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Abstract 

This paper presents a novel method for stance and swing phase 
detection employing Learning Vector Quantization (LVQ), using 
knee angle information only. The results show detection accuracy of 
95.9% in stance phase and 83.9% in swing phase. The research 
concludes an efficient replacement of footswitch for phase detection. 
The work can directly lead to low cost speed adaptive transtibial 
prosthesis where the knee angle measurement can be used to decide 
the damping in the prosthesis. 
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1  Introduction 

Swing and stance phases are the important phases of walking pattern. Most of the 
popular prosthesis’s performance depends on successful detection of these phases. 
The damping is decided by the control unit as per the determined phase.  Besides 
in the prosthesis and orthosis, this phase detection is also useful in stimulation of 
nerves such as the peroneal nerve. Cross correlation was implemented on the data 
acquired from accelerometer, to detect the swing and stance phase [1]. The 
hardware available in the foot, i.e. foot switch, helps in detecting the gait phases, 
and is quite popular. Research has claimed that the combined use of the FSRs 
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(Force Sensitive Resistor) and the gyroscope together with an intelligent rule 
based detection algorithm leads to a very robust gait phase detection system [2]. 
Even a wireless portable gait phase detection system has been developed using 
foot switch and gyroscope [3]. In another research work a sensor system 
comprising of two accelerometers, two goniometers and a gyroscope was attached 
to lower leg for stance phase detection, using Artificial Neural Network (ANN). 
This has a potential application in FES (Functional Electrical Stimulation) assisted 
walking. A “gaitshoe” comprises of three orthogonal accelerometers, three 
orthogonal gyroscopes, four force sensors, two bidirectional bend sensors, two 
dynamic pressure sensors, as well as electric field height sensors is developed to 
quantify gait analysis. Further it was highly capable of heel strike, toe off, foot 
orientation and position [4]. A gait phase detection system was entirely embedded 
in a shoe insole and detects four phases of the gait cycle in real time: stance, heel-
off, swing and heel-strike. The accelerometer attached to lumbar region was 
98.2% and 99.8% reliable in the detection of heel contact events, whereas with the 
footswitch, the reliability ranges between 92.4% and 98.7% [5]. Foot switch, 
though inexpensive, suffers from the limitation in size and accurate placement for 
phase detection. The proposed scheme provides to overcome this limitation. 
 
For Trans-tibial amputee prosthesis, hardware setup mentioned earlier does not 
work properly. Furthermore, synchronization of hardware is complicated process. 
Knee angle trajectory intrinsically contains the phase information. However, this 
information is corrupted due to non-unique mapping of knee angle amplitude in 
different phases. This ambiguity is eliminated by employing learning machines 
(specifically Artificial Neural Networks). Apart from knee angle, its derivative 
has been taken as the input for neural network. Linear Vector Quantization (LVQ) 
was the preferred choice for this work due the advantage of competitive layer - 
which requires less hidden layer neurons as well as less computation time. The 
tradeoff comes in the form of networks that may possibly be less generalized. 
Moreover LVQ eliminates the explicit need to tune multiple parameters while 
training like momentum, learning rate. Previously, variables such as joint angles 
(measured using potentiometer Goniometer), and the foot forces using a flexible 
force sensing insole, were used to detect gait phases employing inductive learning 
techniques [6]. Relatively few research works have been reported on using LVQ 
for phase detection in gait analysis. Distinction-Sensitive Learning Vector 
Quantization (DSLVQ) was used to automate feature selection of footsteps to 
identify adaptive identification of walkers [7].The difference between gait 
signatures, detected using SVM (Support Vector Machine) from basic kinetic and 
kinematic data [8] has also been presented. The key idea in the present method is 
the detection of the swing and stance phase using knee angle information only, 
which will directly lead to lower costs of transtibial prostheses. The accurate 
detection of swing and stance phase leads to precise switching of damping and 
hence leads to a smart speed adaptive prosthesis. 
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The other source of information can be the EMG for swing and stance phase 
detection. EMG based prosthesis performance is degraded by sweating in tropical 
region and needs a lot of training. EMG signal is easily corrupted by 
Electromagnetic noise and motion artifacts. Moreover achieving higher accuracy 
requires higher number of electrodes and complex signal processing. In contrast 
knee angle measurement does not get affected by any physiological parameter and 
may overcome the problem associated with EMG. 

 

1.1 Swing and Stance 
 

Stance phase represents about 60% of the gait cycle, and starts from initial contact 
with the ground. Swing phase is the phase of the normal gait cycle during which 
the foot is off the ground (Fig.1 (a)). The swing phase follows the stance phase 
and is divided into the initial swing, the midswing, and the terminal swing. Swing 
phase accounts for 40% in normal gait cycle (Fig.1 (b). Based on the switch status 
the phases are decided. 
 

 
  Fig. 1(a) 

 

 
 

Fig. 1(b) 
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Table. 1. Table for swing and stance phase detection 

 
Foot 
Switch#1 

Foot 
Switch#2 

Gait 
Phase 

1 0 Stance 
1 1 Stance 
0 1 Stance 
0 0 Swing 

 
Foot switch are generally pressure sensitive resistive membrane. Table 1 gives the 
expression for phase identification based on status of switch. In prosthesis the foot 
switches are interfaced to microcontroller and based on their status the control 
action is taken. The Boolean expression from Table 1 can be written as    K=A + 
B, where A, B are the states of toe and heel switches, respectively and K 
represents Stance (1) or Swing (0). 
 

1.2  Linear Vector Quantization (LVQ) 

Learning Vector Quantization (LVQ) is a supervised version of vector 
quantization. LVQ algorithms directly define class boundaries based on 
prototypes, a nearest-neighbor rule and a winner-takes-it-all paradigm. S1 
represents the subclasses in the competitive layer having S1 competitive neurons 
while S2 represents the output classes, also called linear layer, having S2 linear 
neurons. R is the number of elements in the input vector. Neurons in competitive 
layer perform the distance from presented input vector to each row of the input 
weight matrix IW1,1, i.e. -║ iIW1,1-p║, while the neurons at output layer performs 
linear function. LW2,1 represents the weight of neurons in competitive layer 
connected to linear layer.  
 

 
   Fig.2 LVQ 
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Weight updating rule  
 
If the input vector p is classified correctly and the neuron  i* wins the competition 
then the input weight matrices of the neuron is updated to move neuron closer to 
input vector, using following equation  
 
 

 
 
On the other hand if p is classified incorrectly, then the input weight matrices of 
the neuron is updated to move the neuron away to the input vector using following 
equation 
 

 
 
where α is the learning rate. 
 
Such corrections move the hidden neuron toward vectors that fall into the class for 
which it forms a subclass, and away from vectors that fall into other classes.  

2 Methods  
Sixteen healthy adult male volunteers between the ages of 22 and 27 years with no 
obvious neurological or musculoskeletal deficiencies participated in this study. 
All participants provided written informed consent prior to testing. Data was 
collected in a 3 D motion analysis system using six CCD Cameras. EVA 7.0 and 
Orthotrak 6.2 software were used for data recording [9-10], gait analysis and for 
toe off and heel strike detection. Twenty five Cleveland markers were placed on 
the subjects. Confidentiality aspects prevent any visual data from being presented. 
Furthermore, all subject identification information was anonymized as well. 
Subjects were asked to habituate themselves with walking in the laboratory at 
their normal speed. They were further asked to walk with varying speeds. 

 
2.1  Data Collection and Analysis  
Training data was collected from human motion analysis lab, Defense Institute of 
Physiology and Allied Sciences (DIPAS), New Delhi. The initial contact in the 
Orthotrak software was used as the starting of stance phase and toe off was 
considered as swing phase. The corresponding collected data were used to train 
and test the network. The data collected were analyzed offline in order to develop 
suitable walking phase detection algorithm. Data recording began 2-3 minutes 
after the subjects began walking. This was done to habituate the subjects with the 
walk pathway. Seven to eight trials were performed for each locomotive task to 
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get repetitive data for comparison and analysis.  Data was collected at the 
sampling frequency of 120 Hz. The time duration to record the data for every trial 
was 3 seconds. Some of the trials were not included for analysis as they were 
corrupted due to incomplete information or excessive noise. Noise was eliminated 
from the gathered data using a low pass Butterworth filter with cut off of 6.0 Hz, 
and analyzed using Matlab 7.0. Out of 360 samples, only one gait cycle 
information was used, despite the availability of multiple cycles during recording 
phase. Even though analysis was performed for movements in frontal, transversal 
and sagittal planes, only sagittal analysis was considered relevant to this study, as 
most of the movement of knee is in sagittal plane. 
 
Knee angle derivative was computed using first order difference. For a constant 
and uniform sampling rate if the walking speed changes temporal values of knee 
angle and its derivative also change. So data with various speeds were presented 
to LVQ. 
 

2.2  LVQ Design   

The optimal number of neurons in competitive layer is determined heuristically. 
In this research work it was three which was considered to be quite reasonable 
after visualizing the scatter diagram of knee angle and its derivative. LVQ being 
suitable in terms of training time and number of hidden units required is preferred 
over back propagation and Radial basis function. The lower dependence of LVQ 
on tuning parameters like learning rate and momentum makes it a preferable 
choice compared to BP (Back Propagation) algorithm.   

 
Fig.3 Design of LVQ Network 
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The input parameters for the network are knee angle and its derivative i.e. first 
order difference. Derivative having a good potential (significant difference in 
amplitude in sign) to discriminate between two phases was selected as input 
features. The neurons in competitive layer were selected two and then increased 
by one with each trail. The error with same number of epochs i.e. 25 was found 
minimum with 3 neurons in competitive layer. So finally the LVQ with three 
neurons in competitive layer was finalized to train the data. 

3 Results  
The average walking speed for slow, normal and fast gait was 82cm/sec, 
112cm/sec and 138cm/sec, respectively. The network was trained with speeds of 
81cm/sec, 112cm/sec, 116cm/sec and 138cm/sec. After training the network was 
tested with speeds of 92cm/sec, 109cm/sec and 143cm/sec. Fig.4 shows the 
successful training in as few as 25 epochs. Table3 summarize the accuracy of 
swing and stance phase. 
 
                          Table 2. Testing accuracy of the network  

 
   Fig.4 Error profile of network in 25 epochs 
 
The results show that the network is capable of detecting stance and swing phase 
with almost all average accuracy of 95.9% and 83.9% respectively. The authors 
also conclude that the detection performance depends on the walking speed rather 
the subjective nature. The results were verified from both left and right leg as well.  

4 Discussion and Conclusion  

This study developed an approach to the determination of the key gait events, 
swing and stance, based on knee angle data alone. The results show that the knee 
angle and its derivative are strong features to detect the gait phase accurately. 
Derivative calculation being quite easy to calculate in hardware adds an advantage 
for the hardware design of the proposed prosthesis. It also shows that the detection 
performance depends on the walking speed rather the subject. The available Foot 
switches have limitations in terms of dimension and their placement for accuracy. 

Walking 
Speed(cm/sec) 

Stance 
Phase 
Detection 
Accuracy 
(%) 

Swing 
Phase 
Detection 
Accuracy 
(%) 

92 (below 
normal) 

                  
97.7 

                   
78.3 

109 (normal)                   
96.5 

                   
82.5 

143 (above 
normal) 

                  
93.6 

                   
90.9 



 
 

 
 

 
 
 
Deepak Joshi et al.                                                                                                  8 

This algorithm in this sense has an edge over it. Sensitivity of footswitch towards 
weight of the subject introduces undesirable subjective nature. The knee angle 
measurement, on the other hand, is independent of subject’s physical parameter. 
The testing of algorithm has not been done with amputee. If the training data 
consist of amputee walking the network will have more accuracy for testing with 
amputee data.  This work provides easily realizable and reliable approach for echo 
controlled prosthesis. There certainly is room for further studies, which will 
improve swing phase detection accuracy. 
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