
DOI: 10.15849/ IJASCA.230720.03

Received 22 March 2023; Accepted 1 May 2023

Int. J. Advance Soft Compu. Appl, Vol. 15, No. 2, July 2023

Print ISSN: 2710-1274, Online ISSN: 2074-8523

Copyright © Al-Zaytoonah University of Jordan (ZUJ)

Building Machine Learning Model with Hybrid

Feature Selection Technique for Keylogger

Detection

Mutaz Saad Alsubaie, Samer H. Atawneh, and Mohammed Said Abual-Rub

College of Computing and Informatics, Saudi Electronic University, Riyadh 11673,

Saudi Arabia

e-mail: G200319885@seu.edu.sa; motaz.sa1@gmail.com

College of Computing and Informatics, Saudi Electronic University, Riyadh 11673,

Saudi Arabia

e-mail: satawneh@seu.edu.sa

Department of Management Information Systems, School of Business, King Faisal

University, Hofuf, Saudi Arabia

e-mail: mabualrub@kfu.edu.sa

Abstract

 The option to steal a significant quantity of important information without the
owner of the message's consent is provided by keyloggers, which are tools
designed to record each keystroke made on the computer. Online criminals often
employ malware-infected software to attack mobile devices like smartphones and
tablets. In addition, hackers are becoming smarter over time. It will be easier for
them to add a keylogger to a website than a software program because users must
download and install it on their devices before accessing it. All these processes,
however, are not required for a website. Websites can be run on any platform.
They might pick any user as their target. Thus, social networking sites, internet
banking, and emails are accessible to hackers. This paper aims to develop a
machine learning-based model for an in-website keylogger detection for
platform-independent devices to enhance internet users' privacy and security.
The study employs Random Forest, LightGBM, and CatBoost as classifiers, and
uses a hybrid feature selection method, known as Hybrid Ensemble Feature
Selection (HEFS), which makes the identification process robust and less
runtime complex. When comparing the selected and full features on the adopted
classifiers, Random Forest was found to be the best in performance; it
experienced a minimal accuracy deterioration of 1.59% while achieving a
massive 84.5% reduction in feature space.

 Keywords: Keylogger; Machine Learning; Hybrid Feature Selection; LightGBM;
CatBoost; Random Forest.

1 Introduction

Any software that is expressly meant to harm a computer is referred to as malware.

Malware comes in a variety of forms, such as spyware and ransomware. Malware is a

tool used by cybercriminals to lock down computers, corrupt files, and obtain illegal

access to devices. Malware frequently functions covertly, and the user won't become

aware of infection until damage has already been done to the machine [1]. A type of

 33 Building Machine Learning Model with Hybrid …

malware called ransomware is created to extort money from the victim. Using

ransomware, cybercriminals can encrypt a computer and demand payment to unlock it.

They can erase the files or damage the hardware if the user doesn't agree with their

requirements [2]. Another excellent example of malware that threatens IT environments

is spyware. Spyware can lead to events like identity theft and data breaches. For instance,

many people now carry out their banking online. Users who unwittingly install spyware

on their devices risk providing attackers with information about their banking partners,

account numbers, routing numbers, and credit card details [3]. Malwarebytes outlines the

various types of spyware, including keyloggers, banking trojans, info-stealers, and

password stealers [4].

Figure 1. Types of malwares.

Keylogger software is an example of spyware that is reasonably simple to install but has

a very negative impact. Keyloggers are programs that are installed on computers that

record every keystroke made there. Because of this, hackers can obtain credentials, such

as usernames and passwords, from the many websites a user visits. Because there is a real

potential that keyloggers could be installed on public devices, it is best to avoid using

them for sensitive transactions or to enter usernames and passwords [5]. Fig. 1

summarizes the relationship between malware, spyware, and keyloggers.

Over the years, various theories and strategies have been implemented to address the

broad issue of harmful software. However, none of the current methods are adequate

when used to address the unique issue of identifying keyloggers. Since signature-based

solutions are readily circumvented and require isolating and extracting valid signatures

before identifying a potential threat, their usefulness is limited. The implementation of a

keylogger is seldom difficult. Even novice programmers may quickly create new

iterations of current keyloggers, rendering a previously effective signature useless. Even

when analyzing just keyloggers used for illegal activities in Fig. 2, the development of

new variations soon renders any signature-based solution useless.

Feature selection is a method of filtering out the important features, as all the features

present in the dataset are not equally important. This study shows the usage of a hybrid

feature selection technique to avoid overfitting and run-time complexity issues while

maintaining the classifiers' performance. The feature selection technique that will be used

is called Hybrid Ensemble Feature Selection (HEFS).

Alsubaie et al. 34

Figure 2. Increasing varieties of keyloggers are being used in crimes.

The main objective of this research is to enhance users' privacy and security by

developing a machine-learning detection model for platform-independent devices. The

proposed model will use a supervised classification algorithm to analyze the network

activity of a computer and try to find the existence of a keylogger. A HEFS method with

Random Forest, LightGBM, and CatBoost classifiers will be utilized to make the

identification process robust, scalable, and efficient. This research will achieve the

following objectives:

• To identify keyloggers by examining the network activities, whether they are

installed as distinct processes or operate remotely through APIs.

• To propose a machine learning-based model to detect keyloggers that will operate

without human intervention.

• To utilize a robust and scalable hybrid feature selection technique that will help to

reduce the runtime analysis while detecting the keylogger.

To identify keyloggers, we will develop and use supervised machine learning-based

detection techniques. The method keeps track of all network’s transmitted and received

activities for all active browser processes. In the presence of a strong correlation,

detection is claimed. Both deployment and execution are possible without any special

permission. The HEFS method will speed up the classification process while maintaining

the classifiers' accuracy.

2 Background

This section encompasses a detailed background study of keyloggers as well as their

categories.

2.1 Keyloggers

Keylogger is software that keeps track of all computer activity. Some activities include

taking screenshots of every action taken on the computer screen, logging browser

 35 Building Machine Learning Model with Hybrid …

activity, and creating distinct keystrokes for every action taken on the computer. Due to

their diverse traits, keyloggers are challenging for any detecting program to locate.

Keyloggers were first created during the 1970s [6]. The Union of Soviet Socialist

Republics (USSR) later developed and utilized it. Researchers used a hardware keylogger

designed specifically for typewriters. It was known as an "electric glitch" because it

exploited small changes in the local magnetic flux brought on by the spin and motions of

the filament to track the movements of IBM Electric typewriters [6]. Perry Kivolowitz

created the first keylogger on November 17, 1983. Keyloggers get more powerful as

technology advances and many distinct types of keyloggers are available in the industry

that was created utilizing technological advancements. Hardware and software

keyloggers are the two basic categories into which keyloggers fall.

2.2 Hardware Keyloggers

Hardware keyloggers may be discreetly installed between the Central Processing Unit

and the keyboard cord or built into the computer's internal hardware, making them easy

to operate. However, installing the hardware keylogger requires the cybercriminal to

have unnoticed physical access to the computer system [7].

2.3 Software Keyloggers

Software keyloggers, as opposed to hardware keyloggers, are simple to install on the

victim's computer. Software keystroke loggers are computer programs designed to record

keystrokes on the keyboard. It gathers keyboard occurrences, records them remotely, and

then sends them to the hacker, who puts the keylogger in place [8]. By utilizing a search

engine to look for "keyloggers," we discovered a wide variety of software keyloggers.

However, we may classify them into several groups based on their internal design.

2.4 Different Types of Software Keyloggers

Keyloggers based on the kernel may intercept keystrokes as they flow through the kernel

by gaining root access and blending in with the operating system. These keyloggers

operate at the kernel level, making them formidable and difficult to find. Keyloggers

created using this technique may also drive the keyboard. It requires a lot of technical

coding to design a keylogger in this manner [9]. The keyboard data is captured through

hooking mechanisms used by API-based keyloggers. Keyloggers that rely on APIs

connect to active applications' keyboard APIs. This keylogger records keystrokes

similarly to other apps [10]. This approach is the one most often used to create

keyloggers. Keyloggers with a memory injection basis operate by swapping memory

tables connected to system operations and web browsers. By directly injecting malware

into memory, malware writers can bypass Windows User Account Control [11]. Fig. 3

depicts the summary of the above discussion.

Alsubaie et al. 36

Figure 3. Different types of keyloggers.

3 Related Work

Keyloggers are extremely detrimental tools that keep track of every single our computer's

activity. A keylogger is a code fragment that can be put inside any software and will

record every keystroke user makes. Our computers are infected with keyloggers due to

the passive invasion. When someone inputs their login and password on their computer,

the attacker seeks to get the password. The intruder collects all data provided by the

victim via a footprinting method, and the information is then used for other unrelated

reasons [12]. Malware assaults are particularly unpleasant and difficult to identify and

defend against in the cyber world. The script and malware are both included in a

keylogger's single software. The keylogger's capability allows it to record every key the

user presses, save it in a log file, and subsequently email the file to the specified internet

protocol address. It poses a serious risk to the financial system, which is utilized for daily

commercial purposes. Several keyloggers' kinds, activities, and features are well outlined

[13].

Keylogger detection methods based on software and machine learning haven't been

proposed in huge numbers. Here are several studies on the evaluation of keylogger

detection. Pillai demonstrated a modified SVM-based framework to identify keyloggers

installed on a computer. In their system, 8 open source keyloggers were installed [14].

The suggested approach failed to detect 4 of the 8 keyloggers.

Software keylogger detection employing Anti-Hook, HoneyID, bot identification, and

dendritic cell algorithm (DCA) was provided by [15] in 2016. These methods are used to

identify keyloggers on computers.

Brown presented popular algorithms, such as XOR, GEFeS, and SDM, to classify

keyloggers in Android [16]. For the identification of "self" and "non-self," Two separate

detector sets were generated by mAIS. Instances of "self" app detection are distinguished

from "non-self" app detection by the "non-self" detector sets. The outputs from both

detector sets are utilized to identify and categorize Android keyloggers. XOR achieved

88.33% accuracy, whereas GEFeS and SDM combinedly achieved 93.33%.

Wen L. et al. proposed the supervised learning classifier SVM and the unsupervised

dimensionality reduction algorithm PCA-RELIEF [17]. The client and server are the two

essential components of the suggested system. If the application's MD5 value matches

one of the malicious programs' saved MD5 values, the user interface on the client side

will notify them. If not, the installed application's estimated MD5 will be sent to the

 37 Building Machine Learning Model with Hybrid …

server. The proposed machine learning framework's accuracy and false positive rates

were 95% and 13.3%, respectively.

Using 4 separate classifiers, Hatcher proposed a brand-new machine learning-based

architecture [18]. It was designed to function in a cloud setting where several devices

may be supported simultaneously. The platform under consideration included an Android

app, an Analysis Module, a Google Cloud Messaging (GCM), and Security Web Server.

ZeroR, OneR, and J48 have respective accuracy values of 49.7%, 100%, and 100%. The

false positive rate for Nave Bayes was noted as 20%, but the accuracy was not given. But

for J48, Naive Bayes, OneR, and ZeroR, corresponding detection rates are 45%, 83%,

94.59%, and 90%, respectively.

Anyone trying to compromise the privacy of smartphone users should focus on Android,

the world’s most widely used operating system. The innovative dataset presented in [19]

was gathered in a realistic setting and acquired using a brand-new data-collecting

approach based on a unified activity list. The information is broken down into three

primary groups: the first group includes typical smartphone traffic, the second group

provides traffic data for the deployment of spyware, and the third group represents traffic

data for the functioning of malware. It was decided to use the random forest classification

approach to verify the suggested model with this dataset. Binary-class (where the number

of target variables is two) and multi-class (where the number of target variables is more

than two) classification are the two approaches used for data classification. Accuracy-

wise, good performance was obtained. For the binary class (where the number of target

variables is two) and the multi-class (where the number of target variables is more than

two), the overall average accuracy was 79% and 77%. All dataset elements included in

the scope of the surveillance included access to social media, phone calls, microphone

access, OS activity, and keyloggers.

Innovative cybersecurity methods that recognize harmful Internet Protocol (IP) addresses

before communication are needed to stop cybercrimes. IP reputation management is

among the greatest methods. A cyber-physical system's security risks may be profiled

using IP reputation systems. In their innovative hybrid technique, [20] suggested

combining Cyber Threat Intelligence, Dynamic Malware Analysis, Data Forensics, and

Machine Learning (ML). A zero-day attack's related IP notoriety is anticipated in the pre-

acceptance stage using the idea of big data forensics, and its associated zero-day assaults

are classified using behavioral analysis and the Decision Tree approach.

Anti-virus software's traditional protection techniques, such as signature-based malware

detection, cannot keep up with the problems posed by modern malware. Malware

analysis and detection were represented as machine learning and deep learning problems

[21]. When creating these models, the writers followed industry standards. They

overcame the dimensionality curse by utilizing various feature reduction techniques,

including AutoEncoder. The models created using Random Forest and several layered

Deep Neural networks were then compared. According to the findings, random forest

performs better in malware detection than deep neural network models. Random Forest

attained the maximum accuracy at 99.78%.

To identify Android malware, the authors of [22] proposed a hybrid strategy utilizing

machine learning. They built the application's flowchart to learn more about the API. The

authors developed time-series and Boolean frequency data sets in an original way using

the API information. Depending on three data sets, three detection models for Android

malware detection were built, considering API calls, API sequence factors, and API

frequency. Finally, an ensemble model is built for conformance. Through many trials,

Alsubaie et al. 38

they evaluated and contrasted the reliability and accuracy of the detection models. On

10010 good applications and 10683 bad applications, the trials were run. The findings

indicate that the detection approach accomplishes a detection accuracy of 98.98% and

has a high degree of precision and consistency.

Using four classifiers—ID3, K-Nearest Neighbors, Decision Tree, C4.5 Decision Tree,

and linear SVM, the authors of [23] demonstrated a supervised classification method for

identifying Android malware (SVM). The classifiers use the metadata included in the

apps' bytecode, including information about important API calls, package-level data, and

potentially harmful arguments called, to identify if an application or software is

malicious or not. A summarized comparison of methodologies from previous studies is

enlisted in Table 1.

Table 1. Comparison of different methodologies from previous studies.

SN Methodologies Methods Research Topic

1 Solairaj et al., 2016

Anit-Hook, HoneyID, Bot

Detection, and Dendritic Cell

Algorithm

PC Keylogger

Detection

2 Hatcher et al., 2016
ZeroR, OneR, Naïve Bayes, and

J48

Android Malware

Detection

3 Brown et al., 2017 XOR, GEFs, and SDM
Android Keylogger

Detection

4 Wen et al., 2017
Support Vector Machine and

PCA-RELIEF

Android Keylogger

Detection

5 Rathore et al., 2018
Random Forest and Deep Neural

Network with Autoencoder

Malware Analysis and

Detection

6 Ma et al., 2019

Control Flow Graph with Deep

Neural Network, C4.5, and Long

Short-Term Memory

Android Malware

Detection

7 Pillai et al., 2019 SVM
PC Keylogger

Detection

8 Usman et al., 2021

Machine Learning, Dynamic

Malware Analysis, Data

Forensics, and Cyber Threat

Intelligence

Malware Analysis and

Detection

9 Qabalin et al., 2022 Random Forest Spyware Detection

This study provides a machine learning-based model to identify keyloggers operating

remotely through websites. A thorough analysis of the literature revealed that few studies

were machine learning-based, and no one had created a detection technique for

keyloggers operating remotely through websites. Section 4 presents the proposed model.

4 The Proposed Method

This section describes methods, resources, and datasets used in this study to detect

keyloggers. An overview of the proposed machine-learning model is shown in Fig. 4. To

facilitate comprehension, a top-down presenting method was used, in which the key

 39 Building Machine Learning Model with Hybrid …

elements and functions are initially presented without going into detail about the

associated algorithm.

Figure 4. Overview of the proposed machine learning model.

Data collection, data pre-processing, feature selection, implementation of the grid-search

algorithm to determine the best parameter for each algorithm, implementation of cross-

fold validation to analyze the classification performance of the ML classifiers, analysis of

various ML algorithms, and selection of the best algorithms more thoroughly for

keylogger detection will all be part of the research methodology.

The initial step in data pre-processing is to look for duplicate occurrences. We will easily

eliminate duplicate entries and leave only the unique ones if any are identified. Then, if

there are too many NULL entries, we can interpolate those values; otherwise, we can

drop them.

We will encode the labels if the dataset contains any string values. We will also examine

class distribution to determine whether the dataset is balanced. We can use some

oversampling or under-sampling approaches if the dataset is unbalanced. Then, to reduce

Alsubaie et al. 40

the number of features and prevent the machine learning classifiers from overfitting, we

will feed full feature set data into the HEFS feature selection approach. For later usage,

the transformed dataset will be stored in CSV format. GridSearch will choose the

classifier parameter that will yield the best results for each technique, and cross-

validation will make sure that our model iterates over the whole dataset to assess its

classification-related resilience. The ML classifiers are evaluated using classification

metrics following training and testing. This procedure will keep going until GridSearch

determines the classifiers' ideal parameter. Then, we compared the three classifiers and

selected the most effective model for the keylogger detection task.

4.1 Hybrid Ensemble Feature Selection Technique (HEFS)

The following is a concise overview of the suggested HEFS model. As indicated in Fig.

5, the SSN and FMZ abbreviations should be used to represent the N-th partition and Z-

th filter measure, respectively. Before being separated into N divisions by stratified

subsampling, the whole dataset is randomly selected. To make the samples in each

partition more evenly distributed, randomization corresponds to the relocation of the

sample rows.

Figure 5. Overview of HEFS.

The filter measure FMZ calculates the filter measure values for a dataset partition SSN

using the partition's raw attribute values. As soon as the filter measure values are ordered,

they are sent on to the next step, where the CDF-g method generates the cut-off rank for

the features. A list of feature cut-off rankings is generated for each dataset division using

filter measure FMZ after repeating this process for N = 1, 2..., N, a list of feature cut-off

ranks {τ1, Z, τ2, Z..., τJ, Z} is created for each dataset partition by using filter measure

FMZ. The CDF-g approach is broadened into a hybrid ensemble structure comprising

data perturbation and function perturbation techniques to increase the robustness of

baseline features and lessen the generalization problem. While function perturbation

includes using several filter measures within the same dataset, data perturbation implies

subsampling the dataset into distinct segments. The whole feature selection architecture

was referred to as the Hybrid Ensemble Feature Selection by [24].

 41 Building Machine Learning Model with Hybrid …

 4.2 Classification Algorithms

In this section, the machine learning classification algorithms employed in this paper for

detecting keyloggers are described in detail.

4.2.1 CatBoost

Dorogush proposed CatBoost, a novel gradient-boosting technique that reliably employs

categorical variables with the minimum percentage of information loss [25]. Different

from previous gradient-boosting methods is CatBoost. Target leaking is initially

addressed using sorted boosting, a useful variation of gradient boosting techniques. This

technique also performs well with small datasets. CatBoost can also control category

variables. This handling, which comprises converting the initial categorical variables to

one or more numerical values, is often completed during the pre-processing stage.

Additionally, CatBoost can be utilized successfully with various data forms and types.

CatBoost has recently been used in the financial industry with several different data

formats, including time series data [26]. A new binary feature for each category replaces

the original variable. Using random permutations to estimate leaf values when choosing

the tree structure, the algorithm, according to [26], avoids overfitting by conventional

gradient boosting algorithms. CatBoost's main predictor is a binary decision tree.

4.2.2 Random Forest

 A very well-known ML classification algorithm that has been extensively used to

solve several classification problems is named Random Forest [27]. Random Forest uses

decision trees and ensemble architecture to improve classification accuracy. Voting takes

place between each tree, and each variable is then assigned to the output class that is

most likely to be created. The output function is derived by calculating the mean as

follows:

 (1)

where Jack represents each tree's probability distribution, and k represents an

instance of the test set. For building a framework of decision trees to handle complicated
outliers, Random Forest is a reasonable solution. Random forest was further encouraged
because it was easy to construct and understand, which enhanced predicting.

4.2.3 LightGBM

A data model called LightGBM is based on Microsoft's GRADIENT BOOSTING

DECISION TREE (GBDT), proposed in 2017. Like other boosting algorithms, GBDT

integrates weak classifiers to create an effective learner. The Gradient Boosting Decision

Tree approach can only be utilized with regression trees since each tree learns the

inferences and variances of all previous trees in the process. The variation of each

projected outcome and the target value is used as the goal of further learning, creating a

current residual regression tree. The decision trees' results are combined to create the

final expected output. Despite the good learning impacts that Gradient Boosting Decision

Tree has had on various machine learning applications. Currently, the LightGBM

algorithm has been proposed. It significantly increases forecasting speed while

maintaining prediction accuracy and uses less memory. Creating a decision tree

frequently requires using the traditional GBDT algorithm.

Alsubaie et al. 42

5 Performance Evaluation

In this section, we discussed the dataset, performance metrics, and methodology

evaluation, as well as the results and discussions, are presented.

5.1 Dataset Descriptions

This study utilizes a publicly available keylogger dataset licensed under GNU Free

Documentation to carry out the experiment. This section describes the properties and a

few statistics related to the used datasets. The dataset has been viewed over 3500 times

and downloaded 245 times. The dataset originated from Canadian Institute for

Cybersecurity (CIC) website (Keylogger Detection, 2021) [28]. It contains 523617

samples, 309415 benign samples and 214202 keylogger samples, and 85 features. Table

2 contains the full information regarding the dataset.

Table 2. Detail description of the keylogger dataset.

Associated

Task

Number

of

Instances

Number

of

Features

Attribute

Characteristics

Keylogger

Samples

Benign

Samples

Published

Date

Classification 523617 85
Discrete &

Continuous
214202 309415

September

2021

5.2 Technology Used

In this study research, a hybrid feature selection method is proposed, and Python, which

has many source libraries, is used to converse machine learning algorithms. Additionally,

it gives the capability of carrying out the classification operation with high Accuracy

using fundamental characteristics. The following procedures are used to test the general

methodology:

Software packages: This experiment used the Jupyter Notebook. It is a web-based

interactive computing environment. Many popular data science languages, including

Python, Julia, Scala, R, and others, may be used with the Jupyter Notebook. Python was

selected as the programming language because of its comprehensive machine-learning

packages, which include Sci-Kit Learn, Pandas, Numpy, Matplotlib, Seaborn, etc.

Workstation: A workstation with the following configuration was utilized to

experiment.

• Operating System: macOS Monterey (Version 12.6)

• Processor: Intel Core i9 @2.3 GHz

• Memory: 16 Gigabytes of Memory

• Secondary Storage: 1TB of SSD

• Graphics Card: AMD Radeon Pro 5500M 8GB

 43 Building Machine Learning Model with Hybrid …

5.3 Performance Metrics

The proposed systems' effectiveness will be evaluated using a variety of performance

criteria, including Accuracy, Precision, Recall, and F1-score. This section has gone into

detail about those performance metrics.

Accuracy is an established classification evaluation statistic. It is recognized as the

percentage of properly categorized instances to all instances, compared to the error value,

which employs wrongly classified samples rather than correctly identified ones. A

mathematical formula for Accuracy is shown in Equation 2.

 (2)

The ratio between positively predicted instances to all instances in the true positives class

is known as Recall. The recall question is how many keylogger instances have the

machine learning system properly labeled. Another name for Recall is sensitivity.

Equation 3 illustrates the mathematical formula for Recall or sensitivity.

 (3)

In terms of positive instances, precision is the proportion of accurately projected

instances to all expected positive instances. This measure answers the question of how

many instances listed as keyloggers are true. Low false positive rates are associated with

high precisions value. Equation 4 illustrates the precision formula in mathematics.

 (4)

The harmonic mean between Precision and Recall is considered an F1-Score. Hence, this

metric accounts for false negatives (FN) and false positives (FP). Although it is not

conceptually as simple to comprehend as Accuracy, the F1 Score is often more helpful

than Accuracy, particularly if any dataset has unbalanced class labels. The most excellent

Accuracy is achieved when the costs of FP and FN are comparable. Including both

Precision and Recall is preferable if the costs of FP and FN vary significantly. Equation 5

illustrates the mathematical formula for Accuracy.

 (5)

5.2 Evaluation of Methodology

Data pre-processing is an important stage before insertion into a machine learning

algorithm. The data was first stored in a data frame using Python code. We have used the

Hybrid Ensemble-based Feature Selection (HEFS) technique for feature selection. A

hybrid ensemble-based feature selection technique automatically chooses the cut-off rank

value from filtered measures evaluated by the Information Gain filter method. The

pseudocode for this feature selection technique is mentioned in detail in [36]. The cut-off

rank value determined automatically by the CDF-g is 0.159262.

The feature subset chosen by HEFS is enlisted in Table 3. The dataset contains 84

features which are considered a full feature set. After applying HEFS, the features are

reduced to 13. Features with information gain value less than 0.159262 are discarded.

Table 3. Feature subset after applying HEFS.

Alsubaie et al. 44

Number of

features in Full

Feature Set

Number of

features in feature

subset after HEFS

Features in the feature subset

84 13

' Source Port', ' Flow Duration', 'Flow Bytes/s',

' Flow Packets/s',

' Flow IAT Mean', ' Flow IAT Std', ' Flow IAT

Max', ' Flow IAT Min',

'Fwd IAT Total', ' Fwd IAT Mean', ' Fwd IAT

Max', 'Fwd Packets/s',

' Bwd Packets/s'

Table 4 illustrates the parameter lists and suitable parameters determined by GridSearch

and their corresponding mean accuracy from 5-fold cross-validation.

Table 4. Optimal hyperparameter values for the classification algorithm.

Classification

Algorithms

Hyperparameter

Name

Hyperparameter

Values

Optimal

Hyperparameter

value

Mean

Accuracy

on 5-fold

Cross

Validation

Random

Forest

n_estimators
20, 50, 100, 110,

120, 130, 140, 150
110

0.9524

criterion 'gini', 'entropy' ‘gini’

LightGBM

learning_rate
0.01, 0.1, 0.3, 0.4,

0.5, 0.6, 0.8, 0.9
0.9

0.7128

n_estimators
20, 50, 100, 120,

130, 150, 160, 180
130

CatBoost

depth
4, 5, 6, 7, 8, 9, 10,

12, 14, 15, 16, 17
15

0.9135

learning_rate

0.001, 0.01, 0.02,

0.03, 0.04, 0.1,

0.3, 0.5, 0.7, 0.9

0.9

6 Research Results

This section described the performance of the machine learning methods using both the

full feature set and selected features. The accuracy, precision, re-call, F1-score, and AUC

score of algorithms are also compared in this section. The K-fold cross-validation

technique was used to train and test machine learning classification algorithms like

Random Forest, LightGBM, and CatBoost. The GridSearch method was used to find the

classification algorithm's optimal hy-perparameters. The effectiveness of various

machine learning methods is covered in the next sections.

6.1 Results of Random Forest

Random Forest provided the following results for selected features and the full feature

set. Table 5 and Fig. 6 show the detailed performance of Random Forest both on selected

features and the full feature set:

 45 Building Machine Learning Model with Hybrid …

Table 5. Detailed performance results of random forest on both selected features and full
feature set.

Classifier Features Accuracy Precision Recall
F1-

Score

AUC

Score

Random

Forest

Selected Features 0.9612 0.9608 0.9588 0.9598 0.990

Full Feature Set 0.9771 0.9771 0.9755 0.9763 0.996

Table 5 shows the evaluation metrics for the Random Forest classifier using two different

feature sets: "Selected Features" and "Full Feature Set".

For the "Selected Features" set, the Random Forest classifier achieved an accuracy of

0.9612, a precision of 0.9608, a recall of 0.9588, an F1-score of 0.9598, and an AUC

score of 0.990. For the "Full Feature Set", the Random Forest classifier achieved a higher

accuracy of 0.9771, a precision of 0.9771, a recall of 0.9755, an F1-score of 0.9763, and

a higher AUC score of 0.996. It appears that using the "Full Feature Set" resulted in

better performance for the Random Forest classifier in this context. However, it's

important to note that this may not always be the case, as the optimal feature set can

depend on the specific dataset and classification task at hand.

Figure 6. Detailed performance result graph of random forest on both selected features

and full feature set.

When comparing selected and full features on Random Forest, the selected features only

experienced a minimal accuracy deterioration of 1.59% while achieving a massive 84.5%

reduction in feature space. In short, the evaluation results have validated the effectiveness

of using the Hybrid Ensemble Feature Selection technique.

6.2 Results of LightGBM

The hyperparameters for the LightGBM classifier are likewise specified in the 'sklearn'

module, and LightGBM was implemented in Python. The confusion matrix obtained

from the LightGBM classification method is shown in the figure with and without

selected features. The results from LightGBM for both the full feature set and the

selected features are presented in Figures 5.6 and 5.7 and will be considered for analysis.

Table 6 and Fig. 7 show the detailed performance of LightGBM both on selected features

and the full feature set:

Table 6. Detailed performance results of LightGBM on both selected Features and the
full features set.

Alsubaie et al. 46

Classifier Features Accuracy
Precisi

on
Recall

F1-

Score

AUC

Score

LightGBM
Selected Features 0.7134 0.7112 0.6829 0.6867 0.768

Full Feature Set 0.7136 0.7461 0.6658 0.6638 0.777

Table 6 shows the evaluation metrics for the LightGBM classifier using two different

feature sets: "Selected Features" and "Full Feature Set". For the "Selected Features" set,

the LightGBM classifier achieved an accuracy of 0.7134, a precision of 0.7112, a recall

of 0.6829, an F1-score of 0.6867, and an AUC score of 0.768. For the "Full Feature Set",

the LightGBM classifier achieved a slightly higher accuracy of 0.7136, a higher precision

of 0.7461, a lower recall of 0.6658, a lower F1-score of 0.6638, and a higher AUC score

of 0.777.

It appears that the two feature sets resulted in similar overall performance for the

LightGBM classifier, with the "Full Feature Set" performing slightly better in terms of

precision and AUC score, but worse in terms of recall and F1-score. As with the previous

example, the optimal feature set can depend on the specific dataset and classification task

at hand.

Figure 7. Detailed performance results graph of LightGBM on both selected features set

and full feature set.

Selected features on LightGBM achieved a staggering 84.5% reduction in feature space

while only suffering a modest accuracy degradation of 0.02% compared to complete

features. The usefulness of applying the Hybrid Ensemble Feature Selection approach

has, in brief, been proven by the assessment outcomes.

6.3 Results of CatBoost

Table 7 and Fig. 8 show the detailed performance of CatBoost both on selected features

and the full feature set:

Table 7. Detailed Performance Results of CatBoost on both Selected Features and the
Full Feature Set.

Classifier Features Accuracy Precision Recall
F1-

Score

AUC

Score

CatBoost Selected 0.9251 0.9250 0.9197 0.9221 0.970

 47 Building Machine Learning Model with Hybrid …

Features

Full Feature

Set
0.7691 0.7837 0.7375 0.7449 0.846

Table 7 shows the evaluation metrics for the CatBoost classifier using two different

feature sets: "Selected Features" and "Full Feature Set". For the "Selected Features" set,

the CatBoost classifier achieved a higher accuracy of 0.9251, a higher precision of

0.9250, a higher recall of 0.9197, a higher F1-score of 0.9221, and a higher AUC score of

0.970. For the "Full Feature Set", the CatBoost classifier achieved a lower accuracy of

0.7691, a lower precision of 0.7837, a lower recall of 0.7375, a lower F1-score of 0.7449,

and a lower AUC score of 0.846. It appears that using the "Selected Features" set resulted

in much better performance for the CatBoost classifier in this context, with higher scores

across all evaluation metrics. However, as always, the optimal feature set can depend on

the specific dataset and classification task at hand.

Figure 8. Detailed performance result graph of CatBoost on both selected features set
and full feature set.

On CatBoost, while comparing selected and full features, the selected features gained a
maximum accuracy boost of 15.6% despite massively reducing the feature space by
84.5%. In other words, the evaluation's findings have shown that the hyperparameter
tuning algorithm and Hybrid Ensemble Feature Selection approach is successful.

6.4 Comparative Analysis of Machine Learning Algorithms

Table 8 shows the combined results of the performance of all three classifiers on the
selected and full features set.

Table 8. Performance comparison of all machine learning algorithms on the selected
feature set and full feature set.

Classifier Features Accuracy Precision Recall
F1-

Score

AUC

Score

Random Forest

Selected

Features
0.9612 0.9608 0.9588 0.9598 0.990

Full Feature Set 0.9771 0.9771 0.9755 0.9763 0.996

Alsubaie et al. 48

LightGBM

Selected

Features
0.7134 0.7112 0.6829 0.6867 0.768

Full Feature Set 0.7136 0.7461 0.6658 0.6638 0.777

CatBoost

Selected

Features
0.9251 0.9250 0.9197 0.9221 0.970

Full Feature Set 0.7691 0.7837 0.7375 0.7449 0.846

Table 8 shows that the Random Forest classifier has the highest accuracy and AUC score
among the three models. When using the full feature set, it achieves an accuracy of
0.9771 and an AUC score of 0.996. The precision, recall, and F1-score are also quite
high, indicating that the model is performing well in both identifying positive and
negative cases.

On the other hand, the LightGBM model appears to be underperforming, with an
accuracy of only 0.7134 when using the selected features and 0.7136 when using the full
feature set. Its precision, recall, and F1-score are also lower than the other two models,
suggesting that it may not be as effective in identifying positive and negative cases.

The CatBoost model is performing reasonably well, with an accuracy of 0.9251 when
using the selected features and 0.7691 when using the full feature set. While its
performance is not as high as the Random Forest model, it is still better than the
LightGBM model. The precision, recall, and F1-score of CatBoost are also relatively
high, indicating that it is performing well in identifying both positive and negative cases.

6.4.1 Comparison of Precision Metric

Precision refers to showing the learning ability of a machine learning classification

algorithm and how correctly it can detect positive instances. It shows the ratio between

all positives and true positive (TP) instances. Fig. 9 shows that Random Forest achieved

the highest 96.08% precision value for the selected feature set compared to the other two

classifiers. When comparing selected and full features on Random Forest, the selected

features only experienced a minimal precision deterioration of only 1.03%. The weakest

performer among all the classifiers for both the selected and full feature sets was

LightGBM. CatBoost achieved quite a better result (approximately 14.13% better) for the

selected feature compared to the full feature set. This improvement is mostly due to

optimal hyperparameters searched for by GridSearch.

Figure 9. Precision comparison on both selected features set and full feature set.

 49 Building Machine Learning Model with Hybrid …

6.4.2 Comparison of Accuracy Metric

Accuracy refers to the learning ability of the machine learning classification algorithm

and how correctly it can detect the benign and keylogger instances out of the total

instances. Fig. 10 shows that Random Forest achieved the highest 96.12% accuracy value

for the selected feature set compared to the other two classifiers. When comparing

selected and full features on Random Forest, the selected features only experienced a

minimal accuracy deterioration of only 1.59%. The weakest performer among all the

classifiers for both the selected and full feature sets was LightGBM. CatBoost achieved

quite a better result (approximately 14.14% better) for the selected feature compared to

the full feature set. This improvement is mostly due to optimal hyperparameters searched

for by GridSearch.

Figure 10. Accuracy comparison on both selected features set and full feature set.

6.4.3 Comparison of Recall or Sensitivity Metric

The ratio between positively predicted instances to all instances in the true positives class

is known as Recall. The recall question is how many keylogger instances have the

machine learning system properly labeled. Compared to the other two classifiers,

Random Forest obtained a recall value of 95.88% for the selected feature set, as shown in

Fig. 11. On Random Forest, the difference between recall degradation for the full and

selected features was just 1.67%. CatBoost significantly outperformed the full feature set

in terms of performance (by around 18.22% better) for the selected feature. This

improvement is mostly attributable to GridSearch's use of optimal hyperparameters.

LightGBM had the worst performance of all the classifiers for the entire feature set and

the selected feature set.

Figure 11. Recall comparison on both the selected features set and the full feature set.

6.4.4 Comparison of F1-Score

Alsubaie et al. 50

The harmonic mean between Precision and Recall is considered an F1-Score. Hence, this

metric accounts for false negatives (FN) and false positives (FP). Fig. 12 shows that

Random Forest achieved the highest 95.98% F1-score for the selected feature set

compared to the other two classifiers. When comparing selected and full features on

Random Forest, the selected features only experienced a minimal f1-score deterioration

of only 1.65%. CatBoost achieved quite a better result (approximately 17.72% better) for

the selected feature compared to the full feature set. This improvement is mostly due to

optimal hyperparameters searched for by GridSearch. The weakest performer among all

the classifiers for both selected and full feature sets was LightGBM.

Figure 12. F1-score on both selected features set and full feature set.

6.4.5 Comparison of AUC-Score

Area Under the Curve (AUC) quantifies a classifier's capacity to differentiate between

target variables. The better the model distinguishes between positive and negative

classifications, the greater the Area Under the Curve score. Fig. 13 shows that Random

Forest achieved the highest 99% AUC score for the selected feature set compared to the

other two classifiers. When comparing selected and full features on Random Forest, the

selected features only experienced a minimal AUC score deterioration of only 0.06%.

CatBoost achieved quite a better result (approximately 12.4% better) for the selected

feature compared to the full feature set. This improvement is mostly due to optimal

hyperparameters searched for by GridSearch. The weakest performer among all the

classifiers for both selected and full feature sets was LightGBM.

Figure 13. AUC Score on both selected features set and full feature set.

6.5 Summary of Comparative Analysis

 51 Building Machine Learning Model with Hybrid …

After comparing different metrics and their corresponding results derived from

classification algorithms, it has been learned that Random Forest outperformed the other

two classification algorithms in every classification metric. The performance of the

CatBoost classifier increased significantly due to the use of GridSearch for tuning its

hyperparameters. CatBoost’s performance increased by 12-18% in some metrics. When

comparing selected and full features on Random Forest, the selected features only

experienced an overall accuracy deterioration of less than 1.7% while achieving a

massive 84.5% reduction in feature space. The weakest classifier was LightGBM.

Therefore, the Random Forest classifier with Hybrid Ensemble Feature Selection

technique is recommended for the keylogger detection task.

7. Conclusion and Future Work

The usage of keyloggers, which deceive users into doing activities that give attackers a

chance to victimize the user and steal desired information from him, is growing daily.

The attacker gains access to sensitive information by breaking into the organization’s

systems. In cyber security attacks, keyloggers become vital. This study assessed a hybrid

ensemble feature selection technique with machine learning algorithms with a publicly

available keylogger detection dataset. The dataset was processed and cleaned using

Python in the Google Colab platform. Machine learning classifiers such as Random

Forest, LightGBM, and CatBoost were trained and tested with the cross-validated data.

Random Forest was found to be the best in the performance. CatBoost was found to be

moderately good, CatBoost’s performance increased by 12-18% in some metrics, but

LightGBM performed worst. Random Forest experienced a minimal accuracy

deterioration of 1.59% while achieving a massive 84.5% reduction in feature space.

Exploration in these fields is necessary for future developments to improve the efficiency

of keylogger detection in real time using neural networks and deep learning developed on

multiple datasets. A study of adaptive feature selection by machine learning techniques is

necessary since preset features may not always function as intended, and attackers may

use exploits to evade them. Additionally, research is needed for continual learning so that

the model can continuously learn, evolve, and classify keyloggers based on their

divergent actual characteristics. Depending on the situation and surroundings, the number

of features should be changed or added. To perform keylogger detection using machine

learning and a hybrid ensemble-based feature selection approach, this work contributes to

cybersecurity.

References

[1] Javaheri D; Hosseinzadeh M; Rahmani AM. (2018). Detection and elimination of

spyware and ransomware by intercepting kernel-level system routines. IEEE Access.

78321-32.

[2] Oz H; Aris A; Levi A; Uluagac AS. (2022,). A survey on ransomware: Evolution,

taxonomy, and defence solutions. ACM Computing Surveys (CSUR). 1-37.

[3] Chatterjee R; Doerfler P; Orgad H; Havron S; Palmer J; Freed D; Levy K; Dell N;

McCoy D; Ristenpart T. (2018). The spyware used in intimate partner violence. In 2018

IEEE Symposium on Security and Privacy (SP). pp. 441-458.

[4] Zou D; Zhao J; Li W; Wu Y; Qiang W; Jin H; Wu Y; Yang Y. (2018). A

multigranularity forensics and analysis method on privacy leakage in cloud environment.

IEEE Internet of Things Journal. 1484-94.

Alsubaie et al. 52

[5] Thakur KK; Nair NR; Sharma M. (2022). Keylogger: A Boon or a Bane. Trinity

Journal of Management; IT & Media (TJMITM). 145-53.

[6] Rahim R; Nurdiyanto H; Abdullah D; Hartama D; Napitupulu D. (2018). Keylogger

application to monitoring users activity with exact string matching algorithm. In Journal

of Physics: Conference Series. Vol. 954, No. 1, p. 012008.

[7] Monaco JV. (2018). Sok: Keylogging side channels. In 2018 IEEE Symposium on

Security and Privacy (SP). pp. 211-228.

[8] Singh A; Choudhary P. (2021). Keylogger detection and prevention. In Journal of

Physics: Conference Series, Vol. 2007, No. 1, p. 012005.

[9] Barankova II; Mikhailova UV; Lukyanov GI. (2020). Software development and

hardware means of hidden usb-keylogger devices identification. InJournal of Physics:

Conference Series. Vol. 1441, No. 1, p. 012032.

[10] Kumar A; Dubey KK; Gupta H; Memoria M; Joshi K. (2022). Keylogger Awareness

and Use in Cyber Forensics. InRising Threats in Expert Applications and Solutions. pp.

719-725.

[11] Bhardwaj A; Goundar S. (2020). Keyloggers: silent cyber security weapons.

Network Security. 14-9.

[12] Sbai H; Goldsmith M; Meftali S; Happa J. (2018). A survey of keylogger and

screenlogger attacks in the banking sector and countermeasures to them. International

Symposium on Cyberspace Safety and Security. pp. 18-32.

[13] Ahmed YA; Maarof MA; Hassan FM; Abshir MM. (2014). Survey of Keylogger

technologies. International journal of computer science and telecommunications. 5(2).

[14] Pillai D; Siddavatam I. (2019). A modified framework to detect keyloggers using

machine learning algorithm. International Journal of Information Technology. 707-12.

[15] Solairaj A; Prabanand SC; Mathalairaj J; Prathap C; Vignesh LS. (2016).

Keyloggers software detection tech-niques. In 2016 10th International Conference on

Intelligent Systems and Control (ISCO). pp. 1-6.

[16] Brown J; Anwar M; Dozier G. (2017). An artificial immunity approach to malware

detection in a mobile platform. EURASIP Journal on Information Security. 1-0.

[17] Wen L; Yu H. (2017). An Android malware detection system based on machine

learning. AIP conference proceedings. (Vol. 1864, No. 1, p. 020136).

[18] Hatcher WG; Maloney D; Yu W. (2016). Machine learning-based mobile threat

monitoring and detection. In 2016 IEEE 14th International Conference on Software

Engineering Research; Management and Applications (SERA). pp. 67-73.

[19] Qabalin MK; Naser M; Alkasassbeh M. (2022). Android Spyware Detection Using

Machine Learning: A Novel Dataset. Sensors. 22(15):5765.

[20] Usman N; Usman S; Khan F; Jan MA; Sajid A; Alazab M; Watters P. (2021).

Intelligent dynamic malware detection using machine learning in IP reputation for

forensics data analytics. Future Generation Computer Systems. 118:124-41.

[21] Rathore H; Agarwal S; Sahay SK; Sewak M. (2018). Malware detection using

machine learning and deep learning. International Conference on Big Data Analytics. pp.

402-411.

 53 Building Machine Learning Model with Hybrid …

[22] Ma Z; Ge H; Liu Y; Zhao M; Ma J. (2019). A combination method for Android

malware detection based on control flow graphs and machine learning algorithms. IEEE

access. 21235-45.

[23] Aafer Y; Du W; Yin H. (2013). Droidapiminer: Mining API-level features for robust

malware detection in Android. International conference on security and privacy in

communication systems. pp. 86-103.

[24] Chiew KL; Tan CL; Wong K; Yong KS; Tiong WK. (2019). A new hybrid

ensemble feature selection framework for machine learning-based phishing detection

system. Information Sciences. 153-66.

[25] Dorogush AV; Ershov V; Gulin A. (2018). CatBoost: gradient boosting with

categorical features support. arXiv preprint arXiv:1810.11363.

[26] Fan J; Wang X; Zhang F; Ma X; Wu L. (2020). Predicting daily diffuse horizontal

solar radiation in various climatic regions of China using support vector machine and

tree-based soft computing models with local and extrinsic climatic data. Journal of

Cleaner Production. 248, 119264.

[27] Breiman L. (2001) Random forests. Machine learning., 5-32.

[28] Keylogger Detection. (2021, September 17). Kaggle. Retrieved October 12, 2022,

from https://www.kaggle.com/datasets/subhajournal/keylogger-detection

https://www.kaggle.com/datasets/subhajournal/keylogger-detection

