
Int. J. Advance. Soft Comput. Appl., Vol. 2, No. 2, July 2010
ISSN 2074-8523; Copyright © ICSRS Publication, 2010
www.i-csrs.org

A Memetic Algorithm Based Task Scheduling
considering Communication Cost on Cluster

of Workstations

S.Padmavathi1*, S.Mercy Shalinie2 and R.Abhilaash3

Department of Computer Science & Engineering,

Thiagarajar College of Engineering,
Madurai-625 015, Tamilnadu,

India
1*spmcse@tce.edu
2shalinie@tce.edu

3abhilaash.ravichandran@gmail.com
*Corresponding author

Abstract

 Task Scheduling is one of the most challenging problems in
parallel and distributed computing. For static scheduling, the
program to be parallelized is usually modeled as a Directed Acyclic
Graph (DAG). In general, the scheduling of a DAG is a strong NP
hard problem. The objective of this problem is minimizing the
schedule length considering the communication costs. Genetic
algorithm (GA) based technique have been proposed to search
optimal solutions from entire solution space. The main shortcoming
of this approach is to spend much time doing scheduling and hence,
needs exhaustive time. This paper proposes a Memetic Algorithm
(MA) to overcome with this shortcoming. Hill Climbing algorithm as
local search is applied in the proposed memetic algorithm. Extended
simulation results demonstrate that the proposed method
outperforms the existing GA-based method, producing the optimal
schedule.

 Keywords: Direct Acyclic Graph (DAG), Task scheduling, Genetic algorithm
(GA), Memetic Algorithm (MA), Hill Climbing Algorithm, Local search, schedule
length.

S.Padmavathi et al. 2

1 Introduction

Performance of the program critically depends on the partitioning of the program
and the scheduling of the resulting tasks onto the physical processors. Classical
scheduling model assumes that each task is processed on one processor at a time.
The objective of the task scheduling problem is to minimize the makespan
(schedule length) i.e., the overall computation time of any application represented
as Directed Acyclic Graph (DAG). Optimal scheduling of tasks of a DAG onto a
set of processors is a strong NP-Hard problem. It has been proven to be NP-
Complete for which optimal solutions can be found only after an exhaustive
search. The optimal solutions for many scheduling heuristics stated in the
literature [1, 2] have been proposed in the past. Early scheduling algorithms did
not take communication into account. But due to the increasing importance for
parallel performance, the consideration of communication was included in the
proposed approach. The consideration of communication cost [3] is significant to
produce an accurate and efficient schedule length.

List scheduling algorithms such as Heterogeneous Earliest Finish Time (HEFT),
Critical Path On a Processor (CPOP) [4] and Performance Effective Task
Scheduling (PETS) [5] are complex in nature and take higher complexity in
implementation. The HEFT algorithm uses a recursive procedure to compute the
rank of a task by traversing the graph upwards from the exit task and vice-versa
for CPOP. The rank of a task is the length of the critical path from the exit task to
that task. The rank computation is a recursive procedure and also complex in
nature for both the algorithms. In [6, 20] a Simple Genetic Algorithm (GA) for
multiprocessor task scheduling is proposed.

Some GA parameters are to be used for mapping and scheduling general task
graph [7] whereas in [8] bichromosomal representation for task scheduling
problem is used. GA’s [9-12] are a class of random search techniques for the task
scheduling problem. Although GA provide good quality schedules, their
execution times are significantly higher than other alternatives. Extensive tests are
required to find optimal values for the set of control parameters used in GA –
based solutions [13].

GA for static scheduling of m tasks to n processors based on k-way partitioning
was developed in [14]. Successive improvements to the initial schedule were
made through reproduction, mutation and one-point crossover operators. The
traditional methods such as Branch and Bound, Divide and Conquer and Dynamic
programming give the global optimum, but it is time consuming [15]. The
researchers [16] have derived optimal task assignments to minimize the sum of the
task execution and communication costs with the Branch and Bound method and
evaluated the computational complexity of this method using simulation
techniques. Modern heuristic techniques [17] are general purpose optimization
algorithms. Their efficiency or applicability is not tied to any specific problem-
domain. To improve the efficiency of the heuristic based approach, there exist

3 A Memetic Algorithm Based Task Scheduling

guided random search techniques such as Simulated Annealing, Tabu Search,
Particle Swarm Optimization, Genetic Algorithm etc.
 The GA is not well suited for fine-tuning structures which are close to
optimal solution [18]. Memetic Algorithm (MA) are evolutionary algorithms
(EAs) that apply a separate local search process to refine individual (i.e. improve
their fitness by Hill-Climbing) [22, 23]. They are a special kind of GA with local
search. The local search may be Hill Climbing or Tabu search or Simulated
Annealing [32]. The memetic algorithms [19] can be viewed as a marriage
between a population-based global technique and a local search made by each of
the individuals. Like GA, MA is also a population-based approach. A GA with
local search, which is known as Memetic Algorithm (MA), can use one or more
local search techniques [23]. Here, the Hill Climbing algorithm is used as a local
search algorithm. They have shown that they are orders of magnitude faster than
traditional GAs for some problem domains [21]. MA yields faster convergence
when compared to GA, because the balance between the exploration and
exploitation is in the search process [30, 31].

MA is the subject of intense scientific research and has been applied to a
multitude of real world problems [24]. It represents one of the recent emerging
areas of research in evolutionary computation. The term MA is now widely used
as synergy of evolutionary or any population-based approach with separate
individual learning or local improvement procedures for problem search [24].
Quite often, MA is also referred to in the literature as Baldwinian EAs,
Lamarckian EAs, Cultural algorithms or Genetic Local Search or hybrid genetic
algorithm [29]. In case of hybrid flow shop scheduling problem, MA produces
better quality solution and it is efficient when compared to GA and constraint
programming based branch and bound algorithm [26].

To validate the performance of the proposed approach, highly communicating
task graph like Gaussian elimination is generated and also tested with randomly
generated DAGs.

The paper is organized as follows: introduction is followed by the problem
definition which is presented in Section 2. Section 3 discusses the fundamentals of
MA. Section 4 introduces the proposed algorithms and implementation aspects.
Section 5 presents the experimental results and discussions. Finally the conclusion
and future research direction are presented in Section 6.

2 Problem Definition and Background

An application program is represented by a Directed Acyclic Graph (DAG).A
DAG is a directed acyclic graph G =(V,E,w,c) representing a program P. Here, V
is a set of task nodes and E is a set of communication edges, corresponding to the
dependency among tasks. An edge eij є E represents the communication from
node ni to node nj. The positive weight w (n) associated with node n є V represents
its computation cost and the nonnegative weight c (eij) associated with edge eij є

S.Padmavathi et al. 4

E represents its communication cost. The communication cost between two nodes
assigned to the same processor is assumed to be zero. ‘<’ represents a partial order
on V. For any two tasks ni, nk the existence of the partial order ni < nk means that
nk cannot be scheduled until task ni has been completed, hence ni is a predecessor
of nk and nk is a successor of ni. The task executions of a given application are
assumed to be non-preemptive. In a given task graph, a task without any
predecessor is called an entry task and task without any child is called an exit task.
Here, it is assumed that there is one entry and exit task in DAG.

A node cannot begin execution until all its inputs have arrived and no output is
available until the computation has finished. It can be defined as precedence
constraints which is as follows

)(),(ijfjs etPnt = (1)

where ts (nj,P) denotes the start time of the node in the processor “P” and tf (eij) is
the edge finish time of the communication associated with eij. Data Ready Time
(DRT) tdr of a node can be calculated as follows:

)}()(max{),(jiijfjdr ewetPnt += (2)

and hence for a valid schedule,

),(),(PntPnt drs ≥ (3)

A task graph for Gaussian elimination for 3 x 3 matrix is shown in Fig.1 and its
computation cost matrix is shown in Table 1. Let EST (ni, pj) and EFT (ni,pj) are
the Earliest Start Time and Earliest Finish Time of task ni on pj, respectively. For
the entry task ventry, EST(ventry, pj) = 0, and for the other tasks in the graph, the EST
and EFT values are computed recursively, starting from the entry task, as shown
in Eqns. (4) and (5). In order to compute the EFT of a task ni, all immediate
predecessor tasks of ni must have been scheduled.

))}((max],[{max)(,, kikji CnAFTjavailpnEST += (4)
)(ik nprednwhere ∈

),(),(jiijji pnESTwpnEFT += (5)

where pred(ni) is the set of immediate predecessor tasks of task ni and avail[j] is
the earliest time at which processor pj is ready for task execution. If nk is the last
assigned task on processor pj, then avail[j] is the time that processor pj completed
the execution of the task nk and it is ready to execute another task. The inner max
block in the EST equation returns the ready time, i.e., the time when all the data

5 A Memetic Algorithm Based Task Scheduling

needed by ni has arrived at processor pj. After a task nk is scheduled on a
processor pj, the earliest start time and the earliest finish time of ni on processor pj
is equal to the Actual Start Time AST(nk) and the Actual Finish Time AFT(nk) of
task nk, respectively. After all tasks in a graph are scheduled, the schedule length
(i.e the overall completion time) will be the actual finish time of the exit task, nexit..

Fig. 1. Gaussian elimination task graph represented by DAG
for 3 x 3 matrix

Table 1: Computational cost matrix (W) for Fig.1

Task P1 P2 P3
1
2
3

3
4
4

3
5
6

3
4
4

4 5 3 5
5 3 7 2
6 3 6 1
7 5 3 6
8 2 4 5
9 5 8 5

1

2 3 4

5

76

8

9

S.Padmavathi et al. 6

Priority is computed and assigned to each task based on the following attributes
namely, Average Computation Cost (ACC), Data Transfer Cost (DTC) and Rank
of the Predecessor task (RPT).The ACC of a task is the average computation cost
on all the ‘m’ processors and it is computed by using Eqn. (6).

() ,

1

m
i j

i
j

w
ACC v

m=

= ∑ (6)

The DTC of a task vi is the amount of communication cost incurred to transfer the
data from task vi to all its immediate successor task and it is computed at each
level l using Eqn. (7)

() ,
1

:
n

i i j
j

DTC v C i j
=

= <∑ (7)

Where n is the number of nodes in the next level.

 DTC = 0 for exit tasks

The RPT of a task vi is the highest rank of all its immediate predecessor task and it
is computed using Eqn. (8)

() () () (){ }1 2, ,...i hRPT v Max rank v rank v rank v= (8)

Where v1, v2, v3…….. vh are the immediate predecessor of vi

 RPT = 0 for entry task

Rank is computed for each task vi based on its ACC, DTC, RPT values. Here, the
maximum rank of predecessor tasks of task vi as one of the parameters to calculate
the rank of the task vi and the rank computation is given by Eqn. (9).

() () () (){ }i i i irank v round ACC v DTC v RPT v= + + (9)

Priority is assigned to all the tasks at each level l, based on its rank value. At each
level, the task with highest rank value receives the highest priority followed by
task with next highest rank value and so on. Tie, if any, is broken using ACC
value. The task with minimum ACC value receives the higher priority.

 Finally the objective function f(x) can be defined as

)min()(lengthschedulexf = (10)

Where schedule length is defined as

7 A Memetic Algorithm Based Task Scheduling

)}(max{ exitnAFTLengthSchedule = (11)

3 Memetic Algorithm

Memetic Algorithm (MA) combine GA with local search. MA are inspired by
memes (Dawkins, 1976), pieces of mental idea like stories, ideas and gossip,
which reproduce (propagate) themselves through population of memes carriers.
Corresponding to the selfish gene idea (Dawkins, 1976) in this mechanism each
meme uses the host (the individual) to propagate itself further through the
population, and in this way the population competes with different memes for the
limited resources.

MA starts with several alternative solutions to the optimization problem, which
are considered as individuals in a population. These solutions are coded as binary
strings called chromosomes. Suitable encoding plays an important role in deciding
the performance of MA. The population is initialized at random or using a
heuristic. To form a new population for the next generation, higher quality
individuals are selected. The selection phase is identical in form to that used in the
classical GA selection phase. Local search is performed to select the best
chromosome from the pool of available chromosomes. Once the best chromosome
has been selected, they are subjected to crossover and mutation to generate new
individuals. Finally, one best chromosome is selected by applying the final local
search. The role of local search in MA is to search and locate the local optimum
more efficiently than the GA. Fig.3 explains the generic implementation of
Memetic Algorithm.

1. Encode solution space
2. (a) set pop_size, max_gen, gen=0;
 (b) set cross_rate, mutate_rate;
3. initialize population
4. while(gen < gensize)
Apply generic GA
Apply local search
end while
Apply final local search to best chromosome

Fig.3. The Memetic Algorithm

3.1 Hill Climbing local search algorithm

Local search can be thought of as the process of an individual improving its idea
of the solution. The Hill Climbing search algorithm is a local search algorithm and
is shown in Fig. 4. It is nature-based stochastic computational technique [25]. It is

S.Padmavathi et al. 8

used to execute local search to find better solutions in the neighborhood of the
current solution produced by GA in each iterations. When the termination
condition is met, it returns with the best solution.

 Best solution ←initial solution

While (termination condition is not satisfied) do
New solution ← neighbors (solution after cross over and mutation)
If New solution is better than best solution then
Best solution ← New solution
End if
End while

Fig .4. The Hill Climbing local search algorithm

4 The Proposed Method

4.1 Encoding

The generic formulation of a problem begins with the definition of an appropriate
chromosome encoding. Each chromosome encodes a schedule solution. In order
to achieve good performance, the chromosome should be simple, because this
permits one to employ simple and fast operators.

For task-scheduling, a chromosome represents a solution to the scheduling
problem; in other words a schedule. A schedule consists of the processor
allocation and the start time of each node of the task graph. The representation of
the chromosome holds the information that serves as an input for a heuristic
search to create a schedule. There are three basic elements to choose among. The
first is the list of tasks to be scheduled. The second is the order in which these
tasks should be executed on a given processor and the third is the list of
processors to which these tasks should be assigned.

Each chromosome is represented as a group of genes i.e. task-processor pair (Ti,
Pi) indicating that task Ti is assigned to the processor Pi shown in Fig. 5. The
position of genes in a chromosome represents the order in which the tasks should
be executed. For example the following chromosomal representation show that
task 1 and task 2 should be executed on processor 1 and task 3 on processor 2. It
also indicates that task 2 is executed first followed by task 3 and followed by task
1.

9 A Memetic Algorithm Based Task Scheduling

Fig. 5.Chromosomal representation

4.2 Initial population

Most of the scheduling heuristics generate the initial population randomly with
the necessary care on feasible solutions. The population is created randomly i.e. a
predefined number of chromosomes are generated, the collection of which form
the initial population. Here the initial population is generated based on the priority
calculation of the tasks at each level as shown in Table 2.

Table 2: The DTC, ACC, RPT, Rank and Priority values for the tasks in Fig.1

Level Task ACC RPT DTC Rank Priority

1
2
2
2
3
4
4
5
6

1
2
3
4
5
6
7
8
9

3
4.33
4.67
4.33
4.0
3.33
4.67
3.67
6

0
9
9
9
17
38
38
51
66

6
4
6
7
17
10
11
12
0

9
17
19
20
38
51
53
66
72

1
3
2
1
1
2
1
1
1

Fitness function

As the objective of the task scheduling problem is to find the shortest possible
schedule, the fitness of a chromosome is directly related to the length of the
associated schedule. Here the fitness value is determined by the earliest finish
time of the last task.

4.3 Selection

S.Padmavathi et al. 10

In this step, the chromosomes in the population are ranked first based on their
fitness value from the best to the worst. The chromosomes with least fitness
values are ranked as best chromosomes. This process of obtaining the best
chromosome is called as selection. This is done using local search from the pool
of available chromosomes.

4.4 Reproduction

Reproduction process forms a new population of chromosomes by selecting
chromosome in the old population based on their fitness value through Crossover
and mutation.

Cross over

The cross over operator is the most significant one since it implements the
principle of evolution. New chromosomes are created with this operator by
combining two selected parent chromosomes and swaps second part of each
chromosome after a randomly selected point. This is equivalent to assigning a
subset of tasks to different processors. Single point and two point crossovers are
alternatively performed and the crossover probability is selected randomly.

Mutation

This operator is applied with a lower probability (about 0.1 or less) than the
crossover operator. Its main purpose is to serve as a safeguard to avoid the
convergence of the state search to a locally best solution. Here the partial-gene
mutation is employed. It takes each chromosome from the fittest ones and changes
a randomly selected gene (Ti, Pi) to (Ti, Pj) which introduces diversity each time it
is applied, and consequently the population continues slowly to improve.
Therefore the probability of crossover and partial-gene mutation is not fixed in the
proposed algorithm.

4.5 Local Search

The Hill climbing search algorithm is a local search algorithm that iteratively
performs a neighborhood search to pick best chromosome from a pool of available
chromosomes. When the termination criterion is met, the search algorithm
terminates and returns the best solution. It is explained in Fig. 4.

4.6 Termination Criteria

When no improvement solution has been found over the last n iterations, the
algorithm terminates. Typically this value lies between 50 to 500 depending on
the desired quality of the solution and the size of the problem. Since for a larger
problem, improvement moves are likely to be found with lower frequency.

The proposed memetic algorithm is as follows:

11 A Memetic Algorithm Based Task Scheduling

1. Generate the initial population of size M based on task priority at each level

 and calculate the fitness value of each Chromosome based on earliest finish

 time of the last task.

2. Select the fittest chromosome from the initial pool based on the Least Fitness

 Value (schedule length) using local search.

3. Perform Crossover and Partial gene mutation with varying probabilities.

4. Evaluating the chromosomes obtained from the step 3 and form a pool of fittest

 Chromosomes using local search.

5. Repeat steps 3 and 4 until termination criteria is met.

Fig.6. The proposed memetic algorithm

5 Results and Discussions

In this section a number of experiments are carried out which outlines the
effectiveness of the proposed algorithm. The purpose of these experiments is to
compare the performance of memetic algorithm approach with genetic algorithm
approach for the task scheduling problem. Although the memetic algorithm is a
GA combined with the Hill Climbing algorithm as a local search, it is not
necessarily the case that the genetic parameters are the most ideal for a memetic
algorithm. The experiments were tested on a cluster of workstations consisting of
32 node HP Proliant cluster.

DAGs are generated randomly with different communication cost whose size
varies from 10 to 50. Highly communication intensive application like Gaussian
Elimination task graph is also generated with matrix size varying from 3 to 15.
The results are compared for varying population size, where the size ranges from
5 to 200. The tasks are selected for an initial pool according to the priority value
as shown in Table 2 for the Gaussian Elimination task graph in Fig.1. Then they
are selected according to their fitness value.

For the proposed approach, the effects of the different population size and
different number of iterations are investigated and the results are depicted in Figs.
7 and 8. The performance of MA improves when the population size is increased.

S.Padmavathi et al. 12

Fig. 7. Schedule length Vs Population size for Gaussian Elimination Task Graph

Fig. 8.Schedule length Vs No.of.Iteration for Gaussian Elimination task Graph

MA converges very fast when compared to GA as shown in Fig. 9. The results of
both MA and GA are compared by varying the number of iterations from 5 to 250
for the Gaussian Elimiation task graph.Traditionally GAs suffer from slow
convergence to locate a precise enough solution because of their failure to exploit
local information. But MAs are hybrid GAs that combine global and local search
which uses GA, to perform exploration while the local search method performs
exploitation.

13 A Memetic Algorithm Based Task Scheduling

Fig .9 Performance Comparison of GA Vs MA

MA is compared with the classical list scheduling algorithms like HEFT, CPOP
and PETS algorithm for the Gaussian Elimination task graph whose matrix size is
5 x 5. The performance of MA is compared with existing HEFT, CPOP and PETS
algorithm is shown in Fig.10. From the above results, the proposed MA performs
well when compared to other list scheduling algorithms. Since the three
algorithms are based on list scheduling and the method producing the scheduling
list and the priority assigning rules are different.
The HEFT algorithm uses a recursive procedure to compute the rank of a task by
traversing the graph upwards from the exit task. Based on the rank, priority is
assigned to each task. The CPOP algorithm uses a reverse fashion of calculating
the rank by traversing the graph from downwards from the entry task. The PETS
algorithm calculates rank based on ACC, DTC and RPT values [4, 5]. But in the
proposed MA, first chromosomes are encoded as task-processor pair or as a
schedule solution. Task priorities are calculated like PETS algorithm. Then the
processors are assigned to each task pseudo-randomly. The chromosomes are
encoded to represent the task-processor pairs. The best chromosome is selected
using local search. The fitness value of that best chromosome gives the schedule
length.

S.Padmavathi et al. 14

Fig. 10.Performance Comparison

6 Conclusion

The proposed MA is appropriate for scheduling DAG structured applications onto
homogeneous computing system with different topologies. However GA’s and
MA’s are gaining popularity due to their effectiveness of solving the optimization
problems within a reasonable time. Experimental results showed that the proposed
approach is better than GA in almost all cases. MA converges very fast when
compared to GA, hence the proposed approach outperforms all the existing
heuristics for the task scheduling problem. The future enhancement of this work is
to introduce contention awareness in task scheduling using MA.

ACKNOWLEDGEMENTS

 The authors owe their acknowledgement to the Management and Principal of
Thiagarajar College of Engineering for their encouragement and support.

References

[1] A.Gerasoulis and T.Yang, “A Comparison of clustering heuristics for
scheduling DAGs on multiprocessors”, Journal of Parallel and Distributed
Computing, Vol.16, No.4, (1992), pp.276-291.

15 A Memetic Algorithm Based Task Scheduling

[2] Y.kwok and I.Ahmad, “Benchmarking the task graph scheduling algorithms”,
In Proc.Int.Par.Processing Symposium on Parallel and Distributed
Processing(IPPS/SPDP-98) ,USA, Florida,(1998),pp.531-537.

[3] B.S. Macey and A.Y.Zomaya, “A Performance evaluation of CP list
scheduling heuristics for communicating Intensive task graphs”, In Parallel
Processing Symposium,(1998),pp.538-541.

[4] Topcuoglu,H.,S.Hariri and M.Y.Wu, “Performance Effective and Low
Complexity Task Scheduling Algorithm scheduling for heterogeneous
computing “, IEEE Transaction on Parallel and Distributed
Systems,Vol.13,No.3,(2002).

[5] E.Illavarasan and P.Thambidurai, “Low complexity performance effective task
scheduling algorithm for Heterogeneous computing environments”, Journal of
Computer sciences, Vol.3, No.2, (2007), pp.94-103.

[6] E.S.Hou,N.Ansari and H.Ren, “A Genetic algorithm for Multiprocessor
Scheduling”,IEEE Transaction on Parallel and Distributed Systems, Vol.5,
No.2, (1994).

[7] Harmel Singh,Ardou Youssef, “Mapping and Scheduling heterogeneous Task
Graphs using Genetic algorithms”.

[8] Michael Rinchart,Vidakiazod and Shurva S.Bhattachariya, “A Modular
Genetic algorithm for scheduling task graphs”,Technical report UMIACS-TR
2003-66, Institute of Advanced Computer Studies,University of Maryland at
College park,June 2003.

[9] L. Wang, H. J. Siegel, V. P. Rowchoudhry and A. A. Maciejewski, “Task
matching and scheduling in heterogeneous computing environments using a
genetic algorithm-based approach”, Journal of Parallel and Distributed
Computing, Vol. 4, (1997), pp.8-22.

[10] M. K. Dhodhi, I. Ahmad and A. Yatama, “An integrated technique for task
matching and scheduling onto distributed heterogeneous computing systems”,
Journal of Parallel and Distributed Computing, Vol. 62, (2002),pp.1338-1361.

[11] S. C. Kim and S. Lee, “Push-pull: Guided search DAG scheduling for
 Heterogeneous clusters”, Proc. Intl. Conf. Parallel Processing, 2005.

[12] S. W. Annie, H. Yu, S. Jin and K. C. Lin, “An incremental genetic algorithm
approach to multiprocessor scheduling”, IEEE Trans. on Parallel and
Distributed Systems, Vol. 15, (2004),pp.824-834.

[13] T. D. Braun, H. J. Siegel, N. Beck and L. L. Boloni, “A comparison study of
static mapping heuristics for a class of meta-tasks on heterogeneous
computing systems”, Proc. 8th Workshop on Heterogeneous Processing”,
(1999),pp.15-29.

S.Padmavathi et al. 16

[14] S.M.El-Gendy, “Task Allocation using Genetic algorithms”, MS Thesis,
University of Louisville,(1994).

[15] Tzu-Chiang Chiang, Po-Yin Chang and Yueh-Min Huang, “Multi-Processor
Tasks with Resource and Timing Constraints Using Particle Swarm
Optimization”, IJCSNS International Journal of Computer Science and
Network security, Vol.6, No.4 (2006), pp.71-77.

[16] Dar-Tzen Peng,Kang G.Shin and Tarek F.Abdelzaher, “Assignemnt and
Scheduling Communicating Periodic tasks in Distributed Real-Time Systems”,
IEEE Transaction on Software Engineering, Vol.23, No.12, (1997), pp.745-
758.

[17] Abdelmaged Elsadek A and EARL Wells, “A heuristic model for Task
allocation in heterogeneous distributed computing systems”,The International
Journal of Computers and Their Applications, Vol.6, No.1, (1999), pp.1-36.

[18] Goldberg, D.E., Genetic Algorithms in Search, Optimization and Machine
 Learning, Addison-Wesley, (1989).

[19] P, Moscato, “on evolution, scorch, optimization. Genetic algorithms and
 Martial arts: toward memetic algorithms”, Technical report, California,
 (1989).

[20] D.Liu,Y.Li and M.Yu, “A Genetic algorithm for Task Scheduling in Network
Computing Environment “, Fifth International Conference on Algorithms &
Architecture for Parallel Processing, ICA3PP’02.

[21] Poonam Garg, “A Comparison between Memetic Algorithm and Genetic
Algorithm for the Cryptanalysis of Simplified Data Encryption Standard
algorithm”, International Journal of Network Security & Its
Applications(INJSA),Vol. 1,No 1,(April 2009).

[22] Shawki Areibi , Medhat Moussa and Hussein Abdullah , “ A Comparison of
Genetic/Memetic Algorithms and Other Heuristic Search Techniques”,
Research Paper.

[23] S.M.Kamrul Hasan et al, “Memetic algorithm for solving job-shop
scheduling problems”, Journal of Memetic Computing, Vol.1, (2009).

[24] http:\\en.wikipedia.org\wiki\Memetic_algorithm.

[25] Junying Chen et al, “Particle Swarm Optimization with Local Search”, IEEE
proceedings, (2005).

[26] Antonie Jouglet , Ceyda Oguz and Marc Servaux, “ Hybrid Flow-Shop: a
Memetic algorithm using Constraint-Based Scheduling for Efficient Search”,
Journal of Mathematical modelling and Algorithm, Springer
Netherlands,(2009),pp.271-292.

17 A Memetic Algorithm Based Task Scheduling

[27] Mohammad Sadegh et al, “A Novel Method for task scheduling in
Distributed Systems Using Memetic Algorithm”, IEEE Proceedings of
International Conference on Communication, Theory, Reliability and Quality
of Service, CTRQ,(2009), pp:58-62.

[28] Jalil Layegh,Fariborz Jolai,Mohsen Sadegh Amalnik, “A Memetic algorithm
for minimizing total weighted completion time on a single machine under
step-deterioration”, Advances in Engineering Software, Elsevier, Vol.40,
No.10,(October 2009), pp. 1074-1077.

[29] Quang Huy Nguyen et al, “A probabilistic Memetic Framework”, IEEE
Transaction on Evolutionary Computation, Vol.13, No.3,(2009),pp.604-623.

[30] Fengjie Wu, “A Framework for Memetic Algorithm”, Thesis of University of
Auckland, (2001).

[31] Y.S.Ong et al, “Classification of Adaptive MA: A Comparative Study”,
Technical Report, (2005).

[32] J.Digalakis and K.Margaritis, “Performance Comparison of Memetic
Algorithm”,Complexity International Journal,Vol.10, (2005).

