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Abstract 

     Task Scheduling is one of the most challenging problems in 
parallel and distributed computing. For static scheduling, the 
program to be parallelized is usually modeled as a Directed Acyclic 
Graph (DAG). In general, the scheduling of a DAG is a strong NP 
hard problem. The objective of this problem is minimizing the 
schedule length considering the communication costs. Genetic 
algorithm (GA) based technique have been proposed to search 
optimal solutions from entire solution space. The main shortcoming 
of this approach is to spend much time doing scheduling and hence, 
needs exhaustive time. This paper proposes a Memetic Algorithm 
(MA) to overcome with this shortcoming. Hill Climbing algorithm as 
local search is applied in the proposed memetic algorithm. Extended 
simulation results demonstrate that the proposed method 
outperforms the existing GA-based method, producing the optimal 
schedule. 

     Keywords: Direct Acyclic Graph (DAG), Task scheduling, Genetic algorithm 
(GA), Memetic Algorithm (MA), Hill Climbing Algorithm, Local search, schedule 
length. 
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1      Introduction 

Performance of the program critically depends on the partitioning of the program 
and the scheduling of the resulting tasks onto the physical processors. Classical 
scheduling model assumes that each task is processed on one processor at a time. 
The objective of the task scheduling problem is to minimize the makespan 
(schedule length) i.e., the overall computation time of any application represented 
as Directed Acyclic Graph (DAG). Optimal scheduling of tasks of a DAG onto a 
set of processors is a strong NP-Hard problem. It has been proven to be NP-
Complete for which optimal solutions can be found only after an exhaustive 
search. The optimal solutions for many scheduling heuristics stated in the 
literature [1, 2] have been proposed in the past. Early scheduling algorithms did 
not take communication into account. But due to the increasing importance for 
parallel performance, the consideration of communication was included in the 
proposed approach. The consideration of communication cost [3] is significant to 
produce an accurate and efficient schedule length.   

List scheduling algorithms such as Heterogeneous Earliest Finish Time (HEFT), 
Critical Path On a Processor (CPOP) [4] and Performance Effective Task 
Scheduling (PETS) [5] are complex in nature and take higher complexity in 
implementation. The HEFT algorithm uses a recursive procedure to compute the 
rank of a task by traversing the graph upwards from the exit task and vice-versa 
for CPOP. The rank of a task is the length of the critical path from the exit task to 
that task. The rank computation is a recursive procedure and also complex in 
nature for both the algorithms. In [6, 20] a Simple Genetic Algorithm (GA) for 
multiprocessor task scheduling is proposed. 

Some GA parameters are to be used for mapping and scheduling general task 
graph [7] whereas in [8] bichromosomal representation for task scheduling 
problem is used. GA’s [9-12] are a class of random search techniques for the task 
scheduling problem. Although GA provide good quality schedules, their 
execution times are significantly higher than other alternatives. Extensive tests are 
required to find optimal values for the set of control parameters used in GA –
based solutions [13]. 

GA for static scheduling of m tasks to n processors based on k-way partitioning 
was developed in [14]. Successive improvements to the initial schedule were 
made through reproduction, mutation and one-point crossover operators. The 
traditional methods such as Branch and Bound, Divide and Conquer and Dynamic 
programming give the global optimum, but it is time consuming [15]. The 
researchers [16] have derived optimal task assignments to minimize the sum of the 
task execution and communication costs with the Branch and Bound method and 
evaluated the computational complexity of this method using simulation 
techniques. Modern heuristic techniques [17] are general purpose optimization 
algorithms. Their efficiency or applicability is not tied to any specific problem-
domain. To improve the efficiency of the heuristic based approach, there exist 
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guided random search techniques such as Simulated Annealing, Tabu Search, 
Particle Swarm Optimization, Genetic Algorithm etc. 
         The GA is not well suited for fine-tuning structures which are close to 
optimal solution [18]. Memetic Algorithm (MA) are evolutionary algorithms 
(EAs) that apply a separate local search process to refine individual (i.e. improve 
their fitness by Hill-Climbing) [22, 23]. They are a special kind of GA with local 
search. The local search may be Hill Climbing or Tabu search or Simulated 
Annealing [32]. The memetic algorithms [19] can be viewed as a marriage 
between a population-based global technique and a local search made by each of 
the individuals. Like GA, MA is also a population-based approach. A GA with 
local search, which is known as Memetic Algorithm (MA), can use one or more 
local search techniques [23]. Here, the Hill Climbing algorithm is used as a local 
search algorithm. They have shown that they are orders of magnitude faster than 
traditional GAs for some problem domains [21]. MA yields faster convergence 
when compared to GA, because the balance between the exploration and 
exploitation is in the search process [30, 31]. 

MA is the subject of intense scientific research and has been applied to a 
multitude of real world problems [24]. It represents one of the recent emerging 
areas of research in evolutionary computation. The term MA is now widely used 
as synergy of evolutionary or any population-based approach with separate 
individual learning or local improvement procedures for problem search [24]. 
Quite often, MA is also referred to in the literature as Baldwinian EAs, 
Lamarckian EAs, Cultural algorithms or Genetic Local Search or hybrid genetic 
algorithm [29]. In case of hybrid flow shop scheduling problem, MA produces 
better quality solution and it is efficient when compared to GA and constraint 
programming based branch and bound algorithm [26].  

To validate the performance of the proposed approach, highly communicating 
task graph like Gaussian elimination is generated and also tested with randomly 
generated DAGs.  

The paper is organized as follows: introduction is followed by the problem 
definition which is presented in Section 2. Section 3 discusses the fundamentals of 
MA. Section 4 introduces the proposed algorithms and implementation aspects. 
Section 5 presents the experimental results and discussions. Finally the conclusion 
and future research direction are presented in Section 6. 

2      Problem Definition and Background 

An application  program  is  represented  by  a  Directed Acyclic Graph (DAG).A 
DAG is a directed acyclic graph G =(V,E,w,c) representing a program P. Here, V 
is a set of task nodes and E is a set of communication edges, corresponding to the 
dependency among tasks. An edge eij є E represents the communication from 
node ni to node nj. The positive weight w (n) associated with node n є V represents 
its computation cost and the nonnegative weight c (eij) associated with edge eij  є 
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E represents its communication cost. The communication cost between two nodes 
assigned to the same processor is assumed to be zero. ‘<’ represents a partial order 
on V. For any two tasks ni, nk the existence of the partial order ni < nk means that 
nk cannot be scheduled until task ni has been completed, hence ni is a predecessor 
of nk and nk is a successor of ni. The task executions of a given application are 
assumed to be non-preemptive. In a given task graph, a task without any 
predecessor is called an entry task and task without any child is called an exit task. 
Here, it is assumed that there is one entry and exit task in DAG. 

A node cannot begin execution until all its inputs have arrived and no output is 
available until the computation has finished. It can be defined as precedence 
constraints which is as follows 

)(),( ijfjs etPnt =                                                                         (1) 
 
where ts (nj,P) denotes the start time of the node in the processor “P” and tf  (eij) is 
the edge finish time of the communication associated with eij. Data Ready Time 
(DRT) tdr of a node can be calculated as follows: 

 
)}()(max{),( jiijfjdr ewetPnt +=                                                      (2) 

 
and hence for a valid schedule, 

  
),(),( PntPnt drs ≥                                                                            (3) 

 
A task graph for Gaussian elimination for 3 x 3 matrix is shown in Fig.1 and its 
computation cost matrix is shown in Table 1. Let EST (ni, pj) and EFT (ni,pj) are 
the Earliest Start Time and Earliest Finish Time of task ni on pj, respectively. For 
the entry task ventry, EST(ventry, pj) = 0, and for the other tasks in the graph, the EST 
and EFT values are computed recursively, starting from the entry task, as shown 
in Eqns. (4) and (5). In order to compute the EFT of a task ni, all immediate 
predecessor tasks of ni must have been scheduled.  

))}((max],[{max)( ,, kikji CnAFTjavailpnEST +=                                                  (4) 
)( ik nprednwhere ∈  

 
   ),(),( jiijji pnESTwpnEFT +=                                                        (5) 

 
where pred(ni) is the set of immediate predecessor tasks of task ni and avail[j] is 
the earliest time at which processor pj is ready for task execution. If nk is the last 
assigned task on processor pj, then avail[j] is the time that processor pj completed 
the execution of the task nk and it is ready to execute another task. The inner max 
block in the EST equation returns the ready time, i.e., the time when all the data 
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needed by ni has arrived at processor pj. After a task nk is scheduled on a 
processor pj, the earliest start time and the earliest finish time of ni on processor pj 
is equal to the Actual Start Time AST(nk) and the Actual Finish Time AFT(nk) of 
task nk, respectively. After all tasks in a graph are scheduled, the schedule length 
(i.e the overall completion time) will be the actual finish time of the exit task, nexit.. 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 

Fig. 1. Gaussian elimination task graph represented by DAG 
for 3 x 3 matrix 

 
Table 1: Computational cost matrix (W) for Fig.1 

 
Task P1 P2 P3 
1 
2 
3 

3 
4 
4 

3 
5 
6 

3 
4 
4 

4 5 3 5 
5 3 7 2 
6 3 6 1 
7 5 3 6 
8 2 4 5 
9 5 8 5 

 

1

2 3 4

5

76

8

9
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Priority is computed and assigned to each task based on the following attributes 
namely, Average Computation Cost (ACC), Data Transfer Cost (DTC) and Rank 
of the Predecessor task (RPT).The ACC of a task is the average computation cost 
on all the ‘m’ processors and it is computed by using Eqn. (6). 

( ) ,

1

m
i j

i
j

w
ACC v

m=

= ∑                                                           (6) 

The DTC of a task vi is the amount of communication cost incurred to transfer the 
data from task vi to all its immediate successor task and it is computed at each 
level l using Eqn. (7) 

( ) ,
1

:
n

i i j
j

DTC v C i j
=

= <∑                                                            (7) 

Where n is the number of nodes in the next level. 

                   DTC = 0 for exit tasks 

The RPT of a task vi is the highest rank of all its immediate predecessor task and it 
is computed using Eqn. (8) 

( ) ( ) ( ) ( ){ }1 2, ,...i hRPT v Max rank v rank v rank v=                                 (8) 

Where v1, v2, v3…….. vh are the immediate predecessor of vi 

               RPT = 0 for entry task 

Rank is computed for each task vi based on its ACC, DTC, RPT values. Here, the 
maximum rank of predecessor tasks of task vi as one of the parameters to calculate 
the rank of the task vi and the rank computation is given by Eqn. (9). 

( ) ( ) ( ) ( ){ }i i i irank v round ACC v DTC v RPT v= + +                              (9) 

Priority is assigned to all the tasks at each level l, based on its rank value. At each 
level, the task with highest rank value receives the highest priority followed by 
task with next highest rank value and so on. Tie, if any, is broken using ACC 
value. The task with minimum ACC value receives the higher priority. 

 Finally the objective function f(x) can be defined as 

                                 )min()( lengthschedulexf =                                        (10) 

Where schedule length is defined as    
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                                      )}(max{ exitnAFTLengthSchedule =                         (11) 

3     Memetic Algorithm 

Memetic Algorithm (MA) combine GA with local search. MA are inspired by 
memes (Dawkins, 1976), pieces of mental idea like stories, ideas and gossip, 
which reproduce (propagate) themselves through population of memes carriers. 
Corresponding to the selfish gene idea (Dawkins, 1976) in this mechanism each 
meme uses the host (the individual) to propagate itself further through the 
population, and in this way the population competes with different memes for the 
limited resources. 

MA starts with several alternative solutions to the optimization problem, which 
are considered as individuals in a population. These solutions are coded as binary 
strings called chromosomes. Suitable encoding plays an important role in deciding 
the performance of MA.  The population is initialized at random or using a 
heuristic. To form a new population for the next generation, higher quality 
individuals are selected. The selection phase is identical in form to that used in the 
classical GA selection phase. Local search is performed to select the best 
chromosome from the pool of available chromosomes. Once the best chromosome 
has been selected, they are subjected to crossover and mutation to generate new 
individuals. Finally, one best chromosome is selected by applying the final local 
search. The role of local search in MA is to search and locate the local optimum 
more efficiently than the GA. Fig.3 explains the generic implementation of 
Memetic Algorithm. 
 

1. Encode solution space 
2. (a) set pop_size, max_gen, gen=0; 
   (b) set cross_rate, mutate_rate; 
3. initialize population 
4. while(gen < gensize) 
Apply generic GA 
Apply local search 
end while 
Apply final local search to best chromosome 

 

Fig.3. The Memetic Algorithm 

3.1 Hill Climbing local search algorithm 

Local search can be thought of as the process of an individual improving its idea 
of the solution. The Hill Climbing search algorithm is a local search algorithm and 
is shown in Fig. 4. It is nature-based stochastic computational technique [25]. It is 
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used to execute local search to find better solutions in the neighborhood of the 
current solution produced by GA in each iterations. When the termination 
condition is met, it returns with the best solution.   

              
            Best solution ←initial solution 

While (termination condition is not satisfied) do 
New solution ← neighbors (solution after cross over and mutation) 
If New solution is better than best solution then 
Best solution ← New solution 
End if 
End while 

Fig .4. The Hill Climbing local search algorithm 

 

4      The Proposed Method 

4.1 Encoding 

The generic formulation of a problem begins with the definition of an appropriate 
chromosome encoding. Each chromosome encodes a schedule solution. In order 
to achieve good performance, the chromosome should be simple, because this 
permits one to employ simple and fast operators. 

For task-scheduling, a chromosome represents a solution to the scheduling 
problem; in other words a schedule. A schedule consists of the processor 
allocation and the start time of each node of the task graph. The representation of 
the chromosome holds the information that serves as an input for a heuristic 
search to create a schedule. There are three basic elements to choose among. The 
first is the list of tasks to be scheduled. The second is the order in which these 
tasks should be executed on a given processor and the third is the list of 
processors to which these tasks should be assigned. 

Each chromosome is represented as a group of genes i.e. task-processor pair (Ti, 
Pi) indicating that task Ti is assigned to the processor Pi shown in Fig. 5. The 
position of genes in a chromosome represents the order in which the tasks should 
be executed. For example the following chromosomal representation show that 
task 1 and task 2 should be executed on processor 1 and task 3 on processor 2. It 
also indicates that task 2 is executed first followed by task 3 and followed by task 
1. 
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Fig. 5.Chromosomal representation 

4.2 Initial population 

Most of the scheduling heuristics generate the initial population randomly with 
the necessary care on feasible solutions. The population is created randomly i.e. a 
predefined number of chromosomes are generated, the collection of which form 
the initial population. Here the initial population is generated based on the priority 
calculation of the tasks at each level as shown in Table 2.  

Table 2: The DTC, ACC, RPT, Rank and Priority values for the tasks in Fig.1 
 

Level   Task ACC       RPT DTC Rank Priority  

1 
2 
2 
2 
3 
4 
4 
5 
6 

1 
2 
3 
4 
5 
6 
7 
8 
9 

3 
4.33 
4.67 
4.33 
4.0 
3.33 
4.67  
3.67 
6 

0 
9 
9 
9 
17 
38 
38 
51 
66 

6 
4 
6 
7 
17 
10 
11 
12 
0 

9 
17 
19 
20 
38 
51 
53 
66 
72 

1 
3 
2 
1 
1 
2 
1 
1 
1 

 

 

Fitness function 

As the objective of the task scheduling problem is to find the shortest possible 
schedule, the fitness of a chromosome is directly related to the length of the 
associated schedule. Here the fitness value is determined by the earliest finish 
time of the last task. 

4.3 Selection 
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In this step, the chromosomes in the population are ranked first based on their 
fitness value from the best to the worst. The chromosomes with least fitness 
values are ranked as best chromosomes. This process of obtaining the best 
chromosome is called as selection. This is done using local search from the pool 
of available chromosomes. 

4.4 Reproduction 

Reproduction process forms a new population of chromosomes by selecting 
chromosome in the old population based on their fitness value through Crossover 
and mutation.  

Cross over  

The cross over operator is the most significant one since it implements the 
principle of evolution. New chromosomes are created with this operator by 
combining two selected parent chromosomes and swaps second part of each 
chromosome after a randomly selected point. This is equivalent to assigning a 
subset of tasks to different processors. Single point and two point crossovers are 
alternatively performed and the crossover probability is selected randomly.  

Mutation  

This operator is applied with a lower probability (about 0.1 or less) than the 
crossover operator. Its main purpose is to serve as a safeguard to avoid the 
convergence of the state search to a locally best solution. Here the partial-gene 
mutation is employed. It takes each chromosome from the fittest ones and changes 
a randomly selected gene (Ti, Pi) to (Ti, Pj) which introduces diversity each time it 
is applied, and consequently the population continues slowly to improve. 
Therefore the probability of crossover and partial-gene mutation is not fixed in the 
proposed algorithm. 

4.5 Local Search 

The Hill climbing search algorithm is a local search algorithm that iteratively 
performs a neighborhood search to pick best chromosome from a pool of available 
chromosomes. When the termination criterion is met, the search algorithm 
terminates and returns the best solution. It is explained in Fig. 4. 

4.6 Termination Criteria 

When no improvement solution has been found over the last n iterations, the 
algorithm terminates. Typically this value lies between 50 to 500 depending on 
the desired quality of the solution and the size of the problem. Since for a larger 
problem, improvement moves are likely to be found with lower frequency. 

The proposed memetic algorithm is as follows: 
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1. Generate the initial population of size M based on task priority at each level   

     and calculate the fitness value of each Chromosome based on earliest finish    

     time of the last task. 

2. Select the fittest chromosome from the initial pool based on the Least Fitness  

    Value (schedule length) using local search. 

3. Perform Crossover and Partial gene mutation with varying probabilities. 

4. Evaluating the chromosomes obtained from the step 3 and form a pool of fittest  

     Chromosomes using local search. 

5. Repeat steps 3 and 4 until termination criteria is met. 

Fig.6. The proposed memetic algorithm 

5    Results and Discussions 

In this section a number of experiments are carried out which outlines the 
effectiveness of the proposed algorithm. The purpose of these experiments is to 
compare the performance of memetic algorithm approach with genetic algorithm 
approach for the task scheduling problem. Although the memetic algorithm is a 
GA combined with the Hill Climbing algorithm as a local search, it is not 
necessarily the case that the genetic parameters are the most ideal for a memetic 
algorithm. The experiments were tested on a cluster of workstations consisting of 
32 node HP Proliant cluster. 

DAGs are generated randomly with different communication cost whose size 
varies from 10 to 50. Highly communication intensive application like Gaussian 
Elimination task graph is also generated with matrix size varying from 3 to 15. 
The results are compared for varying population size, where the size ranges from 
5 to 200. The tasks are selected for an initial pool according to the priority value 
as shown in Table 2 for the Gaussian Elimination task graph in Fig.1. Then they 
are selected according to their fitness value. 

For the proposed approach, the effects of the different population size and 
different number of iterations are investigated and the results are depicted in Figs. 
7 and 8. The performance of MA improves when the population size is increased. 
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Fig. 7. Schedule length Vs Population size for Gaussian Elimination Task Graph 

 
Fig. 8.Schedule length Vs No.of.Iteration for Gaussian Elimination task Graph 

 
MA converges very fast when compared to GA as shown in Fig. 9. The results of 
both MA and GA are compared by varying the number of iterations from 5 to 250 
for the Gaussian Elimiation task graph.Traditionally GAs suffer from slow 
convergence to locate a precise enough solution because of their failure to exploit 
local information. But MAs are hybrid GAs that combine global and local search 
which uses GA, to perform exploration while the local search method performs 
exploitation.  
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Fig .9 Performance Comparison of GA Vs MA 

 
MA is compared with the classical list scheduling algorithms like HEFT, CPOP 
and PETS algorithm for the Gaussian Elimination task graph whose matrix size is 
5 x 5. The performance of MA is compared with existing HEFT, CPOP and PETS 
algorithm is shown in Fig.10. From the above results, the proposed MA performs 
well when compared to other list scheduling algorithms. Since the three 
algorithms are based on list scheduling and the method producing the scheduling 
list and the priority assigning rules are different. 
The HEFT algorithm uses a recursive procedure to compute the rank of a task by 
traversing the graph upwards from the exit task. Based on the rank, priority is 
assigned to each task. The CPOP algorithm uses a reverse fashion of calculating 
the rank by traversing the graph from downwards from the entry task. The PETS 
algorithm calculates rank based on ACC, DTC and RPT values [4, 5]. But in the 
proposed MA, first chromosomes are encoded as task-processor pair or as a 
schedule solution. Task priorities are calculated like PETS algorithm. Then the 
processors are assigned to each task pseudo-randomly. The chromosomes are 
encoded to represent the task-processor pairs. The best chromosome is selected 
using local search. The fitness value of that best chromosome gives the schedule 
length.  
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Fig. 10.Performance Comparison 

 

6      Conclusion 

The proposed MA is appropriate for scheduling DAG structured applications onto 
homogeneous computing system with different topologies. However GA’s and 
MA’s are gaining popularity due to their effectiveness of solving the optimization 
problems within a reasonable time. Experimental results showed that the proposed 
approach is better than GA in almost all cases. MA converges very fast when 
compared to GA, hence the proposed approach outperforms all the existing 
heuristics for the task scheduling problem. The future enhancement of this work is 
to introduce contention awareness in task scheduling using MA. 
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