
DOI: 10.15849/IJASCA.230720.01

Received 9 March 2023; Accepted 1 June 2023

Int. J. Advance Soft Compu. Appl, Vol. 15, No. 2, July 2023

Print ISSN: 2710-1274, Online ISSN: 2074-8523

Copyright © Al-Zaytoonah University of Jordan (ZUJ)

An Optimized Network Intrusion Detection

System for Attack Detection based on Supervised

Machine Learning Models in an Internet-of-

Things Environment

Adeeb Alhomoud

College of Science and Theoretical Studies, Saudi Electronic University, Riyadh, Saudi

Arabia

e-mail: a.alhomoud@seu.edu.sa

Abstract

 In this paper, an optimized classification approach based on a support vector
machine (SVM) classifier is proposed to maximize the accuracy of a machine
learning model employed by a network intrusion detection system to detect
malicious attacks in an Internet-of-Things (IoT) environment. In addition, an
experiment study based on the TON_IoT dataset is conducted in terms of classifier
performance metrics, such as the false positive rate, true positive rate, precision,
F-measure, recall, Matthews correlation coefficient, receiver operating
characteristic area, precision-recall curve area, and a confusion matrix. It is
demonstrated that the model accuracy is maximized and the number of rounds
minimized for the confusion matrix to converge and correctly classify all various
attacks. Finally, classifier errors are compared in terms of kernel types. This part
of the investigation shows that the SVM classifier based on a polynomial kernel
outperformed radial basis function and normalized polynomial kernels in terms of
classifier errors, time to build the model, correctly classified instances, incorrectly
classified instances, and kappa statistics.

 Keywords: Complexity parameter, confusion matrix, IoT networks, machine learning,
NIDS, SVM.

1 Introduction

The Internet of Things (IoT) is a fast-growing network of interlinked devices that

communicate and exchange data over a network or the internet. Such devices can be

anything from smart appliances and wearable technology to industrial control systems and

are increasingly being used in a variety of settings, including homes, businesses, and

industrial environments. However, the wide spread of the IoT in organizations has

introduced security challenges, as the devices are often prone to cyber attacks. One of the

main security concerns with an IoT in an enterprise is the potential for the unauthorized

access to and control of devices. For example, an attacker could gain access to a connected

industrial control system and disrupt production [1]. There is also the risk of data breaches

and the potential for any sensitive data collected by IoT devices to be accessed by

unauthorized parties.

Adeeb Alhomoud 2

Cyber security is a critical concern for businesses of all sizes and has become one of the

top priorities for organizations due to increasing reliance on networked technology, which

is accompanied by its own risks. One key aspect of cyber security is the protection of

enterprise networks from unauthorized access and malicious activities. Therefore, many

security procedures and practices are applied to secure the network of an organization. One

approach to addressing security concerns is to use a network intrusion detection system

(NIDS) to detect and prevent attacks on IoT devices [2]. Many approaches, such as

supervised, unsupervised, and reinforcement learning in the field of machine learning

(ML), have been used to improve the efficiency and accuracy of NIDSs [3, 4]. It remains

a challenge, however, for existing intrusion detection algorithms to achieve a good level

of performance in detecting malicious network attacks. Hence, the performance of these

systems is often limited by the accuracy of the ML models.

This paper proposes an optimized classification approach based on a support vector

machine (SVM) classifier to maximize the accuracy of the ML model used by a NIDS-

based solution to detect malicious attacks in an IoT environment. In addition, by tuning the

SVM classifier parameters, the confusion matrix converges in a minimum number of

rounds by correctly classifying all attacks in the IoT network. An experiment study is also

performed in terms of classifier performance metrics, including the true positive rate

(TPR), false positive rate (FPR), precision, F-measure, recall, Matthews correlation

coefficient (MCC), receiver operating characteristic (ROC) area, precision-recall curve

(PRC) area, and a confusion matrix based on the TON_IoT dataset [5]. Classifier errors

are also investigated in terms of SVM kernel function, comparing radial basis function,

normalized polynomial, and polynomial kernels to select the best kernel function within

the SVM classifier.

The rest of the paper is structured as follows. Section 2 presents the literature on intrusion

detection system (IDS) types and techniques, the advantages of using ML in IDS systems,

and types of IDSs for attack detection in IoT networks. Section 3 provides an overview of

common types of attacks on the IoT and the datasets used. Section 4 outlines the proposed

model. Section 5 outlines the methodology used, and Section 6 presents the experiments

and a discussion of the results. Finally, Section 7 provides the conclusion and findings.

2 Literature Review

In the literature, various types of IDSs for attack detection are well defined and involve

signature-based and behaviour-based systems. IDSs are used to identify deviations from

normal network behaviour that may indicate malicious activity. Signature-based IDSs rely

on a database of known attack and vulnerability signatures but are unable to detect novel

malicious activity. These systems trigger an alert when a pattern being analysed matches

an entry in the signature database. Behaviour-based IDSs, on the other hand, are designed

to detect previously unseen attacks through the use of ML algorithms. Although they may

be able to detect unknown attacks in theory, their practical application in real-world

networks is limited due to the complexity of development and the high FPR they often

produce. In general, IDSs process logs generated by active network equipment, such as

computers or routers, to detect anomalous activity, also known as network intrusions. IDSs

can also be categorized into those that are network based and host based. A NIDS is usually

positioned at network gateways and routers to inspect network traffic for intrusions [6].

Host-based IDSs monitor individual nodes or devices and notify the user if any suspicious

activities are detected [7].

3 An Optimized Network Intrusion Detection…

Originally, IDSs were designed to process and analyse logs generated by various systems

[8]. The same motivation has led to the use of network traffic processing for intrusion

detection, with IDSs being the most common application for collecting, analysing, and

classifying network traffic content. Several authors have proposed a taxonomy for IDSs

that group these systems according to relevant characteristics. IDSs are widely used in

network topologies to safeguard the integrity and availability of sensitive assets in

protected systems. Although a variety of supervised, unsupervised, and reinforcement

learning methods from the field of ML have been employed to improve the effectiveness

of IDSs, it remains a challenge for current intrusion detection algorithms to accomplish a

good level of performance. One reason for this is the presence of irrelevant and redundant

data in high-dimensional datasets, which can interfere with the classification process of an

IDS. In addition, individual classifiers may not perform well in detecting every type of

attack and many models are based on outdated datasets, making them less adaptable to

novel attacks. As technology advances, these attacks continue to pose a threat to the

integrity, confidentiality, and availability of cyber systems, making the use of IDSs

necessary to protect such systems from a different type of attack [9-11].

IDSs are deployed in several distributed systems to detect malicious activities and take

swift countermeasures to stop additional intrusions and spread. IDSs can generally be

divided into two categories based on their detection mechanisms: anomaly and misuse

detection [12]. Anomaly detection is intended to detect malicious activities by identifying

abnormalities from normal behaviour profiles, with better performance in detecting new

types of attacks, but can result in a high FPR [13]. On the other hand, based on known

patterns, misuse detection is effective at differentiating legitimate instances from malicious

ones [14]. A comparison between anomaly and misuse detection is shown in Table 1.

Table 1: Comparison between anomaly and misuse detection

Anomaly detection Misuse detection

Utilizes the recognized system normal

behaviour profile. Discrepancy in the

inbound pattern is considered

suspicious.

Utilizes a technique for modelling the

present well-known attack signature

data. Once a match of an inbound

pattern with a signature is

accomplished, it is considered

suspicious.

Difficulty in differentiating an attack

from normal behaviour.

Difficulty in keeping an up-to-date

attack signature database.

High rates of false positives. Low rates of false positives.

Unsupervised or semi-supervised ML

is suitable for anomaly detection.

Supervised ML methods are useful for

misuse detection.

A very common anomaly detection

approach is statistical learning.

Signature matching is a very common

method in misuse detection.

Good accuracy for unknown attacks. Very high precision in identifying

known attacks.

Examples: Multiagent-based intrusion

detection systems (MIDSs)

Examples: Suricata and Snort

Misuse detection can be categorized as being either knowledge based or machine learning

based. In knowledge-based misuse detection, network traffic is compared to predefined

rules or patterns that represent known attacks. This knowledge-based technique can be

further divided into three categories: state transition analysis, signature matching, and rule-

based expert systems [15]. However, this approach requires frequent updates to the

knowledge database and may not be able to detect new or modified versions of attacks.

Adeeb Alhomoud 4

Alternatively, misuse detection can also be accomplished using ML techniques, such as a

back propagation artificial neural network (BP-ANN) [16], decision trees [17], and multi-

class SVMs [18].

IDSs of this type are effective at identifying known attack patterns, but they are not capable

of detecting novel or modified versions of known attacks. As cyber criminals become more

advanced, new vulnerabilities and threats are emerging at an alarming rate, which poses a

significant risk to critical infrastructure. To address this issue, there has been a demand for

more advanced IDSs that can detect and respond to novel attacks. As a result, various

methods have been researched and developed to improve the performance and accuracy of

IDSs in detecting such threats. One of them is ML [19-21], which can be used for both

anomaly and misuse detection models. One problem that arose with the initial application

of ML in IDSs was the inability of a single classifier to handle this task effectively. As a

result, researchers have explored the use of ensemble classifiers as a method of enhancing

the performance of IDSs [22, 23]. Ensemble learning is an ML approach that involves

combining the predictions of multiple individual classifiers in order to make a more

accurate classification decision about the input object. The primary objective of ensemble

learning is to improve the performance of the classifier by leveraging the strengths of

multiple models [24]. One example of the usefulness of ensemble learning in the context

of IDSs is the ability to combine the predictions of multiple classifiers trained on different

subsets of an IDS dataset. This can lead to more accurate classification performance

compared to using a single classifier. The diverse range of attack types and network traffic

attributes present in IDS datasets can also pose a challenge for ML algorithms, as they

increase the complexity of the problem and require significant computational and time

resources to process. Ensemble learning can help mitigate these challenges by aggregating

the predictions of multiple classifiers [25].

The following points summarize the advantages of using an ML-based IDS over a

traditional signature-based IDS:

• A machine learning-based IDS (ML-IDS) can detect variants of attacks more

effectively than a signature-based IDS because it can learn the normal

behaviour of traffic flow and recognize deviations from it.

• An ML-IDS does not place as much strain on computer processors as a

signature-based IDS because it does not need to analyse all the signatures in a

signature database.

• Some ML-IDSs, particularly those using unsupervised learning algorithms,

can detect new, previously unseen attacks.

• An ML-IDS can more accurately and quickly identify attacks by considering

complex characteristics of attack behaviour, compared to a signature-based

IDS.

• A signature-based IDS needs continually to maintain and update its signature

database to stay current, whereas an ML-IDS based on clustering and outlier

detection does not require such updates.

The contribution of this paper consists of proposing an ML-NIDS based on optimizing an

SVM classifier in order to maximize the accuracy and minimize the number of rounds for

the confusion matrix to converge and correctly classify the various attacks. The TON_IoT

dataset is also investigated to classify common attacks in an IoT environment, such as

5 An Optimized Network Intrusion Detection…

injection, man-in-the-middle (MiTM), denial of service (DoS), distributed denial of service

(DDoS), password, scanning, and cross-site scripting (XSS) attacks. The next section

presents the experiment and a discussion of the results.

3 Dataset and Common Attacks on the IoT

One of the most common security threats to IoT devices is DoS attacks. This type of attack

involves overloading a device with excessive traffic or demand, disrupting its normal

operation and causing data loss, service interruption, and reputational damage. A more

serious version of a DoS attack is a DDoS attack, in which multiple entities coordinate and

launch an attack on a single target, increasing the scope and impact of that attack [26].

Another security threat facing IoT devices is injection attacks. These attacks involve

injecting malicious code or data into devices, resulting in data modification. Injection

attacks can cause significant harm, including theft of sensitive information, data

corruption, and service disruption of the IoT system [27]. The attacker can then gain full

control of an IoT system [28]. XSS attacks, which are also becoming more common in IoT

environments, involve injecting malicious code into a website that can be executed when

unsuspecting users visit the website, potentially compromising their data [29].

To address these security threats, several datasets have been developed to evaluate and

design IDSs for the IoT. The KDD'99 is a dataset that is widely used for evaluating IDSs

and consists of network traffic data labelled as normal and attack cases [30]. The NSL-

KDD is a version of the KDD’99 dataset that was developed by redundancy suppression

and labelling all nominal values [31]. Finally, there is the TON_IoT dataset, which aims

to aggregate and analyse various IoT and Industrial IoT (IIoT) data sources and contains

heterogeneous data collected from various sources, including telemetry data from

connected devices, Windows and Linux system logs, and system network traffic [32]. The

TON_IoT dataset is based on seven attack classes: DoS, DDoS, injection, MiTM,

password, XSS, and scanning attacks.

4 Proposed Model

This section shows the steps taken to collect, prepare, and utilize a dataset for training and

testing to maximize the model accuracy and to minimize the number of rounds for the

confusion matrix to classify all attacks correctly. Fig. 1 provides a visual representation of

the steps needed to execute the various ML metrics. The evaluation of the ML involves a

six-step life cycle that encompasses the selection of the dataset, pre-processing, choosing

a classifier model, training the model, testing, and applying ML evaluation metrics.

Fig. 1: Life cycle of the ML metrics evaluation

The TON_IoT dataset was selected to perform the experiment simulation. The pre-

processing phase consists of selecting the pertinent attributes to maximize the model

accuracy. We selected a binary sequential minimal optimization (SMO) classifier, which

Dataset
selection

Pre-
processing

Classifer
selection

Model
training

Test phase
ML evaluation

metrics

Adeeb Alhomoud 6

is an SVM that uses John Platt’s SMO algorithm. During the model training, the SVM

classifier defines the hyperplane to separate the different classes with an optimization

process to maximize the distance between the hyperplane and the closest points in the

dataset. For the testing phase, 10-fold cross-validation was selected during the simulation

to obtain the evaluation metrics based on the SVM classifier. Finally, the ML evaluation

metrics were conducted on classifier performance metrics, such as the FPR, TPR,

precision, F-measure, recall, MCC, ROC area, PRC area, a confusion matrix, and classifier

errors.

5 Overall Methodology

This paper proposes an optimized approach to cyber-attack classification in an IoT

environment based on an SVM classifier. We investigate the implementation of an ML

model by using the TON_IoT dataset as input and accuracy and a confusion matrix as the

output. The aim of this work is to maximize the model accuracy and minimize the number

of rounds for confusion matrix convergence to classify all attacks correctly by

manipulating the SVM complexity parameters (C parameters). This experiment utilized

accuracy, sensitivity, precision, and MCC as performance metrics, all of which were

executed within a WEKA data mining environment.

WEKA is a software suite, which is open source and freely available, and is widely utilized

by researchers in the field of ML for implementing a variety of ML algorithms, including

regression, classification, and clustering. WEKA 3.8 was used to execute the experiments

presented in this paper.

The optimization technique is utilized through the use of the SMO classifier, known in the

literature as a kind of SVM classifier, by executing and training a support vector classifier

known as John Platt’s SMO algorithm. In addition, we focus on the SVM C parameters

and look for the optimal value leading to the maximum accuracy. We also take the result

given by the authors in [33] as a reference by taking a default SMO classifier complexity

parameter equal to 1 with a polynomial kernel.

6 Experiment and Discussion of the Results

Table 2 shows a comparison of SMO metrics for various C parameter values.

Table 2: SVM metric comparison for various C parameters

Metric C=1 C=2 C=3 C=4

Correctly classified instance 35960 35974 35975 35975

Incorrectly classified instance 15 1 0 0

Accuracy 99.9583 99.9972 100 100

As shown in Table 2, by increasing the classifier complexity parameter from 1 to 4, the

correctly classified instances move from 35960 to 35975, and the incorrectly classified

instances decrease from 15 to 0. Moreover, the SVM accuracy has increased from

99.9583% to 100%. It is known that the C parameter range is from 1 to infinity and is

responsible for maximizing the distance separating the hyperplane and the nearest points

that belong to various classes during the training process. By default, the C parameter is

set to 1 and the hyperplane is determined during the training process, and the classifier

succeeded in classifying 35960 instances correctly during the test phase leading to a model

7 An Optimized Network Intrusion Detection…

accuracy of 99.9583%. Then, when the C parameter is increased to 2, the classifier raises

the distance between the hyperplane and the 15 nearest points during the training process

and succeeded in classifying 14 new instances correctly (see Table 2, row 2: incorrectly

classified instances), leading to a model accuracy of 99.9972%. Finally, by raising the C

parameter to 3, the remaining incorrectly classified instances are correctly classified by

increasing the distance between the hyperplane and the remaining instances, leading to an

accuracy value of 100%. As a conclusion, the SVM classifier reached maximum accuracy

from an SVM C parameter equal to 3.

The SVM performance metrics conducted in this study are as follows:

 Precision, defined as:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
TP

(TP + FP)
× 100 (1)

 Recall (also known as sensitivity) is the proportion of actual positives which are

predicted to be positive:

 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
TP

(TP + FN)
× 100 (2)

 F-measure, defined as the proportion of actual positives which are predicted to be

positive:

 𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =
TP

(TP + FN)
× 100 (3)

 MCC defines the correlation between the predicted value and the actual value:

𝑀𝐶𝐶 =
𝑇𝑃×𝑇𝑁−𝐹𝑃×𝐹𝑁

√(𝑇𝑃+𝑇𝑁)×(𝑇𝑃+𝐹𝑁)×(𝑇𝑁+𝐹𝑃)×(𝐹𝑃+𝐹𝑁)2 × 100 (4)

 ROC area is defined as a probability curve plotting TP versus FP at different

threshold values.

 PRC area represents precision versus recall.

A confusion matrix is also used as a classifier performance metric to show the predicted

class with respect to the actual class for the various attack classes, such as normal, DoS,

DDoS, MiTM, scanning, and XSS attacks. Finally, a comparison of SMO classifier errors

is performed as a function of various kernel types.

6.1 Detailed accuracy by class for C=1

Table 3 shows the SVM performance evaluation metrics as a function of the FPR, TPR,

precision, F-measure, recall, ROC area, PRC area, and MCC according to attack class for

an SVM classifier C parameter equal to 1.

Table 3: SVM metrics by class for C=1

Class
FP

Rate

TP

Rate
Precision F-measure Recall

ROC

Area

PRC

Area
MCC

Normal 0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

DDoS 0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

DoS 0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Injection 0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

MiTM 0 0 - - 1.0 0.996 0.053 -

Password 0 1.0 0.996 0.998 1.0 1.0 0.996 -

XSS 0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Scanning 0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

 0 1.0 - - 1.0 1.0 0.999 -

Adeeb Alhomoud 8

6.2 Confusion matrix for C=1

Table 4 presents the confusion matrix for an SVM classifier C parameter equal to 1 as a

function of various attack classes.

Table 4: Confusion matrix for SVM C=1

Normal DDoS DoS Injection MiTM Password XSS Scanning

24871 0 0 0 0 0 0 0

0 4608 0 0 0 0 0 0

0 0 525 0 0 0 0 0

0 0 0 612 0 0 0 0

0 0 0 0 0 15 0 0

0 0 0 0 0 3628 0 0

0 0 0 0 0 0 1269 0

0 0 0 0 0 0 0 447

According to Table 4, we can see that a password attack has TPR and FPR values of 3628

and 15, respectively. This is due to the precision value of 0.996 for the password class

given in Table 3. In addition, the SVM classifier classified 15 instances of an MiTM attack

as a password attack with an error rate of 0.004.

6.3 Detailed accuracy by class for SVM C=2

Table 5 shows the SVM performance evaluation metrics as a function of the FPR, TPR,

precision, F-measure, recall, ROC area, PRC area, and MCC according to attack class for

an SVM classifier C parameter equal to 2.

Table 5: SVM metrics by class for C=2

Class
FP

Rate

TP

Rate
Precision F-measure Recall

ROC

Area

PRC

Area
MCC

Normal 0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

DDoS 0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Dos 0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Injection 0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

MiTM 0 0.933 1.0 0.966 0.933 0.999 0.935 0.966

Password 0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

XSS 0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Scanning 0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

 0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Table 5 above illustrates that the lowest values for recall, F-measure, MCC, ROC area, and

PRC area are for MiTM attacks, with values of 0.933, 0.966, 0.966, 0.999, and 0.935,

respectively. In addition, the precision of password attack changes from the 0.996 given in

Table 3 to 1.

6.4 Confusion matrix for C=2

Table 6 presents the confusion matrix for an SVM classifier C parameter equal to 2 as a

function of various attack classes.

9 An Optimized Network Intrusion Detection…

Table 6: Confusion matrix for SVM C=2

Normal DDoS DoS Injection MiTM Password XSS Scanning

24871 0 0 0 0 0 0 0

0 4608 0 0 0 0 0 0

0 0 525 0 0 0 0 0

0 0 0 612 0 0 0 0

0 0 0 0 14 1 0 0

0 0 0 0 0 3628 0 0

0 0 0 0 0 0 1269 0

0 0 0 0 0 0 0 447

Table 6 shows that the FPR for password attacks changed from 15 to 1. Furthermore, in

this iteration, the TPR for MiTM attacks changed from 0 to 14.

6.5 Detailed accuracy by class for C=3

Table 7 shows the SVM performance evaluation metrics as a function of FPR, TPR,

precision, F-measure, recall, ROC area, PRC area, and MCC according to attack class for

an SVM classifier C parameter equal to 3.

Table 7: SVM metrics by class for C=3

Class
FP

Rate

TP

Rate
Precision F-measure Recall

ROC

Area

PRC

Area
MCC

Normal 0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

DDoS 0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

DoS 0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Injection 0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

MiTM 0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Password 0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

XSS 0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Scanning 0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

 0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Table 7 shows the maximum value of TPR, precision, recall, F-measure, MCC, ROC area,

and PRC area for all attack classes. Likewise, according to Table 7, the FPR is the

minimum for all attack classes.

6.6 Confusion matrix for C=3

Table 8 presents the confusion matrix for an SVM classifier C parameter equal to 3 versus

various attack classes.

Table 8: Confusion matrix for SVM C=3

Normal DDoS DoS Injection MiTM Password XSS Scanning

24871 0 0 0 0 0 0 0

0 4608 0 0 0 0 0 0

0 0 525 0 0 0 0 0

0 0 0 612 0 0 0 0

0 0 0 0 15 0 0 0

0 0 0 0 0 3628 0 0

0 0 0 0 0 0 1269 0

0 0 0 0 0 0 0 447

Adeeb Alhomoud 10

Table 8 shows that the FPR for password attacks changed from 1 to 0. Furthermore, in this

iteration, the TPR for MiTM attacks changed from 14 to 15.

As shown in Table 8, the SVM classifier is classifying all classes correctly, and especially

MiTM class attacks, as a result of raising the SVM classifier C parameter to 3.

Furthermore, we obtain the same result by increasing the SVM classifier complexity

beyond 3 and the SVM classifier converges to the optimized and maximized classifier

evaluation metrics (i.e., precision, TPR, recall, F-measure, MCC, ROC area, and PRC

area).

Table 9 shows a comparison of various kernel SMO types (radial basis function [RBF],

normalized polynomial, and polynomial) as a function of time to build the model, and

correctly classified instances, incorrectly classified instances, kappa statistics, and root

mean error.

Table 9: SMO metric comparison for various kernel functions

Kernel RBF Normalized Polynomial Polynomial

Time to build the model (s) 219.66 73.07 2.54

Correctly classified instance 99.72 99.85 100

Incorrectly classified instance 0.28 0.15 0

Kappa statistic 0.99 0.99 1

Root mean squared error 0.29 0.29 0.29

As shown in Table 9, the minimum time to build the model (i.e., 2.54 s) is for the

polynomial SMO kernel, followed by the normalized polynomial kernel (73.07 s), and then

the RBF kernel (219.66 s). Further, the correctly classified instances increased from

99.72% to 99.85% for the RBF and normalized polynomial kernels and reaching 100% for

the polynomial SMO kernel. In addition, the incorrectly classified instances decreased

from 0.28% to 0.15% for the RBF and normalized polynomial kernels, reaching 0% for

the polynomial SMO kernel. The kappa statistics increased from 0.99 for the RBF and

normalized polynomial kernels to 1 for the polynomial kernel. Finally, the root mean

squared error has the same value for the various SMO kernel types studied.

The following SMO classifier configuration setups are used to make a comparison between

RBF, normalized polynomial, and polynomial kernels:

weka.classifiers.functions.SMO -C 1.0 -L 0.001 -P 1.0E-12 -N 0 -V -1 -W 1 -K

"weka.classifiers.functions.supportVector.RBFKernel -C 250007 -G 0.01" -calibrator

"weka.classifiers.functions.Logistic -R 1.0E-8 -M -1 -num-decimal-places 4"

weka.classifiers.functions.SMO -C 1.0 -L 0.001 -P 1.0E-12 -N 0 -V -1 -W 1 -K

"weka.classifiers.functions.supportVector.NormalizedPolyKernel -E 1.0 -C 250007" -

calibrator "weka.classifiers.functions.Logistic -R 1.0E-8 -M -1 -num-decimal-places 4"

weka.classifiers.functions.SMO -C 3.0 -L 0.001 -P 1.0E-12 -N 0 -V -1 -W 1 -K

"weka.classifiers.functions.supportVector.PolyKernel -E 1.0 -C 250007" -calibrator

"weka.classifiers.functions.Logistic -R 1.0E-8 -M -1 -num-decimal-places 4"

Next, a comparison in terms of SMO classifier errors is performed as a function of the

predicted attack classes and the types of target attacks for the RBF kernel (Fig. 2),

normalized PolyKernel (Fig. 3), and polynomial kernel (Fig. 4).

11 An Optimized Network Intrusion Detection…

According to Fig. 2, the SMO classifier with an RBF kernel makes errors in classifying

DDoS, DoS, password, and scanning attacks. Further, the classifier predicted DDoS attacks

as DDoS and DoS attacks. It predicted a DoS attack as a DoS and scanning attack. The

classifier also predicted a password attack as password, DoS, MiTM, XSS, and scanning

attacks. Finally, the RBF classifier predicted scanning attacks as scanning and DoS attacks.

Fig. 2: SMO classifier errors with the RFB kernel

Fig. 3: SMO classifier errors with the normalized PolyKernel

According to Fig. 3, the SMO classifier with the normalized polynomial kernel made errors

in classifying DDoS, DoS, password, and scanning attacks. The normalized polynomial

kernel-based classifier predicted DDoS attacks as DDoS and DoS attacks and predicted

DoS attacks as DoS and scanning attacks. The classifier also predicted password attacks

Adeeb Alhomoud 12

as password, MiTM, XSS, and scanning attacks. Finally, the SMO classifier based on a

normalized polynomial kernel predicted scanning attacks as scanning and DoS attacks.

Fig. 4: SMO classifier errors with PolyKernel

According to Fig. 4, the optimized SMO classifier with a polynomial kernel made no errors

in classifying normal activity or DDoS, DoS, injection, MiTM, password, XSS, and

scanning attacks.

In conclusion, the SMO classifier based on a polynomial kernel outperformed the RBF and

normalized polynomial kernels in terms of time to build the model, correctly classified

instances, incorrectly classified instances, and kappa statistics. In contrast, the optimized

SMO classifier based on the polynomial kernel is the best classifier in terms of classifier

errors compared to the RBF and normalized polynomial kernels. Finally, the ML-IDS

based on the optimized parameter SMO classifier (C parameter equal to 3 and a polynomial

kernel) could be deployed in a future IDS solution to predict common attacks in an IoT

environment.

7 Conclusion

In this work, we presented an ML-NIDS based on an optimized SVM classifier. By

manipulating the SMO complexity parameter as a function of classifier performance

metrics (i.e., TPR, FPR, precision, recall, F-measure, MCC, ROC area, PRC area, and a

confusion matrix), an experiment study was conducted based on the TON_IoT dataset.

This work has shown that the ML-NIDS based on an SVM classifier reached a maximum

accuracy of 100% for a complexity parameter starting from 3. The confusion matrix also

converges after only three rounds to classify all attacks in the IoT network correctly.

Moreover, our research reveals that an SVM based on a polynomial kernel outperformed

a classifier based on RBF and normalized kernels in terms of classifier errors. As a

perspective of this work, the utilization of optimization techniques, such as genetic

algorithms, ant colony optimization, heuristics, and particle swarm optimization, can be

13 An Optimized Network Intrusion Detection…

applied to enhance and improve ML layout analysis. The incorporation of optimization

techniques may serve as an approach to improving ML-NIDS tool performance metrics.

The performance evaluation of deep learning-based classifiers is highly dependent on the

number of neurons present within the network, as well as the weight and bias values

assigned to each neuron. These factors play a critical role in determining the overall

accuracy and effectiveness of the classifier.

References

[1] Oueslati, N. E., Mrabet, H., Jemai, A., & Alhomoud, A. (2019, December).

Comparative study of the common cyber-physical attacks in industry 4.0. In 2019

International Conference on Internet of Things, Embedded Systems and

Communications (IINTEC) (pp. 1-7). IEEE.

 [2] Chaabouni, N., Mosbah, M., Zemmari, A., Sauvignac, C., & Faruki, P. (2019).

Network intrusion detection for IoT security based on learning techniques. IEEE

Communications Surveys & Tutorials, 21(3), 2671-2701.

 [3] Jamalipour, A., & Murali, S. (2021). A Taxonomy of Machine-Learning-Based

Intrusion Detection Systems for the Internet of Things: A Survey. IEEE Internet of

Things Journal, 9(12), 9444-9466.

 [4] Gyamfi, E., & Jurcut, A. (2022). Intrusion Detection in Internet of Things Systems: A

Review on Design Approaches Leveraging Multi-Access Edge Computing, Machine

Learning, and Datasets. Sensors, 22(10), 3744.

 [5] Moustafa, N. (2021). A new distributed architecture for evaluating AI-based security

systems at the edge: Network TON_IoT datasets. Sustainable Cities and Society, 72,

102994.

 [6] Puzis, R., Klippel, M. D., Elovici, Y., & Dolev, S. (2008). Optimization of NIDS

placement for protection of intercommunicating critical infrastructures.

In Intelligence and Security Informatics: First European Conference, EuroISI 2008,

Esbjerg, Denmark, December 3-5, 2008. Proceedings (pp. 191-203). Springer Berlin

Heidelberg.

 [7] Torkaman, A., Javadzadeh, G., & Bahrololum, M. (2013, May). A hybrid intelligent

HIDS model using two-layer genetic algorithm and neural network. In The 5th

Conference on Information and Knowledge Technology (pp. 92-96). IEEE.

 [8] Fuchsberger, A. (2005). Intrusion detection systems and intrusion prevention

systems. Information Security Technical Report, 10(3), 134-139.

 [9] Elhag, S., Fernández, A., Bawakid, A., Alshomrani, S., & Herrera, F. (2015). On the

combination of genetic fuzzy systems and pairwise learning for improving detection

rates on intrusion detection systems. Expert Systems with Applications, 42(1), 193-202.

[10] Wang, K., Du, M., Sun, Y., Vinel, A., & Zhang, Y. (2016). Attack detection and

distributed forensics in machine-to-machine networks. IEEE Network, 30(6), 49-55.

[11] Wang, K., Du, M., Yang, D., Zhu, C., Shen, J., & Zhang, Y. (2016). Game-theory-

based active defense for intrusion detection in cyber-physical embedded systems.

ACM Transactions on Embedded Computing Systems 16(1), 1-21

[12] Joldzic, O., Z. Djuric, and P. Vuletic, A transparent and scalable anomaly-based DoS

detection method. Computer Networks, 2016. 104: pp. 27-42.

Adeeb Alhomoud 14

[13] Papamartzivanos, D., Mármol, F. G., & Kambourakis, G. (2018). Dendron: Genetic

trees driven rule induction for network intrusion detection systems. Future

Generation Computer Systems, 79, 558-574.

[14] Kim, J., Kim, J., Thu, H. L. T., & Kim, H. (2016, February). Long short term memory

recurrent neural network classifier for intrusion detection. In 2016 international

conference on platform technology and service (PlatCon) (pp. 1-5). IEEE.

[15] Pathan, A. S. K. (Ed.). (2014). The state of the art in intrusion prevention and

detection (Vol. 44). Boca raton: CRC press.

[16] Hecht-Nielsen, R. (1992). Neural networks for perception. Theory of the

backpropagation neural network (pp. 65-93). Academic Press.

[17] Quinlan, J. R. (2014). C4. 5: programs for machine learning. Elsevier.

[18] Cortes, C., & Vapnik, V. (1995). Support vector machine. Machine learning, 20(3),

273-297.

[19] Du, M., Wang, K., Chen, Y., Wang, X., & Sun, Y. (2018). Big data privacy preserving

in multi-access edge computing for heterogeneous Internet of Things. IEEE

Communications Magazine, 56(8), 62-67.

[20] Du, M., Wang, K., Xia, Z., & Zhang, Y. (2018). Differential privacy preserving of

training model in wireless big data with edge computing. IEEE transactions on big

data, 6(2), 283-295.

[21] Mishra, P., Varadharajan, V., Tupakula, U., & Pilli, E. S. (2018). A detailed

investigation and analysis of using machine learning techniques for intrusion

detection. IEEE communications surveys & tutorials, 21(1), 686-728.

[22] Feng, X., Xiao, Z., Zhong, B., Qiu, J., & Dong, Y. (2018). Dynamic ensemble

classification for credit scoring using soft probability. Applied Soft Computing, 65,

139-151.

[23] Salo, F., A.B. Nassif, and A. Essex, Dimensionality reduction with IG-PCA and

ensemble classifier for network intrusion detection. Computer Networks, 2019. 148:

pp. 164-175.

[24] Pham, N. T., Foo, E., Suriadi, S., Jeffrey, H., & Lahza, H. F. M. (2018, January).

Improving performance of intrusion detection system using ensemble methods and

feature selection. In Proceedings of the Australasian computer science week

multiconference (pp. 1-6).ACM.

[25] Aljawarneh, S., Aldwairi, M., & Yassein, M. B. (2018). Anomaly-based intrusion

detection system through feature selection analysis and building hybrid efficient

model. Journal of Computational Science, 25, 152-160.

[26] Salim, M. M., Rathore, S., & Park, J. H. (2020). Distributed denial of service attacks

and its defenses in IoT: a survey. The Journal of Supercomputing, 76, 5320-5363.

[27] Muhammad, F., Anjum, W., & Mazhar, K. S. (2015). A critical analysis on the

security concerns of internet of things (IoT). International Journal of Computer

Applications, 111(7), 1-6.

15 An Optimized Network Intrusion Detection…

[28] Deogirikar, J., & Vidhate, A. (2017, February). Security attacks in IoT: A survey.

In 2017 International Conference on I-SMAC (IoT in Social, Mobile, Analytics and

Cloud) (pp. 32-37). IEEE.

[29] Rodríguez, G. E., Torres, J. G., Flores, P., & Benavides, D. E. (2020). Cross-site

scripting (XSS) attacks and mitigation: A survey. Computer Networks, 166, 106960.

[30] Tareq, I., Elbagoury, B. M., El-Regaily, S., & El-Horbaty, E. S. M. (2022). Analysis

of ToN-IoT, UNW-NB15, and Edge-IIoT Datasets Using DL in Cybersecurity for

IoT. Applied Sciences, 12(19), 9572.

[31] Meena, G., & Choudhary, R. R. (2017, July). A review paper on IDS classification

using KDD 99 and NSL KDD dataset in WEKA. In 2017 International Conference

on Computer, Communications and Electronics (Comptelix) (pp. 553-558). IEEE.

[32] Dhanabal, L., & Shantharajah, S. P. (2015). A study on NSL-KDD dataset for

intrusion detection system based on classification algorithms. International journal of

advanced research in computer and communication engineering, 4(6), 446-452.

[33] Mrabet, H., Alhomoud, A., Jemai, A., & Trentesaux, D. (2022). A Secured Industrial

Internet-of-Things Architecture Based on Blockchain Technology and Machine

Learning for Sensor Access Control Systems in Smart Manufacturing. Applied

Sciences, 12(9), 4641.

 Notes on contributor

Dr Adeeb Alhomoud holds a PhD in cyber security from

the University of Bradford (2014) and a Master’s degree

from the University of Essex (2005) in the United

Kingdom. Alhomoud is a technically astute cyber security

specialist with 15+ years of diversified experience across

the academic and IT sector. He has had significant

exposure to the fields of cyber security, network security,

malware attacks, botnets, and self-healing and offensive

security. He is a Certified GRC Professional, Certified

Ethical Hacker, ISO 27001 LI, with extensive knowledge

of security threats, risk analysis and the development of

security systems and protocols in business and corporate

settings. His research interests include botnets, malware

propagation, the IoT, steganography, machine learning,

and artificial intelligence.

