
DOI: 10.15849/IJASCA.230320.12

Int. J. Advance Soft Compu. Appl, Vol. 15, No. 1, March 2023
Print ISSN: 2710-1274, Online ISSN: 2074-8523
Copyright © Al-Zaytoonah University of Jordan (ZUJ)

High-Performance Computing of Building The
Dependency Trees and Calculating Tree Edit

Distances For Text Similarity

Nesreen Alsharman, Inna V.pivkina, Raja M.T Masadeh , Omar Almomani , and
Nabeel Bani-Hani

Computer Science Department, The World Islamic Sciences Education University,
Amman, Jordan

e-mail: Nesreen.alsharman@wise.edu.jo
 Computer Science Department, New Mexico State University, USA

e-mail: ipivkina@cs.nmsu.
Computer Science Department, The World Islamic Sciences Education University,

Amman, Jordan
e-mail: raja.masadeh@wise.edu.jo

Department of Information Systems and Network, The World Islamic Sciences
Education University, Amman, Jordan
e-mail: omar.almomani@wise.edu.jo

 University of Bahrain, College of Applied Studies
e-mail: nbanihani@uob.edu.bh

Abstract

 Calculating similarity in text is a fundamental task in many natural language
processing studies such as text summarization and it is still work in progress. In
this paper, we propose a high-performance computing approach for building
dependency trees and calculating the Tree Edit Distance technique (TED) for
determining the similarity to links of dependency for n-gram syntactic and
grammatical that shows the soft similarity between a set of related sentences text.
Building dependency trees and determining tree edit distances for a large data set
takes a lot of time, but creating a dependency tree for one sentence is
independent of creating a dependency tree for another sentence. For example,
generating a dependency tree for sentence three does not depend on generating a
dependency tree for sentence four furthermore the edit distance computation
between two dependency trees of sentences is independent of the computation of
the edit distance between two other dependency trees of sentences. These
operations calculating TED and creating sentence dependency trees can be
implemented in parallel using multiprocessing which could greatly reduce the
time.

 Keywords: Tree Edit Distance, High-Performance Computing, Text Similarity.

1 Introduction
Finding the similarity between a group of related sentences is a fundamental step or stage
in several Natural Language Processing (NLP) application areas, including Information
Retrieval, Question Answering (QA) response selection, Text summarization, Plagiarism

mailto:Nesreen.alsharman@wise.edu.jo

Nesreen Alsharman et al. 178

Detection, Paraphrase Identification (PI), Recognizing Textual Entailment (RTE), and
many other NLP tasks [4, 2, 3, 25, 19, 13,31,32] rely on text similarity. In general, the
methods of finding the similarity between a set of related sentences depend on the
representation of sentences. There are two ways for sentence representation: a syntactic
representation of sentences and a bag-of-words representation. The structure of the text
can be expressed using syntactic representation, which can also discriminate between
events and their surroundings in the text. The same entities or events can be expressed in
numerous viewpoints using a broad set of relations between the events and their
participants. With these features, a dependency tree is constructed for each sentence in
the text and one of the problems with the bag-of-words model is solved in that it ignores
the relationship between the words in a sentence. We use the following example to
demonstrate the issue:

1) “Ahmad gets Ali’s vote.
2) ” 2) “Ali gets Ahmad’s vote.”

 Both statements are identical in the bag-of-words representation. The statements,
however, are distinct according to dependency tree relations since they have various tree
representations. Also, the bag-of-words model fails to capture structural relationships and
PoS classification. Consider the following two scenarios. “Ahmad and Ali count votes,”
and “Ahmad votes for Ali,” for example. The word “votes” is a noun in the first sentence
but a verb in the second. In this paper, TED depends on dependency trees to represent
grammatical and syntactic relationships between words to compute similarity to solve the
bag-of-words problem. For a huge set of related sentences collection. It takes a long time
to calculate tree edit distances and construct dependency trees. However, constructing a
dependency tree for one sentence does not rely on creating one for constructing (for
example, constructing a dependency tree for statement 2 does not construct a dependency
tree for sentence 1). Furthermore, determining the tree edit distance between two
sentences is independent of determining the tree edit distance between two additional
sentences. These tasks (constructing sentence dependency trees and calculating TED) can
be completed simultaneously (completed in parallel).

2 Related Work

In algorithmic research, calculating TED [1, 15, 12, 18, 14, 5, 28] has received a lot of
attention. For example [1] indicates that one of the most fundamental activities of
bioinformatics, such as networks of phylogenetic RNA 2 secondary structures evaluating
glycans, uses TED extensively when comparing structured tree data. In addition,
Fukagawa in [12] offered a method for calculating the edit distance among unordered
rooted trees that were both appealing and practical. The problem of estimating the
distance across unordered trees is transformed into the maximum clique problem for
locating RNN glycan similarity structures. Recently, TED-based methods have been
increasingly popular in NLP assignments [26, 21, 10]. For example, the TED research by
kouylekov and magnini [17] is designed to identify textual entailment through
dependency trees. The authors also examine various approaches to calculating the edit
distance algorithms' cost functions. Also, in NLP tasks such as research for answering
question systems and text entailment [27] produced structured latent variables with

179 High-Performance Computing of Building …

probabilistic models for tree editing. The tree edits conditional random field model has
been used by the authors of this study to assess the semantic similarity between phrase
pairs. The generalized TED was used by the authors to demonstrate how to embed
alignments, such as structured latent variables, in a probabilistic model.

3 The Proposed Method

In Natural Language Processing (NLP) applications such as Paraphrase Identification
(PI), Plagiarism Detection and other domains linked to text processing, such as
Information Retrieval, the computation of text similarity is a fundamental operation. In
general, there are two ways for calculating text similarity: strings comparison (bag of
words comparison) and syntactic n-grams (syntactic tree comparison). Some algorithms,
such as LexRank [22], treat sentences as collections of words. This depiction may miss
certain linguistically related information, decreasing the quality of the summary. For
summarizing, some researchers use a supervised probabilistic model over syntactic trees
to address the bag-of-words representation (e.g. [16]). Others use semantic frames and
syntactic dependencies to tackle this issue, which indicate significant semantic and
grammatical links in the text. [23]. Figure 1 shows the proposed method.

 The preprocessing steps in this research are: tokenization, segmentation, and extracting
semantic and syntactic dependencies using the Stanford Dependency parser [20], then
building a dependency tree for each sentence. Figure 2 is an example of Stanford's
semantic and syntactic dependency relations. Figure 3 is the dependency tree for the
sentence in figure 2.

 After preprocessing steps, calculating multiprocessing of TED is performed for finding
text similarity that handles the bag-of-words problem. But in the previous related work,
Dependency parsing was formerly used to locate common information among sentences
to achieve sentence fusion [6, 11] and for sentence compression, TED was used to
recognize uninformative sections of sentences [29]. TED is the most popular calculating
model for finding the similarity between structures in natural language processing and
information retrieval. In big data, calculating the tree edit distance between two sentences
and constructing grammatical trees take a long time. On the other hand, calculating the
tree edit distance between two sentences is unrelated to calculating the tree edit distance
between two further sentences so these tasks (constructing dependency trees for a set of
sentences and calculating TED) can be done at the same time in parallel to reduce time
complexity and do more NLP takes in faster. Finally, multiprocessing for calculating the
summary is performed. In general, there are two methods for generating a summary:
extractive and abstractive summarization [27, 24]. The language in the document is
initialized by abstractive summarization, and if necessary, additional words or phrases
are added to the summary. Extractive summarization constructs a summary using only a
part of the text’s statements. This research implemented two types of summarizations.
The proposed clique abstractive method consists of the following steps: After choosing a
smaller group of candidate sentences that have the most common grammatical relations,

Nesreen Alsharman et al. 180

the main step is to generate a sentence similarity graph, in which its nodes representing
sentences and TED scores indicate the similarities between vertices (unigrams and
bigrams). The second step is to search the similarity sentence graph for all cliques
subgraphs, which are complete subgraphs of a graph with each node related to every
other. In the second extractive clique approach, we pick the single sentence from each
cluster with the lowest cluster-specific TED similarity average.

 Figure 1: Proposed Method.

Figure 2: Stanford Semantic and Syntactic Dependency Relations.

181 High-Performance Computing of Building …

Figure 3: Stanford Semantic and Syntactic Dependency Relations

4 High-Performance Computing for Building Dependency
Trees

Before constructing dependency trees, the Stanford dependency grammar representation
has been retrieved for all sentences in the text. These representations comprise
grammatical and syntactic relationships between words in a sentence. From these
relations, the dependency tree for each sentence is built to find the similarity of
sentences. A dependency tree T is a data structure generated from a set of nodes N(T)
and edges E(T) ⊆N(T) ×N(T). T should have the following constraints:
1) T does not have any cycles and every node has at most one incoming edge.
2) T has a single root that is a node without incoming edges
3) every node of T has just one incoming edge
4) a path from the root to each node N(T) is unique.

We keep a queue of nodes (words) to process while creating the dependency tree. A
queue is initially empty. To pick up the root node of the dependency tree, start with the
root relation. Create a queue for the root node. Second, delete node X from the top of the
queue, discover all words related to the node from relations, and add them as children
(as new nodes) to the node with edges that show the types of relations. Add all newly
added nodes to the queue’s end. Third, repeat the second process recursively for new
words (nodes) until the tree is complete.

Since building the dependency tree for a specific sentence does not depend on
another dependency tree, the multiprocessing task using Python is used to achieve high
performance and reduce time complexity. Figure 4 shows python functions that describe
the multiprocessing task for building a dependency tree.

5 High-performance computing for calculating TED and
finding text similarity

The creation of a list of candidate sentences is the stage that is most crucial in the
summarizing process. The candidate sentences are valuable when they are represented as
a collection of dependency trees because these representations show semantic and
syntactic relationships that are valuable for summarization. The candidate sentences in
this study are represented as 5 a collection of dependency trees, then TED is used to
determine the degree of similarity between sentences. Zhang and Shasha in 1989
developed an algorithm for choosing the optimal matching tree solution for a pair of
trees, whereas Tai in 1979 proposed a criterion for matching nodes between tree
representations.

The TED algorithm is dependent on ordered labeled trees. Ordered labeled trees are
those in which the relationship between siblings is important, starting from the left to the

Nesreen Alsharman et al. 182

right. The difference in tree edit costs between two trees is known as the tree edit
distance. The following edit operations are used: removing a node and linking its
children to its parent while maintaining order, inserting a node between an existing node
and a series of this node’s subsequent.

Figure 4: Function that Describes the Multiprocessing for Building a Dependency Tree.

children, and renaming a node’s label. The cost of each operation is determined by a cost
function γ. An edit script S between two trees T1 and T2 is a sequence of edit operations
turning T1 into T2. The total cost of all the operations in S is the cost of S. The most
popular dynamic programming algorithm for calculating the edit distance among two
ordered trees is the Zhang-Shasha method [30].

Table 1: F-ROUGE-Average Measures
ROUGE Average Lex-Rank Cliques Abstractive

Method
cliques Extractive

Method
ROUGE-1 : 0.45 0.55 0.58
ROUGE-2 : 0.24 0.38 0.40
ROUGE-3 : 0.18 0.28 0.34
ROUGE-4 : 0.15 0.19 0.30
ROUGE-L : 0.39 0.51 0.52
ROUGE-W : 0.12 0.21 0.25
ROUGE-SU : 0.20 0.25 0.29

183 High-Performance Computing of Building …

6 Results and dissection
The proposed method was evaluated on DUC 2004 (Task 4 and Task 3) data set [9]. The
data set contains news documents in English together with human-generated summaries
for the documents. We selected DUC 2004 data set because it has been used in many
previous NLP-related works, e.g., [10, 7].

The ROUGE Perl tool [8] was used to compare the automatically generated summary
to the manually generated summary. Many additional researchers employed ROUGE to
analyze their summarization algorithms. In ROUGE, we choose the option to use
Porter’s stemmer on the input.

We give each evaluation metric an F-score. F-ROUGE will offer an accurate

comparison because the summary length is not rigidly enforced to compare
automatically generated summaries to a group of reference summaries. Table 1 shows
the comparison between extractive clique summary, abstractive summary, and LexRank.

TED is sometimes overlooked because of its inefficiency, despite its simplicity and

relevance. The time complexity of TED is cubic and the space complexity is quadratic
because comparing trees of one million nodes may require (50-100) hours of runtime
and 1.2TB of memory). Distributing a computation across many CPU cores is one
technique to boost the performance of an algorithm. The tree edit distance, on the other
hand, is far from straightforward to parallelize. The results of smaller problems are
utilized to calculate the values for larger problems in dynamic programming. The
dependency between these values must be taken into account to parallelize the algorithm.
In this research, the average time complexities are reduced from (50-100) hours to (2- 5)
minutes.

Conclusion
The main features in this research are utilizing high-performance computing for building
dependency trees to reduce the time for calculating text similarity and utilizing syntactic
trees to tackle the representation of a bag of words and to express grammatical and
syntactic relationships. According to Table 1, the results of cliques of the abstractive
method are better LexRank and cliques abstractive methods.

References

[1] Tatsuya AKUTSU. “Tree Edit Distance Problems: Algorithms and Applications to
Bioinformatics”. In: IEICE Transactions on Information and Systems E93.D.2
(2010), pp. 208–218. doi: 10.1587/transinf.E93.D. 208.

[2] Nesreen Alsharman et al. “Machine Learning and Answer Set Program Rules
towards Traffic Light Management”. In: International Journal of Advanced Trends
in Computer Science and Engineering 9.3 (2020).

[3] Wael Jumah Alzyadat et al. “A Recruitment Big Data Approach to interplay of the
Target Drugs”. In: International Journal of Advances in Soft Computing and its
Applications (2022).

Nesreen Alsharman et al. 184

[4] FAISAL Y. ALZYOUD, NISREEN ALSHARMAN, and ABDALLAH
ALTAHAN ALNUAIMI. In: Journal of Theoretical and Applied Information
Technology. 2021, pp. 38–47.

[5] “An Efficient Unordered Tree Kernel and Its Application to Glycan Classification”.
In: Advances in Knowledge Discovery and Data Mining (2008).

[6] Regina Barzilay and Kathleen R. McKeown. “Sentence Fusion for Multidocument
News Summarization”. In: Comput. Linguist. (2005), pp. 297– 328.

[7] Yllias Chali and Sadid A. Hasan. “Query-focused multi-document summarization:
Automatic data annotations and supervised learning approaches”. In: Natural
Language Engineering (2012), pp. 109–145.

[8] Arman Cohan and Nazli Goharian. “Revisiting Summarization Evaluation for
Scientific Articles”. In: (2016).

[9] DUC. Proceedings of Document Understanding Workshop (DUC 2004). Boston
Park Plaza Hotel and Towers, Boston, USA, May 6-7, 2004. 2004.

[10] Gunes Erkan and Dragomir R. Radev. “LexRank: Graph-based Lexical Centrality
As Salience in Text Summarization”. In: Journal of Artificial Intelligence (2004),
pp. 457–479.

[11] Katja Filippova and Michael Strube. “Sentence Fusion via Dependency Graph
Compression”. In: Proceedings of the Conference on Empirical Methods in
Natural Language Processing. 2008, pp. 177–185.

[12] Daiji Fukagawa et al. “clique-based method for the edit distance between
unordered trees and its application to analysis of glycan structures.” In: BMC
Bioinformatics (2011).

[13] Adnan Hnaif, Emran Kanan, and Tarek Kanan. “Sentiment Analysis for Arabic
Social Media News Polarity”. In: Intelligent Automation and Soft Computing
(2021).

[14] Yair Horesh, Ramit Mehr, and Ron Unger. “Designing an A* algorithm for
calculating edit distance between rooted-unordered trees”. In: J Comput Biol
(2006), pp. 1165–76.

[15] Tao Jiang et al. “A general edit distance between RNA structures”. In: Journal of
Computational Biology 9 (2002), pp. 371–388.

[16] Kevin Knight and Daniel Marcu. “Statistics-Based Summarization – Step One:
Sentence Compression”. In: Proceedings of the Seventeenth National Conference
on Artificial Intelligence and Twelfth Conference on Innovative Applications of
Artificial Intelligence. 2000, pp. 703–710.

[17] Milen Kouylekov. “Recognizing Textual Entailment with Tree Edit Distance:
Application to Question Answering and Information Extraction”. In: 2006.

[18] Bin Ma, Lusheng Wang, and Kaizhong Zhang. Computing similarity between RNA
structures. 2002.

[19] Ginika Mahajan and Neha Chaudhary. “Improving Bug Localization using IR-
based Textual Similarity and Vectorization Scoring Framework”. In: International
Journal of Advances in Soft Computing and its Applications (2020).

185 High-Performance Computing of Building …

[20] Marie-catherine De Marneffe and Christopher D. Manning. “The Stanford Typed
Dependencies Representation”. In: Coling 2008: Proceedings of the Workshop on
Cross-Framework and Cross-Domain Parser Evaluation. 2008, pp. 1–8.

[21] Rada Mihalcea and Paul Tarau. “A language independent algorithm for single and
multiple document summarization”. In: In Proceedings of IJCNLP’2005. 2005.

[22] Saziye Betul Ozates, Arzucan Ozgur, and Dragomir Radev. “Sentence Similarity
based on Dependency Tree Kernels for Multi-Document Summarization”. In:
Proceedings of the Tenth International Conference on Language Resources and
Evaluation (2016).

[23] Natalie Schluter and Anders Sogaard. “Unsupervised extractive summarization via
coverage maximization with syntactic and semantic concepts”. In: ACL (2015).

[24] Chao Shen and Tao Li. “Multi-document Summarization via the Minimum
Dominating Set”. In: Proceedings of the 23rd International Conference on
Computational Linguistics. 2010, pp. 984–992.

[25] Ahmad T. Al-Taani. (2021) “Recent Advances in Arabic Automatic Text
Summarization”. In: International Journal of Advances in Soft Computing and its
Applications 13(3):59-71.

[26] Kapil Thadani. “Multi-Structured Model for Transforming and Algning Text”. In:
COLUMBIA UNIVERSITY. 2015.

[27] Mengqiu Wang and Christopher Manning. “Probabilistic Tree-Edit Models with
Structured Latent Variables for Textual Entailment and Question Answering”. In:
Proceedings of the 23rd International Conference on Computational Linguistics
(Coling 2010). Beijing, China: Coling 2010 Organizing Committee, Aug. 2010, pp.
1164–1172.

[28] Yoshihiro Yamanishi, Francis Bach, and Jean-Philippe Vert. (2007) “Glycan
classification with tree kernels”. In: Bioinformatics 23 (10), pp. 1211–1216.

[29] Mehdi Yousfi-Monod and Violaine Prince. “Sentence Compression as a Step in
Summarization or an Alternative Path in Text Shortening”. In: Coling’08:
International Conference on Computational Linguistics. 2008, pp. 139–142. url:
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00318727.

[30] K. Zhang and D. Shasha. “Simple Fast Algorithms for the Editing Distance
Between Trees and Related Problems”. In: SIAM J. Comput. 18.6 (1989).

[31] Mohammad, A. H., Alwada’n, T., & Al-Momani, O. (2016). Arabic text
categorization using support vector machine. Naïve Bayes and Neural Network.
GSTF Journal on Computing (JoC), 5, 1-8.

[32] Ababneh, J., Almomani, O., Hadi, W., El-Omari, N. K. T., & Al-Ibrahim, A. (2014).
Vector space models to classify Arabic text. International Journal of Computer
Trends and Technology (IJCTT), 7(4), 219-223.

[33] Mohammad, A. H., Almomani, O., & Alwada'n, T. (2016). Arabic Text
Categorization Using k-nearest neighbour, Decision Trees (C4. 5) and Rocchio
Classi¯ er: A Comparative Study. International Journal of Current Engineering and
Technology, 6(2).

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00318727

Nesreen Alsharman et al. 186

Nesreen Alsharman, works as an assistant professor at
World Islamic Sciences and Education University
(Department of Computer Science). Nesreen conducts
research in the areas of big data classification, artificial
intelligence, traffic congestion, and natural language
processing (text summarization and text classification).

Inna V. Pivkina works as an Associate Professor of
Computer Science, at New Mexico State University.
Data mining applications, computer science education,
and natural language processing are some of Inna
Pivkina's areas of interest in her research.

Raja Masadeh works as an assistant professor at the
World Islamic Sciences and Education University,
department of Computer Science. Raja conducts
research in the area of artificial intelligence,
optimization algorithms, cloud computing and Internet
of Things.

Omar Almomani received his Bachelor's and Master's
degrees in Telecommunication Technology from the
Institute of Information Technology - at the University
of Sindh in 2002 and 2003 respectively. Almomani
received his Ph.D. from UNIVERSITY UTARA
MALAYSIA in computer network and security in 2010.
Currently, he is Professor in and Information Systems
and Network Department, Information Technology
Faculty at the World Islamic Sciences & Education
University. His research interests involve Network
Performance, Network Quality of Service (QoS), IoT,
Network Modeling and Simulation, Network and Cyber
Security, and Machine Learning.

Nabeel Bani-Hani, received his Bachelor's and Master's
degrees in Computer & Information Technology from
the Institute of Information Technology - at the
University of Sindh in 1998 and 2000 respectively.
Currently, he is a Lecturer, at the University of Bahrain,
College of Applied Studies.

https://scholar.google.com/citations?view_op=view_org&hl=en&org=11761345890736700625

	High-Performance Computing of Building The Dependency Trees and Calculating Tree Edit Distances For Text Similarity
	Abstract

	1 Introduction
	2 Related Work
	In algorithmic research, calculating TED [1, 15, 12, 18, 14, 5, 28] has received a lot of attention. For example [1] indicates that one of the most fundamental activities of bioinformatics, such as networks of phylogenetic RNA 2 secondary structures e...
	3 The Proposed Method
	In Natural Language Processing (NLP) applications such as Paraphrase Identification (PI), Plagiarism Detection and other domains linked to text processing, such as Information Retrieval, the computation of text similarity is a fundamental operation. I...
	The preprocessing steps in this research are: tokenization, segmentation, and extracting semantic and syntactic dependencies using the Stanford Dependency parser [20], then building a dependency tree for each sentence. Figure 2 is an example of Stanf...
	After preprocessing steps, calculating multiprocessing of TED is performed for finding text similarity that handles the bag-of-words problem. But in the previous related work, Dependency parsing was formerly used to locate common information among se...
	4 High-Performance Computing for Building Dependency Trees
	5 High-performance computing for calculating TED and finding text similarity
	6 Results and dissection
	Conclusion
	References

