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Abstract 

     In this paper, a solution of the linear and nonlinear fractional differential 
equations is proposed by means of the Optimized Decomposition Method 
(ODM) formulated with the use of the conformable fractional derivative. This 
method designs a new optimal construction for the series solutions based on a 
linear approximation to the nonlinear equation. Thus, the solution in this way 
gives a high accuracy and closeness to the exact solution. Several numerical 
results are performed via figures and tables to verify our findings.  

   Keywords: Conformable fractional derivative; conformable fractional integral; 
conformable optimized decomposition method; nonlinear differential equations. 

1      Introduction 
Fractional calculus dates back to the end of the 17th century. Leibniz discussed the 
L'Hopital derivative of the order 1⁄2. The fractional derivative has many mathematical 
valuable tools and it has extensive useful applications in many applied sciences fields 
such as physics and engineering [1-4]. 

In recent years, the establishment of an accurate or approximate solution to linear or 
nonlinear ordinary differential equations has been the main goal of many researchers and 
scientists. One of these methods is the Adomian Decomposition Method (ADM), which 
was proposed by Adomian for the first time. In particular, G. Adomian introduced in the 
1980s a new method to solve nonlinear functional equations [5,6]. As a result, such 
method had become one of most well-known systematic method that can be used to 
generate practical solutions for wide equations, including algebraic equations, ordinary 
and partial differential equations, integral equations and integro-differential equations 
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[7,11]. Besides, this method has recently proved its ability in solving linear and nonlinear 
fractional differential equations. 

In the same regard, Z. Odibat [12,13] suggested the so-called Optimized ADM (or 
simply OADM), as this method relies on the ADM in assuming a specific series for 
dealing with the nonlinear term. It has been shown that this method can provide more 
accurate and stronger approximation solutions than other methods. Recently, W. Beghami 
[14] applied the Laplace transform along with the OADM to study a nonlinear system 
consisting of fractional partial differential equations via the Caputo sense. 

R. Khalil introduced in [15] a new definition of the fractional derivative called the 
conformable fractional derivative so that such definition can provide the derivatives with 
more naturality. As consequence, many studies and researches were carried out by a 
number of researchers, the most famous of whom is M. Abu Hammad, I. Jibril and A. 
Dababneh, whereby they applied the conformable derivative definition to many statistical 
distributions, see [17-21]. In this research paper, the OADM is applied to solve some 
kinds of conformable fractional differential equations. In order to show the efficiency of 
the proposed method, the generated approximate solutions for under consideration 
equations are compared with their exact solutions via several numerical results. 

This paper is organized as follows: In Section 2, we recall some basic definitions and 
properties of conformable fractional derivative and fractional integral, which will be used 
later. In Section 3, we introduce the OADM formulated in the sense of conformable 
fractional derivative. An algorithm for applying the OADM is then given in Section 4. In 
Section 5, several numerical tests are shown, i.e. the approximate solutions for several 
conformable fractional differential equations are compared with their exact solutions, and 
the error analysis are then discussed. Finally, the conclusion of this paper is summarized 
in Section 6. 

2      Preliminaries and backgrounds 
In this section, we aim to give some basic definitions about the conformable fractional 
derivative and the conformable fractional integral.  
Definition 2.1 [15] Given a function 𝑓𝑓: [0,∞) → ℝ , and 𝑡𝑡 > 0 , 𝛼𝛼 ∈ (0,1) . The 
conformable derivative of 𝑓𝑓 is defined as 

 𝒟𝒟(𝛼𝛼)𝑓𝑓(𝑡𝑡) = lim
𝜀𝜀→0

𝑓𝑓(𝑡𝑡 + 𝜀𝜀𝑡𝑡1−𝛼𝛼) − 𝑓𝑓(𝑡𝑡)
𝜀𝜀

. (1) 

 
If 𝑓𝑓 is 𝛼𝛼-differentiable on (0,𝛼𝛼) for some 𝛼𝛼 > 0. If lim

𝑡𝑡→0+
𝑓𝑓(𝛼𝛼) (𝑡𝑡) exists, then we might 

define 
  𝑓𝑓(𝛼𝛼)(0) = lim

𝑡𝑡→0+
𝑓𝑓(𝛼𝛼) (𝑡𝑡), 

where 𝑓𝑓(𝛼𝛼)(𝑡𝑡) and 𝒟𝒟(𝛼𝛼)𝑓𝑓(𝑡𝑡) denote both to the conformable fractional derivative 𝑓𝑓 of 
order 𝛼𝛼. 
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Theorem 2.1 [15] If a function 𝑓𝑓: [0,∞) → ℝ is 𝛼𝛼–differentiable at 𝑡𝑡0 > 0, where 𝛼𝛼 ∈
(0,1). Then 𝑓𝑓 is continuous at 𝑡𝑡0.  
 
Definition 2.2 [16] The conformable fractional integral of the function 𝑓𝑓 is defined by 

𝐼𝐼𝛼𝛼𝑎𝑎(𝑓𝑓)(𝑡𝑡) = �𝑓𝑓(𝑥𝑥)𝑑𝑑𝛼𝛼
𝑡𝑡

𝑎𝑎

(𝑥𝑥, 𝑎𝑎) = �(𝑥𝑥 − 𝑎𝑎)𝛼𝛼−1𝑓𝑓(𝑥𝑥)
𝑡𝑡

𝑎𝑎

𝑑𝑑𝑥𝑥. 

When 𝛼𝛼 = 0, we write 𝑑𝑑𝛼𝛼(𝑥𝑥). Similarly, in the right case, we have the operator 𝐼𝐼𝛼𝛼𝑎𝑎 are 
called the conformable fractional integral of order 0 < 𝛼𝛼 ≤ 1. 

3      Conformable optimized decomposition method 
In this section, the OADM is explained in details to obtain the solutions to some kinds of 
linear and nonlinear fractional differential equations that have the following general form: 
 

 
 𝒟𝒟𝑡𝑡

𝛼𝛼ɸ(𝑡𝑡) + 𝐹𝐹�ɸ(𝑡𝑡)� = 𝑔𝑔(𝑡𝑡), (2) 

along with the initial condition  

 ɸ(0) = ℎ,ɸ𝛼𝛼(0) = 𝑙𝑙, (3) 

where 𝑡𝑡 > 0 , 𝑛𝑛 < 𝛼𝛼 ≤ 𝑛𝑛 + 1 , ℎ  and 𝑙𝑙  are arbitrary constants and  𝒟𝒟𝑡𝑡
𝛼𝛼ɸ(𝑡𝑡)  is the 

conformable fractional derivative of ɸ(𝑡𝑡). Herein, 𝐿𝐿 = 𝒟𝒟𝑡𝑡
𝛼𝛼ɸ(𝑡𝑡), 𝐹𝐹 represents a general 

nonlinear part, whereas 𝑔𝑔(𝑡𝑡) is also denoted to another linear part. Now, by operating the 
integral operator 𝐼𝐼𝛼𝛼 , which is the inverse of 𝐿𝐿, to equation (2), and then by using the 
considered initial condition reported in (3), we get  

 ɸ(𝑡𝑡) = 𝑀𝑀(𝑡𝑡) + 𝐼𝐼𝛼𝛼 �𝐹𝐹�ɸ(𝑡𝑡)��, (3) 
 
where  

 𝑀𝑀(𝑡𝑡) = �
𝐼𝐼𝛼𝛼[𝑔𝑔(𝑡𝑡)] + ɸ(0), 𝑖𝑖𝑓𝑓 0 < 𝛼𝛼 ≤ 1,

𝐼𝐼𝛼𝛼[𝑔𝑔(𝑡𝑡)] + ɸ(0) + ɸ(𝛼𝛼)(𝑡𝑡)
𝑡𝑡𝛼𝛼

𝛼𝛼
, 𝑖𝑖𝑓𝑓 1 < 𝛼𝛼 ≤ 2.

 (4) 

The conformable optimized decomposition method solution construct as the infinite 
series: 

 ɸ(𝑡𝑡) = �𝑤𝑤𝑘𝑘(𝑡𝑡),
∞

𝑘𝑘=0

 (5) 

and the nonlinear terms can be expressed as: 

 𝐹𝐹�ɸ(𝑡𝑡)� = �𝑄𝑄𝑘𝑘(𝑡𝑡)
∞

𝑘𝑘=0

, (6) 
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where 𝑄𝑄𝑘𝑘(𝑡𝑡)  are called the Adomian polynomials, for 𝑘𝑘 = 1,2,⋯ . Actually, these 
polynomials can be determined from the following relation  

 𝑄𝑄𝑘𝑘(𝑡𝑡) =
1
𝑘𝑘!

𝑑𝑑𝑘𝑘

𝑑𝑑𝜃𝜃𝑘𝑘
�𝐹𝐹 ��𝜃𝜃𝑖𝑖𝑤𝑤𝑖𝑖(𝑡𝑡)

𝑘𝑘

𝑖𝑖=0

���
𝜃𝜃=0

. (7) 

Now, we apply the main idea of OADM, which can be carried out by creating a linear 
approximation of the corresponding nonlinear function   

 𝑀𝑀(𝑡𝑡) = ɸ(𝑡𝑡) + 𝐼𝐼𝛼𝛼 �𝐹𝐹�ɸ(𝑡𝑡)��, (8) 

that can be linearized by a first-order Taylor series expansion at 𝑡𝑡 = 0 as follow  
 𝐻𝐻(𝑡𝑡) = 𝐹𝐹�ɸ(𝑡𝑡)� + 𝐶𝐶0𝑡𝑡, (9) 

where  𝐶𝐶0 = 𝜕𝜕𝜕𝜕
𝜕𝜕ɸ
�
𝑡𝑡=0

. In this regard, the component functions {𝑤𝑤𝑘𝑘(𝑡𝑡)}𝑘𝑘=0∞  can be 

determined recursively by the following relations 

 

⎩
⎪
⎨

⎪
⎧ 𝑤𝑤0(𝑡𝑡) = 𝑀𝑀(𝑡𝑡),

𝑤𝑤1(𝑡𝑡) = 𝐼𝐼𝛼𝛼[𝑄𝑄0(𝑡𝑡)],
𝑤𝑤2(𝑡𝑡) = 𝐼𝐼𝛼𝛼[𝑄𝑄1(𝑡𝑡) + 𝐶𝐶0𝑤𝑤1(𝑡𝑡)],

𝑤𝑤𝑘𝑘+1(𝑡𝑡) = 𝐼𝐼𝛼𝛼�𝑄𝑄𝑘𝑘(𝑡𝑡) + 𝐶𝐶0�𝑤𝑤𝑘𝑘(𝑡𝑡) − 𝑤𝑤𝑘𝑘−1(𝑡𝑡)��, 𝑘𝑘 ≥ 2,

 (10) 

 
such that 𝐹𝐹(∑ 𝑤𝑤𝑘𝑘(𝑡𝑡)∞

𝑘𝑘=0 ) = ∑ 𝑄𝑄𝑘𝑘(𝑡𝑡)∞
𝑘𝑘=0 . It can be clearly seen that if the decomposition 

series ∑ 𝑤𝑤𝑘𝑘(𝑡𝑡)∞
𝑘𝑘=0  converges, then lim

𝑘𝑘→∞
𝑤𝑤𝑘𝑘 = 0. 

4   Algorithm for OADM 
For finding the approximate solution to the fractional differential equation, there are five 
steps that need to be considered. We state them below for completeness. 
 
Input.  The iteration 𝑘𝑘, initial conditions ɸ(0) = ℎ,ɸ𝛼𝛼(0) = 𝑙𝑙, the nonlinear term 𝐹𝐹. 
Output. An approximate solution of the fractional differential equation. 
Steps. There are five steps that should be considered. These steps are: 

• Step 1. Operate 𝐼𝐼𝛼𝛼 to equation (2). 
• Step 2. Find the Adomian polynomials by the following formula: 

𝑄𝑄𝑘𝑘(𝑡𝑡) =
1
𝑘𝑘!

𝑑𝑑𝑘𝑘

𝑑𝑑𝜃𝜃𝑘𝑘
�𝐹𝐹 ��𝜃𝜃𝑖𝑖𝑤𝑤𝑖𝑖(𝑡𝑡)

𝑘𝑘

𝑖𝑖=0

���
𝜃𝜃=0

. 

• Step 3. Solve 𝐶𝐶0 = 𝜕𝜕𝜕𝜕
𝜕𝜕ɸ
�
𝑡𝑡=0

. 

• Step 4. Solve the following recursive states: 
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⎩
⎪
⎨

⎪
⎧ 𝑤𝑤0(𝑡𝑡) = 𝑀𝑀(𝑡𝑡),

𝑤𝑤1(𝑡𝑡) = 𝐼𝐼𝛼𝛼[𝑄𝑄0(𝑡𝑡)],
𝑤𝑤2(𝑡𝑡) = 𝐼𝐼𝛼𝛼[𝑄𝑄1(𝑡𝑡) + 𝐶𝐶0𝑤𝑤1(𝑡𝑡)],

𝑤𝑤𝑘𝑘+1(𝑡𝑡) = 𝐼𝐼𝛼𝛼�𝑄𝑄𝑘𝑘(𝑡𝑡) + 𝐶𝐶0�𝑤𝑤𝑘𝑘(𝑡𝑡) − 𝑤𝑤𝑘𝑘−1(𝑡𝑡)��,𝑘𝑘 ≥ 2.

 

• Step 5. Find the approximate solution from 𝑤𝑤0(𝑡𝑡) to 𝑤𝑤𝑘𝑘+1(𝑡𝑡) of the fractional 
differential equation at hand. 

5      Representation of exact and numerical solutions 
This section illustrates the efficiency of the OADM formulated in the sense of 
conformable fractional derivative and presents approximate solutions for some linear and 
nonlinear fractional differential equations. In this regard, the proposed algorithm provided 
in the previous section is used through the given examples via a prepared computer code 
(Mathematica 13). 
 
Example 5.1: Consider the following linear fractional differential equation 

𝑦𝑦𝛼𝛼 − 𝑦𝑦 = 0,  
with the initial condition 

𝑦𝑦(0) = 1, , 
where 𝑡𝑡 > 0 and 0 < 𝛼𝛼 ≤ 1. The exact solution of this equation is given by  

𝑦𝑦(𝑡𝑡) = 𝑒𝑒
𝑡𝑡𝛼𝛼
𝛼𝛼 . 

In order to apply on our proposed scheme, we let 𝛼𝛼 = 1 and 𝑦𝑦𝛼𝛼 = 𝑦𝑦. Consequently, the 
conformable optimized decomposition method solutions are: 

𝑦𝑦(𝑡𝑡) = �𝑤𝑤𝑘𝑘(𝑡𝑡)
∞

𝑘𝑘=0

, 

where 𝐶𝐶0 = 1. The suggested solution here is 𝑦𝑦(𝑡𝑡) = ∑ 𝑤𝑤𝑘𝑘(𝑡𝑡)∞
𝑘𝑘=0 , where the components 

{𝑤𝑤𝑘𝑘(𝑡𝑡)}𝑘𝑘=0∞  can be evaluated by the following recurrence relations  

⎩
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎧

𝑤𝑤0(𝑡𝑡) = 𝑦𝑦0 ,

𝑤𝑤1(𝑡𝑡) = �−𝑤𝑤0 𝑡𝑡𝛼𝛼−1 𝑑𝑑𝑡𝑡
𝑡𝑡

0

 ,

𝑤𝑤2(𝑡𝑡) = �(−𝑤𝑤1 + 𝐶𝐶0𝑤𝑤1) 𝑡𝑡𝛼𝛼−1 𝑑𝑑𝑡𝑡
𝑡𝑡

0

 ,

𝑤𝑤𝑘𝑘+1(𝑡𝑡) = ��𝑄𝑄𝑘𝑘(𝑡𝑡) + 𝐶𝐶0�𝑤𝑤𝑘𝑘(𝑡𝑡) − 𝑤𝑤𝑘𝑘−1(𝑡𝑡)��  𝑡𝑡𝛼𝛼−1 𝑑𝑑𝑡𝑡 , 𝑘𝑘 ≥ 2,
𝑡𝑡

0

 

where  𝑄𝑄𝑘𝑘(𝑡𝑡) is defined by  
 

𝑄𝑄𝑘𝑘(𝑡𝑡) =
1
𝑘𝑘!

𝑑𝑑𝑘𝑘

𝑑𝑑𝜃𝜃𝑘𝑘
[(𝑤𝑤0(𝑡𝑡) + 𝜃𝜃𝑤𝑤1(𝑡𝑡) + 𝜃𝜃2𝑤𝑤2(𝑡𝑡) + 𝜃𝜃3𝑤𝑤3(𝑡𝑡) + ⋯+)]�

𝜃𝜃=0
. 

 



 

 
An algorithm for solving fractional differential…                                                192 

In this example, we only use the first ten terms to approximate the exact solution. 
However, from the error columns shown in Table 1, one can see that the absolute values 
of these error are very small. This would lead us to conclude that the conformable 
optimized decomposition method has a high convergence order. For further explanation, 
Figure 1 represents the graphs of the exact solution and the approximate solution of the 
considered problem at different values of 𝛼𝛼. 
 

Table 1: Absolut Errors for different values of  𝛼𝛼 of Example 5.1 

𝑡𝑡 𝛼𝛼 = 1 𝛼𝛼 = 0.9 𝛼𝛼 = 0.8 𝛼𝛼 = 0.7 
0.1 1.1 × 10−16 1.1 × 10−16 5.5 × 10−16 2.4 × 10−14 

     
0.2 5.5 × 10−16 9.4 × 10−15 2.0 × 10−13 5.0 × 10−12 
0.3 4.3 × 10−14 5.1 × 10−13 7.0 × 10−12 1.1 × 10−10 
0.4 1.0 × 10−12 8.8 × 10−12 8.7 × 10−11 1.0 × 10−9 
0.5 1.1 × 10−11 7.9 × 10−11 6.1 × 10−10 5.6 × 10−9 
0.6 8.6 × 10−11 4.7 × 10−10 3.0 × 10−9 2.2 × 10−8 
0.7 4.6 × 10−10 2.1 × 10−9 1.1 × 10−8 7.4 × 10−8 
0.8 2.0 × 10−9 8.1 × 10−9 3.7 × 10−8 2.0 × 10−7 
0.9 7.3 × 10−9 2.5 × 10−8 1.0 × 10−7 5.0 × 10−7 
1 2.3 × 10−8 7.3 × 10−8 2.6 × 10−7 1.1 × 10−6 

 
Figure 1. Approximate solution of 𝑦𝑦(𝑡𝑡) for different values of  𝛼𝛼 for Example 5.1 

 
Example 5.2: Consider the following nonlinear fractional differential equation: 

𝑦𝑦𝛼𝛼 − 1 + 𝑦𝑦2 = 0, 
subject to the initial condition 

𝑦𝑦(0) = −
1
2

 
where 𝑡𝑡 > 0 and 0 < 𝛼𝛼 ≤ 1. Herein, the exact solution of the above equation is given by  

𝑦𝑦(𝑡𝑡) =
tanh(𝑡𝑡) + 𝑦𝑦0
𝑦𝑦0  tanh(𝑡𝑡) + 1

 . 
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To apply on the proposed method, we let 𝛼𝛼 = 1 and 𝑦𝑦𝛼𝛼 = 1 − 𝑦𝑦2, where 𝐶𝐶0 = −1. Then 
the conformable optimized decomposition method suggests the solution 𝑦𝑦(𝑡𝑡) =
∑ 𝑤𝑤𝑛𝑛(𝑡𝑡)∞
𝑛𝑛=0 , where  

⎩
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎧

𝑤𝑤0(𝑡𝑡) = 𝑦𝑦0 ,

𝑤𝑤1(𝑡𝑡) = �  𝑡𝑡𝛼𝛼−1 𝑑𝑑𝑡𝑡 − �  (𝑤𝑤0)2𝑡𝑡𝛼𝛼−1 𝑑𝑑𝑡𝑡
𝑡𝑡

0

𝑡𝑡

0

 ,

𝑤𝑤2(𝑡𝑡) = �(−2𝑤𝑤1𝑤𝑤0 + 𝐶𝐶0𝑤𝑤1) 𝑡𝑡𝛼𝛼−1 𝑑𝑑𝑡𝑡
𝑡𝑡

0

 ,

𝑤𝑤𝑘𝑘+1(𝑡𝑡) = ��𝑄𝑄𝑘𝑘(𝑡𝑡) + 𝐶𝐶0�𝑤𝑤𝑘𝑘(𝑡𝑡) − 𝑤𝑤𝑘𝑘−1(𝑡𝑡)��  𝑡𝑡𝛼𝛼−1 𝑑𝑑𝑡𝑡 ,𝑘𝑘 ≥ 2 .
𝑡𝑡

0

 

 Here the polynomial  𝑄𝑄𝑘𝑘(𝑡𝑡) is defined by  
 

𝑄𝑄𝑘𝑘(𝑡𝑡) =
1
𝑘𝑘!

𝑑𝑑𝑘𝑘

𝑑𝑑𝜃𝜃𝑘𝑘
��(𝑤𝑤0(𝑡𝑡) + 𝜃𝜃𝑤𝑤1(𝑡𝑡) + 𝜃𝜃2𝑤𝑤2(𝑡𝑡) + 𝜃𝜃3𝑤𝑤3(𝑡𝑡) + ⋯+)�

2
��
𝜃𝜃=0

 , 

Table 2 reported below describes the exact solution and the approximate solution 
regarding Example 5.2 for  𝛼𝛼 = 1.  Furthermore, Figure 2 represents the graph of the 
exact solution and approximate solutions for different values of 𝛼𝛼. 
 

 
a) 

 
 

b) 

 
 

Table 2: Numerical results for 𝑢𝑢1 of Example 5.2 

𝑡𝑡 Exact 
𝛼𝛼 = 1 

 Approximate solutions  Absolut error 
𝛼𝛼 = 1 𝛼𝛼 = 1  𝛼𝛼 = 0.9  𝛼𝛼 = 0.8  𝛼𝛼 = 0.7 

0.1 −0.4213  −0.4213  −0.3879  −0.3374  −0.2582  0 
0.2 −0.3357  −0.3357  −0.2805  −0.2015  −0.0860  3.1 × 10−15 
0.3 −0.2442  −0.2442  −0.1716  −0.0720  0.0656  4.9 × 10−14 
0.4 −0.1482  −0.1482  −0.0621  0.0512  0.2001  1.0 × 10−11 
0.5 −0.0492  −0.0492  0.0460  0.1670  0.3185  1.4 × 10−10 
0.6 0.0506  0.0506  0.1511  0.2741  0.4217  3.1 × 10−10 
0.7 0.1495  0.1495  0.2512  0.3716  0.5106  4.1 × 10−9 
0.8 0.2455  0.2455  0.3448  0.4592  0.5867  3.5 × 10−8 
0.9 0.3369  0.3369  0.4311  0.5368  0.6513  1.2 × 10−7 
1 0.4224  0.4224  0.5093  0.6048  0.7060  1.7 × 10−7 

https://www.scirp.org/journal/paperinformation.aspx?paperid=95943#t1
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c) 

 

 
 
 
 
 
 
 
 
 
 
 

Figure 2. (a) Exact and approximate solutions 𝑦𝑦(𝑡𝑡), (b) Approximate solution of of  𝑦𝑦(𝑡𝑡) for 
different values of 𝛼𝛼 (c) Absolute Error of  𝑦𝑦(𝑡𝑡) when 𝛼𝛼 = 1   for Example 5.2 

 
Example 5.3: Consider the following nonlinear fractional differential equation [18]: 

𝑦𝑦𝛼𝛼 + 𝜋𝜋2𝑒𝑒−𝑦𝑦 = 0, 
subject to the initial conditions 

𝑦𝑦(0) = 0, 𝑦𝑦(𝛼𝛼)(0) = 𝜋𝜋. 
where 𝑡𝑡 > 0 and 1 < 𝛼𝛼 ≤ 2. The exact solution of the above problem is given by  

𝑦𝑦(𝑡𝑡) = ln �1 + sin �
𝜋𝜋
𝛼𝛼
𝑡𝑡𝛼𝛼�� , 

Herein, we let 𝛼𝛼 = 2 and 𝑦𝑦2𝛼𝛼 = −𝜋𝜋2𝑒𝑒−𝑦𝑦, where 𝐶𝐶0 = −𝜋𝜋2. Now, since the conformable 
optimized decomposition method suggests the solution 𝑦𝑦(𝑡𝑡) = ∑ 𝑤𝑤𝑛𝑛(𝑡𝑡)∞

𝑛𝑛=0 , we get  

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧ 𝑤𝑤0(𝑡𝑡) = 𝑦𝑦0 + 𝑦𝑦1

𝑡𝑡𝛼𝛼

𝛼𝛼
,

𝑤𝑤1(𝑡𝑡) = � �� 𝑄𝑄0𝑡𝑡𝛼𝛼−1 𝑑𝑑𝑡𝑡
𝑡𝑡

0
� 𝑡𝑡𝛼𝛼−1 𝑑𝑑𝑡𝑡

𝑡𝑡

0
 ,

𝑤𝑤2(𝑡𝑡) = � �� (𝑄𝑄1 + 𝐶𝐶0𝑤𝑤1)𝑡𝑡𝛼𝛼−1 𝑑𝑑𝑡𝑡
𝑡𝑡

0
� 𝑡𝑡𝛼𝛼−1 𝑑𝑑𝑡𝑡

𝑡𝑡

0

𝑤𝑤𝑘𝑘+1(𝑡𝑡) = � �� �𝑄𝑄𝑘𝑘 + 𝐶𝐶0�𝑤𝑤𝑘𝑘(𝑡𝑡) − 𝑤𝑤𝑘𝑘−1(𝑡𝑡)�� 𝑡𝑡𝛼𝛼−1 𝑑𝑑𝑡𝑡
𝑡𝑡

0
� 𝑡𝑡𝛼𝛼−1 𝑑𝑑𝑡𝑡.

𝑡𝑡

0

 

Here the polynomial  𝑄𝑄𝑘𝑘(𝑡𝑡) is defined by  

𝑄𝑄𝑘𝑘(𝑡𝑡) =
1
𝑘𝑘!

𝑑𝑑𝑘𝑘

𝑑𝑑𝜃𝜃𝑘𝑘
��(𝑤𝑤0(𝑡𝑡) + 𝜃𝜃𝑤𝑤1(𝑡𝑡) + 𝜃𝜃2𝑤𝑤2(𝑡𝑡) + 𝜃𝜃3𝑤𝑤3(𝑡𝑡) + ⋯+)�

2
��
𝜃𝜃=0

. 

 
Table 3 displays the error of the exact and approximate solutions at 𝛼𝛼 = 2. In this 

example, the numerical results demonstrate high precision. Figure 3 depicts the graph of 
the exact and approximate solutions of the problem at hand for various values of  𝛼𝛼. 

 
Table 3: Absolut errors for different values of  𝛼𝛼 of Example 5.3 
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𝑡𝑡 𝛼𝛼 = 2 𝛼𝛼 = 1.9 𝛼𝛼 = 1.7 𝛼𝛼 = 1.5 𝛼𝛼 = 1.2 
0.1 1.2 × 10−9 1.3 × 10−9 2.0 × 10−11 1.0 × 10−11 1.0 × 10−10 
0.2 1.0 × 10−9 1.5 × 10−9 1.1 × 10−11 3.0 × 10−10 8.6 × 10−10 
0.3 3.7 × 10−10 3.0 × 10−9 9.4 × 10−12 9.1 × 10−10 2.0 × 10−10 
0.4 2.5 × 10−11 1.4 × 10−9 9.5 × 10−12 1.0 × 10−10 1.9 × 10−9 
0.5 1.0 × 10−10 1.0 × 10−10 1.5 × 10−9 6.6 × 10−10 1.3 × 10−9 
0.6 2.6 × 10−9 1.2 × 10−10 4.3 × 10−8 1.5 × 10−8 2.5 × 10−8 
0.7 2.8 × 10−10 1.7 × 10−9 7.5 × 10−7 3.6 × 10−7 7.9 × 10−6 
0.8 1.9 × 10−8 6.5 × 10−8 8.9 × 10−6 5.3 × 10−6 2.2 × 10−6 
0.9 6.0 × 10−7 1.3 × 10−6 7.7 × 10−5 5.3 × 10−5 9.6 × 10−5 
1 9.9 × 10−6 1.9 × 10−5 5.1 × 10−5 3.8 × 10−5 5.4 × 10−5 

 
 
 

Figure 3. Approximate solution of 𝑦𝑦(𝑡𝑡) for different values of 𝛼𝛼 for Example 5.3 

6      Conclusion  
In this paper, the so-called conformable optimized decomposition method has been used 
to study the approximate solution of the fractional differential equations. The approximate 
solution has been obtained based on the linear approximation for nonlinear problems. The 
behavior of the proposed method has been shown by solving and studying some numerical 
examples. Based on the gained numerical results, we can conclude that the proposed 
method is effective and it is sufficiently suitable for nonlinear problems. 
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