enforced to compare 
automatically generated summaries to a group of reference summaries. Table 1 shows 
the comparison between extractive clique summary, abstractive summary, and LexRank. 

 
TED is sometimes overlooked because of its inefficiency, despite its simplicity and 

relevance. The time complexity of TED is cubic and the space complexity is quadratic 
because comparing trees of one million nodes may require (50-100) hours of runtime 
and 1.2TB of memory). Distributing a computation across many CPU cores is one 
technique to boost the performance of an algorithm. The tree edit distance, on the other 
hand, is far from straightforward to parallelize. The results of smaller problems are 
utilized to calculate the values for larger problems in dynamic programming. The 
dependency between these values must be taken into account to parallelize the algorithm. 
In this research, the average time complexities are reduced from (50-100) hours to (2- 5) 
minutes. 

Conclusion 
The main features in this research are utilizing high-performance computing for building 
dependency trees to reduce the time for calculating text similarity and utilizing syntactic 
trees to tackle the representation of a bag of words and to express grammatical and 
syntactic relationships. According to Table 1, the results of cliques of the abstractive 
method are better LexRank and cliques abstractive methods. 
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