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Abstract 

     In this paper, an optimized classification approach based on a support vector 
machine (SVM) classifier is proposed to maximize the accuracy of a machine 
learning model employed by a network intrusion detection system to detect 
malicious attacks in an Internet-of-Things (IoT) environment. In addition, an 
experiment study based on the TON_IoT dataset is conducted in terms of classifier 
performance metrics, such as the false positive rate, true positive rate, precision, 
F-measure, recall, Matthews correlation coefficient, receiver operating 
characteristic area, precision-recall curve area, and a confusion matrix. It is 
demonstrated that the model accuracy is maximized and the number of rounds 
minimized for the confusion matrix to converge and correctly classify all various 
attacks. Finally, classifier errors are compared in terms of kernel types. This part 
of the investigation shows that the SVM classifier based on a polynomial kernel 
outperformed radial basis function and normalized polynomial kernels in terms of 
classifier errors, time to build the model, correctly classified instances, incorrectly 
classified instances, and kappa statistics.  

     Keywords: Complexity parameter, confusion matrix, IoT networks, machine learning, 
NIDS, SVM.  

1      Introduction 

The Internet of Things (IoT) is a fast-growing network of interlinked devices that 

communicate and exchange data over a network or the internet. Such devices can be 

anything from smart appliances and wearable technology to industrial control systems and 

are increasingly being used in a variety of settings, including homes, businesses, and 

industrial environments. However, the wide spread of the IoT in organizations has 

introduced security challenges, as the devices are often prone to cyber attacks. One of the 

main security concerns with an IoT in an enterprise is the potential for the unauthorized 

access to and control of devices. For example, an attacker could gain access to a connected 

industrial control system and disrupt production [1]. There is also the risk of data breaches 

and the potential for any sensitive data collected by IoT devices to be accessed by 

unauthorized parties. 
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Cyber security is a critical concern for businesses of all sizes and has become one of the 

top priorities for organizations due to increasing reliance on networked technology, which 

is accompanied by its own risks. One key aspect of cyber security is the protection of 

enterprise networks from unauthorized access and malicious activities. Therefore, many 

security procedures and practices are applied to secure the network of an organization. One 

approach to addressing security concerns is to use a network intrusion detection system 

(NIDS) to detect and prevent attacks on IoT devices [2]. Many approaches, such as 

supervised, unsupervised, and reinforcement learning in the field of machine learning 

(ML), have been used to improve the efficiency and accuracy of NIDSs [3, 4]. It remains 

a challenge, however, for existing intrusion detection algorithms to achieve a good level 

of performance in detecting malicious network attacks. Hence, the performance of these 

systems is often limited by the accuracy of the ML models. 

This paper proposes an optimized classification approach based on a support vector 

machine (SVM) classifier to maximize the accuracy of the ML model used by a NIDS-

based solution to detect malicious attacks in an IoT environment. In addition, by tuning the 

SVM classifier parameters, the confusion matrix converges in a minimum number of 

rounds by correctly classifying all attacks in the IoT network. An experiment study is also 

performed in terms of classifier performance metrics, including the true positive rate 

(TPR), false positive rate (FPR), precision, F-measure, recall, Matthews correlation 

coefficient (MCC), receiver operating characteristic (ROC) area, precision-recall curve 

(PRC) area, and a confusion matrix based on the TON_IoT dataset [5]. Classifier errors 

are also investigated in terms of SVM kernel function, comparing radial basis function, 

normalized polynomial, and polynomial kernels to select the best kernel function within 

the SVM classifier. 

The rest of the paper is structured as follows. Section 2 presents the literature on intrusion 

detection system (IDS) types and techniques, the advantages of using ML in IDS systems, 

and types of IDSs for attack detection in IoT networks. Section 3 provides an overview of 

common types of attacks on the IoT and the datasets used. Section 4 outlines the proposed 

model. Section 5 outlines the methodology used, and Section 6 presents the experiments 

and a discussion of the results. Finally, Section 7 provides the conclusion and findings. 

2      Literature Review 

In the literature, various types of IDSs for attack detection are well defined and involve 

signature-based and behaviour-based systems. IDSs are used to identify deviations from 

normal network behaviour that may indicate malicious activity. Signature-based IDSs rely 

on a database of known attack and vulnerability signatures but are unable to detect novel 

malicious activity. These systems trigger an alert when a pattern being analysed matches 

an entry in the signature database. Behaviour-based IDSs, on the other hand, are designed 

to detect previously unseen attacks through the use of ML algorithms. Although they may 

be able to detect unknown attacks in theory, their practical application in real-world 

networks is limited due to the complexity of development and the high FPR they often 

produce. In general, IDSs process logs generated by active network equipment, such as 

computers or routers, to detect anomalous activity, also known as network intrusions. IDSs 

can also be categorized into those that are network based and host based. A NIDS is usually 

positioned at network gateways and routers to inspect network traffic for intrusions [6]. 

Host-based IDSs monitor individual nodes or devices and notify the user if any suspicious 

activities are detected [7].  
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Originally, IDSs were designed to process and analyse logs generated by various systems 

[8]. The same motivation has led to the use of network traffic processing for intrusion 

detection, with IDSs being the most common application for collecting, analysing, and 

classifying network traffic content. Several authors have proposed a taxonomy for IDSs 

that group these systems according to relevant characteristics. IDSs are widely used in 

network topologies to safeguard the integrity and availability of sensitive assets in 

protected systems. Although a variety of supervised, unsupervised, and reinforcement 

learning methods from the field of ML have been employed to improve the effectiveness 

of IDSs, it remains a challenge for current intrusion detection algorithms to accomplish a 

good level of performance. One reason for this is the presence of irrelevant and redundant 

data in high-dimensional datasets, which can interfere with the classification process of an 

IDS. In addition, individual classifiers may not perform well in detecting every type of 

attack and many models are based on outdated datasets, making them less adaptable to 

novel attacks. As technology advances, these attacks continue to pose a threat to the 

integrity, confidentiality, and availability of cyber systems, making the use of IDSs 

necessary to protect such systems from a different type of attack [9-11].  

IDSs are deployed in several distributed systems to detect malicious activities and take 

swift countermeasures to stop additional intrusions and spread. IDSs can generally be 

divided into two categories based on their detection mechanisms: anomaly and misuse 

detection [12]. Anomaly detection is intended to detect malicious activities by identifying 

abnormalities from normal behaviour profiles, with better performance in detecting new 

types of attacks, but can result in a high FPR [13]. On the other hand, based on known 

patterns, misuse detection is effective at differentiating legitimate instances from malicious 

ones [14]. A comparison between anomaly and misuse detection is shown in Table 1.  

Table 1: Comparison between anomaly and misuse detection 

Anomaly detection Misuse detection 

Utilizes the recognized system normal 

behaviour profile. Discrepancy in the 

inbound pattern is considered 

suspicious. 

Utilizes a technique for modelling the 

present well-known attack signature 

data. Once a match of an inbound 

pattern with a signature is 

accomplished, it is considered 

suspicious. 

Difficulty in differentiating an attack 

from normal behaviour. 

Difficulty in keeping an up-to-date 

attack signature database. 

High rates of false positives. Low rates of false positives. 

Unsupervised or semi-supervised ML 

is suitable for anomaly detection. 

Supervised ML methods are useful for 

misuse detection. 

A very common anomaly detection 

approach is statistical learning. 

Signature matching is a very common 

method in misuse detection. 

Good accuracy for unknown attacks. Very high precision in identifying 

known attacks. 

Examples: Multiagent-based intrusion 

detection systems (MIDSs)  

Examples: Suricata and Snort 

Misuse detection can be categorized as being either knowledge based or machine learning 

based. In knowledge-based misuse detection, network traffic is compared to predefined 

rules or patterns that represent known attacks. This knowledge-based technique can be 

further divided into three categories: state transition analysis, signature matching, and rule-

based expert systems [15]. However, this approach requires frequent updates to the 

knowledge database and may not be able to detect new or modified versions of attacks. 
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Alternatively, misuse detection can also be accomplished using ML techniques, such as a 

back propagation artificial neural network (BP-ANN) [16], decision trees [17], and multi-

class SVMs [18]. 

IDSs of this type are effective at identifying known attack patterns, but they are not capable 

of detecting novel or modified versions of known attacks. As cyber criminals become more 

advanced, new vulnerabilities and threats are emerging at an alarming rate, which poses a 

significant risk to critical infrastructure. To address this issue, there has been a demand for 

more advanced IDSs that can detect and respond to novel attacks. As a result, various 

methods have been researched and developed to improve the performance and accuracy of 

IDSs in detecting such threats. One of them is ML [19-21], which can be used for both 

anomaly and misuse detection models. One problem that arose with the initial application 

of ML in IDSs was the inability of a single classifier to handle this task effectively. As a 

result, researchers have explored the use of ensemble classifiers as a method of enhancing 

the performance of IDSs [22, 23]. Ensemble learning is an ML approach that involves 

combining the predictions of multiple individual classifiers in order to make a more 

accurate classification decision about the input object. The primary objective of ensemble 

learning is to improve the performance of the classifier by leveraging the strengths of 

multiple models [24]. One example of the usefulness of ensemble learning in the context 

of IDSs is the ability to combine the predictions of multiple classifiers trained on different 

subsets of an IDS dataset. This can lead to more accurate classification performance 

compared to using a single classifier. The diverse range of attack types and network traffic 

attributes present in IDS datasets can also pose a challenge for ML algorithms, as they 

increase the complexity of the problem and require significant computational and time 

resources to process. Ensemble learning can help mitigate these challenges by aggregating 

the predictions of multiple classifiers [25]. 

The following points summarize the advantages of using an ML-based IDS over a 

traditional signature-based IDS: 

• A machine learning-based IDS (ML-IDS) can detect variants of attacks more 

effectively than a signature-based IDS because it can learn the normal 

behaviour of traffic flow and recognize deviations from it. 

• An ML-IDS does not place as much strain on computer processors as a 

signature-based IDS because it does not need to analyse all the signatures in a 

signature database. 

• Some ML-IDSs, particularly those using unsupervised learning algorithms, 

can detect new, previously unseen attacks. 

• An ML-IDS can more accurately and quickly identify attacks by considering 

complex characteristics of attack behaviour, compared to a signature-based 

IDS. 

• A signature-based IDS needs continually to maintain and update its signature 

database to stay current, whereas an ML-IDS based on clustering and outlier 

detection does not require such updates. 

The contribution of this paper consists of proposing an ML-NIDS based on optimizing an 

SVM classifier in order to maximize the accuracy and minimize the number of rounds for 

the confusion matrix to converge and correctly classify the various attacks. The TON_IoT 

dataset is also investigated to classify common attacks in an IoT environment, such as 
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injection, man-in-the-middle (MiTM), denial of service (DoS), distributed denial of service 

(DDoS), password, scanning, and cross-site scripting (XSS) attacks. The next section 

presents the experiment and a discussion of the results. 

3       Dataset and Common Attacks on the IoT  

One of the most common security threats to IoT devices is DoS attacks. This type of attack 

involves overloading a device with excessive traffic or demand, disrupting its normal 

operation and causing data loss, service interruption, and reputational damage. A more 

serious version of a DoS attack is a DDoS attack, in which multiple entities coordinate and 

launch an attack on a single target, increasing the scope and impact of that attack [26]. 

Another security threat facing IoT devices is injection attacks. These attacks involve 

injecting malicious code or data into devices, resulting in data modification. Injection 

attacks can cause significant harm, including theft of sensitive information, data 

corruption, and service disruption of the IoT system [27]. The attacker can then gain full 

control of an IoT system [28]. XSS attacks, which are also becoming more common in IoT 

environments, involve injecting malicious code into a website that can be executed when 

unsuspecting users visit the website, potentially compromising their data [29].  

To address these security threats, several datasets have been developed to evaluate and 

design IDSs for the IoT. The KDD'99 is a dataset that is widely used for evaluating IDSs 

and consists of network traffic data labelled as normal and attack cases [30]. The NSL-

KDD is a version of the KDD’99 dataset that was developed by redundancy suppression 

and labelling all nominal values [31]. Finally, there is the TON_IoT dataset, which aims 

to aggregate and analyse various IoT and Industrial IoT (IIoT) data sources and contains 

heterogeneous data collected from various sources, including telemetry data from 

connected devices, Windows and Linux system logs, and system network traffic [32]. The 

TON_IoT dataset is based on seven attack classes: DoS, DDoS, injection, MiTM, 

password, XSS, and scanning attacks. 

4      Proposed Model  

This section shows the steps taken to collect, prepare, and utilize a dataset for training and 

testing to maximize the model accuracy and to minimize the number of rounds for the 

confusion matrix to classify all attacks correctly. Fig. 1 provides a visual representation of 

the steps needed to execute the various ML metrics. The evaluation of the ML involves a 

six-step life cycle that encompasses the selection of the dataset, pre-processing, choosing 

a classifier model, training the model, testing, and applying ML evaluation metrics. 

       

Fig. 1: Life cycle of the ML metrics evaluation 

The TON_IoT dataset was selected to perform the experiment simulation. The pre-

processing phase consists of selecting the pertinent attributes to maximize the model 

accuracy. We selected a binary sequential minimal optimization (SMO) classifier, which 

Dataset 
selection

Pre-
processing

Classifer 
selection

Model 
training

Test phase
ML evaluation 

metrics
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is an SVM that uses John Platt’s SMO algorithm. During the model training, the SVM 

classifier defines the hyperplane to separate the different classes with an optimization 

process to maximize the distance between the hyperplane and the closest points in the 

dataset. For the testing phase, 10-fold cross-validation was selected during the simulation 

to obtain the evaluation metrics based on the SVM classifier. Finally, the ML evaluation 

metrics were conducted on classifier performance metrics, such as the FPR, TPR, 

precision, F-measure, recall, MCC, ROC area, PRC area, a confusion matrix, and classifier 

errors. 

5      Overall Methodology  

This paper proposes an optimized approach to cyber-attack classification in an IoT 

environment based on an SVM classifier. We investigate the implementation of an ML 

model by using the TON_IoT dataset as input and accuracy and a confusion matrix as the 

output. The aim of this work is to maximize the model accuracy and minimize the number 

of rounds for confusion matrix convergence to classify all attacks correctly by 

manipulating the SVM complexity parameters (C parameters). This experiment utilized 

accuracy, sensitivity, precision, and MCC as performance metrics, all of which were 

executed within a WEKA data mining environment.  

WEKA is a software suite, which is open source and freely available, and is widely utilized 

by researchers in the field of ML for implementing a variety of ML algorithms, including 

regression, classification, and clustering. WEKA 3.8 was used to execute the experiments 

presented in this paper. 

The optimization technique is utilized through the use of the SMO classifier, known in the 

literature as a kind of SVM classifier, by executing and training a support vector classifier 

known as John Platt’s SMO algorithm. In addition, we focus on the SVM C parameters 

and look for the optimal value leading to the maximum accuracy. We also take the result 

given by the authors in [33] as a reference by taking a default SMO classifier complexity 

parameter equal to 1 with a polynomial kernel. 

6       Experiment and Discussion of the Results 

Table 2 shows a comparison of SMO metrics for various C parameter values. 

Table 2: SVM metric comparison for various C parameters 

Metric  C=1 C=2 C=3 C=4 

Correctly classified instance 35960 35974 35975 35975 

Incorrectly classified instance 15 1 0 0 

Accuracy  99.9583 99.9972 100 100 

 

As shown in Table 2, by increasing the classifier complexity parameter from 1 to 4, the 

correctly classified instances move from 35960 to 35975, and the incorrectly classified 

instances decrease from 15 to 0. Moreover, the SVM accuracy has increased from 

99.9583% to 100%. It is known that the C parameter range is from 1 to infinity and is 

responsible for maximizing the distance separating the hyperplane and the nearest points 

that belong to various classes during the training process. By default, the C parameter is 

set to 1 and the hyperplane is determined during the training process, and the classifier 

succeeded in classifying 35960 instances correctly during the test phase leading to a model 
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accuracy of 99.9583%. Then, when the C parameter is increased to 2, the classifier raises 

the distance between the hyperplane and the 15 nearest points during the training process 

and succeeded in classifying 14 new instances correctly (see Table 2, row 2: incorrectly 

classified instances), leading to a model accuracy of 99.9972%. Finally, by raising the C 

parameter to 3, the remaining incorrectly classified instances are correctly classified by 

increasing the distance between the hyperplane and the remaining instances, leading to an 

accuracy value of 100%. As a conclusion, the SVM classifier reached maximum accuracy 

from an SVM C parameter equal to 3. 

The SVM performance metrics conducted in this study are as follows: 

 Precision, defined as: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
TP  

(TP + FP)
× 100     (1) 

 Recall (also known as sensitivity) is the proportion of actual positives which are 

predicted to be positive: 

 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
TP  

(TP + FN)
× 100                       (2) 

 F-measure, defined as the proportion of actual positives which are predicted to be 

positive: 

 𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =
TP  

(TP + FN)
× 100      (3) 

 MCC defines the correlation between the predicted value and the actual value: 

𝑀𝐶𝐶 =
𝑇𝑃×𝑇𝑁−𝐹𝑃×𝐹𝑁  

√(𝑇𝑃+𝑇𝑁)×(𝑇𝑃+𝐹𝑁)×(𝑇𝑁+𝐹𝑃)×(𝐹𝑃+𝐹𝑁)2 × 100    (4) 

 ROC area is defined as a probability curve plotting TP versus FP at different 

threshold values. 

 PRC area represents precision versus recall. 

A confusion matrix is also used as a classifier performance metric to show the predicted 

class with respect to the actual class for the various attack classes, such as normal, DoS, 

DDoS, MiTM, scanning, and XSS attacks. Finally, a comparison of SMO classifier errors 

is performed as a function of various kernel types. 

6.1      Detailed accuracy by class for C=1 

Table 3 shows the SVM performance evaluation metrics as a function of the FPR, TPR, 

precision, F-measure, recall, ROC area, PRC area, and MCC according to attack class for 

an SVM classifier C parameter equal to 1. 

Table 3: SVM metrics by class for C=1 

Class 
FP 

Rate 

TP 

Rate 
Precision F-measure Recall 

ROC 

Area 

PRC 

Area  
MCC 

Normal 0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

DDoS 0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

DoS 0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

Injection 0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

MiTM 0 0 - - 1.0 0.996 0.053 - 

Password 0 1.0 0.996 0.998 1.0 1.0 0.996 - 

XSS 0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

Scanning 0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

 0 1.0 - - 1.0 1.0 0.999 - 
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6.2      Confusion matrix for C=1 

Table 4 presents the confusion matrix for an SVM classifier C parameter equal to 1 as a 

function of various attack classes. 

Table 4: Confusion matrix for SVM C=1 

Normal DDoS DoS Injection MiTM Password XSS Scanning 

24871 0 0 0 0 0 0 0 

0 4608 0 0 0 0 0 0 

0 0 525 0 0 0 0 0 

0 0 0 612 0 0 0 0 

0 0 0 0 0 15 0 0 

0 0 0 0 0 3628 0 0 

0 0 0 0 0 0 1269 0 

0 0 0 0 0 0 0 447 

 

According to Table 4, we can see that a password attack has TPR and FPR values of 3628 

and 15, respectively. This is due to the precision value of 0.996 for the password class 

given in Table 3. In addition, the SVM classifier classified 15 instances of an MiTM attack 

as a password attack with an error rate of 0.004. 

6.3      Detailed accuracy by class for SVM C=2 

Table 5 shows the SVM performance evaluation metrics as a function of the FPR, TPR, 

precision, F-measure, recall, ROC area, PRC area, and MCC according to attack class for 

an SVM classifier C parameter equal to 2. 

Table 5: SVM metrics by class for C=2 

Class 
FP 

Rate 

TP 

Rate 
Precision F-measure Recall 

ROC 

Area 

PRC 

Area  
MCC 

Normal 0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

DDoS 0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

Dos 0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

Injection 0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

MiTM 0 0.933  1.0 0.966 0.933 0.999 0.935 0.966 

Password 0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

XSS 0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

Scanning 0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

 0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

 

Table 5 above illustrates that the lowest values for recall, F-measure, MCC, ROC area, and 

PRC area are for MiTM attacks, with values of 0.933, 0.966, 0.966, 0.999, and 0.935, 

respectively. In addition, the precision of password attack changes from the 0.996 given in 

Table 3 to 1. 

6.4      Confusion matrix for C=2 

Table 6 presents the confusion matrix for an SVM classifier C parameter equal to 2 as a 

function of various attack classes. 
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Table 6: Confusion matrix for SVM C=2 

Normal DDoS DoS Injection MiTM Password XSS Scanning 

24871 0 0 0 0 0 0 0 

0 4608 0 0 0 0 0 0 

0 0 525 0 0 0 0 0 

0 0 0 612 0 0 0 0 

0 0 0 0 14 1 0 0 

0 0 0 0 0 3628 0 0 

0 0 0 0 0 0 1269 0 

0 0 0 0 0 0 0 447 

 

Table 6 shows that the FPR for password attacks changed from 15 to 1. Furthermore, in 

this iteration, the TPR for MiTM attacks changed from 0 to 14. 

6.5      Detailed accuracy by class for C=3 

Table 7 shows the SVM performance evaluation metrics as a function of FPR, TPR, 

precision, F-measure, recall, ROC area, PRC area, and MCC according to attack class for 

an SVM classifier C parameter equal to 3. 

Table 7: SVM metrics by class for C=3 

Class 
FP 

Rate 

TP 

Rate 
Precision F-measure Recall 

ROC 

Area 

PRC 

Area  
MCC 

Normal 0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

DDoS 0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

DoS 0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

Injection 0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

MiTM 0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

Password 0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

XSS 0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

Scanning 0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

 0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

Table 7 shows the maximum value of TPR, precision, recall, F-measure, MCC, ROC area, 

and PRC area for all attack classes. Likewise, according to Table 7, the FPR is the 

minimum for all attack classes.  

6.6      Confusion matrix for C=3 

Table 8 presents the confusion matrix for an SVM classifier C parameter equal to 3 versus 

various attack classes. 

Table 8: Confusion matrix for SVM C=3 

Normal DDoS DoS Injection MiTM Password XSS Scanning 

24871 0 0 0 0 0 0 0 

0 4608 0 0 0 0 0 0 

0 0 525 0 0 0 0 0 

0 0 0 612 0 0 0 0 

0 0 0 0 15 0 0 0 

0 0 0 0 0 3628 0 0 

0 0 0 0 0 0 1269 0 

0 0 0 0 0 0 0 447 
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Table 8 shows that the FPR for password attacks changed from 1 to 0. Furthermore, in this 

iteration, the TPR for MiTM attacks changed from 14 to 15. 

As shown in Table 8, the SVM classifier is classifying all classes correctly, and especially 

MiTM class attacks, as a result of raising the SVM classifier C parameter to 3. 

Furthermore, we obtain the same result by increasing the SVM classifier complexity 

beyond 3 and the SVM classifier converges to the optimized and maximized classifier 

evaluation metrics (i.e., precision, TPR, recall, F-measure, MCC, ROC area, and PRC 

area). 

Table 9 shows a comparison of various kernel SMO types (radial basis function [RBF], 

normalized polynomial, and polynomial) as a function of time to build the model, and 

correctly classified instances, incorrectly classified instances, kappa statistics, and root 

mean error. 

Table 9: SMO metric comparison for various kernel functions 

Kernel RBF Normalized Polynomial Polynomial 

Time to build the model (s) 219.66 73.07 2.54 

Correctly classified instance 99.72 99.85 100 

Incorrectly classified instance 0.28 0.15 0 

Kappa statistic 0.99 0.99 1 

Root mean squared error 0.29 0.29 0.29 

 

As shown in Table 9, the minimum time to build the model (i.e., 2.54 s) is for the 

polynomial SMO kernel, followed by the normalized polynomial kernel (73.07 s), and then 

the RBF kernel (219.66 s). Further, the correctly classified instances increased from 

99.72% to 99.85% for the RBF and normalized polynomial kernels and reaching 100% for 

the polynomial SMO kernel. In addition, the incorrectly classified instances decreased 

from 0.28% to 0.15% for the RBF and normalized polynomial kernels, reaching 0% for 

the polynomial SMO kernel. The kappa statistics increased from 0.99 for the RBF and 

normalized polynomial kernels to 1 for the polynomial kernel. Finally, the root mean 

squared error has the same value for the various SMO kernel types studied. 

The following SMO classifier configuration setups are used to make a comparison between 

RBF, normalized polynomial, and polynomial kernels: 

weka.classifiers.functions.SMO -C 1.0 -L 0.001 -P 1.0E-12 -N 0 -V -1 -W 1 -K 

"weka.classifiers.functions.supportVector.RBFKernel -C 250007 -G 0.01" -calibrator 

"weka.classifiers.functions.Logistic -R 1.0E-8 -M -1 -num-decimal-places 4" 

weka.classifiers.functions.SMO -C 1.0 -L 0.001 -P 1.0E-12 -N 0 -V -1 -W 1 -K 

"weka.classifiers.functions.supportVector.NormalizedPolyKernel -E 1.0 -C 250007" -

calibrator "weka.classifiers.functions.Logistic -R 1.0E-8 -M -1 -num-decimal-places 4" 

weka.classifiers.functions.SMO -C 3.0 -L 0.001 -P 1.0E-12 -N 0 -V -1 -W 1 -K 

"weka.classifiers.functions.supportVector.PolyKernel -E 1.0 -C 250007" -calibrator 

"weka.classifiers.functions.Logistic -R 1.0E-8 -M -1 -num-decimal-places 4" 

Next, a comparison in terms of SMO classifier errors is performed as a function of the 

predicted attack classes and the types of target attacks for the RBF kernel (Fig. 2), 

normalized PolyKernel (Fig. 3), and polynomial kernel (Fig. 4). 
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According to Fig. 2, the SMO classifier with an RBF kernel makes errors in classifying 

DDoS, DoS, password, and scanning attacks. Further, the classifier predicted DDoS attacks 

as DDoS and  DoS attacks. It predicted a DoS attack as a DoS and scanning attack. The 

classifier also predicted a password attack as password, DoS, MiTM, XSS, and scanning 

attacks. Finally, the RBF classifier predicted scanning attacks as scanning and DoS attacks. 

 

 

Fig. 2: SMO classifier errors with the RFB kernel 

 

 

Fig. 3: SMO classifier errors with the normalized PolyKernel 

 

According to Fig. 3, the SMO classifier with the normalized polynomial kernel made errors 

in classifying DDoS, DoS, password, and scanning attacks. The normalized polynomial 

kernel-based classifier predicted DDoS attacks as DDoS and DoS attacks and predicted 

DoS attacks as DoS and scanning attacks. The classifier also predicted password attacks 
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as password, MiTM, XSS, and scanning attacks. Finally, the SMO classifier based on a 

normalized polynomial kernel predicted scanning attacks as scanning and DoS attacks. 

 

 

Fig. 4: SMO classifier errors with PolyKernel 

 

According to Fig. 4, the optimized SMO classifier with a polynomial kernel made no errors 

in classifying normal activity or DDoS, DoS, injection, MiTM, password, XSS, and 

scanning attacks. 

In conclusion, the SMO classifier based on a polynomial kernel outperformed the RBF and 

normalized polynomial kernels in terms of time to build the model, correctly classified 

instances, incorrectly classified instances, and kappa statistics. In contrast, the optimized 

SMO classifier based on the polynomial kernel is the best classifier in terms of classifier 

errors compared to the RBF and normalized polynomial kernels. Finally, the ML-IDS 

based on the optimized parameter SMO classifier (C parameter equal to 3 and a polynomial 

kernel) could be deployed in a future IDS solution to predict common attacks in an IoT 

environment. 

7      Conclusion  

In this work, we presented an ML-NIDS based on an optimized SVM classifier. By 

manipulating the SMO complexity parameter as a function of classifier performance 

metrics (i.e., TPR, FPR, precision, recall, F-measure, MCC, ROC area, PRC area, and a 

confusion matrix), an experiment study was conducted based on the TON_IoT dataset. 

This work has shown that the ML-NIDS based on an SVM classifier reached a maximum 

accuracy of 100% for a complexity parameter starting from 3. The confusion matrix also 

converges after only three rounds to classify all attacks in the IoT network correctly. 

Moreover, our research reveals that an SVM based on a polynomial kernel outperformed 

a classifier based on RBF and normalized kernels in terms of classifier errors. As a 

perspective of this work, the utilization of optimization techniques, such as genetic 

algorithms, ant colony optimization, heuristics, and particle swarm optimization, can be 
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applied to enhance and improve ML layout analysis. The incorporation of optimization 

techniques may serve as an approach to improving ML-NIDS tool performance metrics. 

The performance evaluation of deep learning-based classifiers is highly dependent on the 

number of neurons present within the network, as well as the weight and bias values 

assigned to each neuron. These factors play a critical role in determining the overall 

accuracy and effectiveness of the classifier. 
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