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Abstract

In this article, we show global asymptotic stability of an
equilibrium point of a non-trivial non-linear system of dimen-
sion 4 that modeled fishery model using a simple criterion of
stability polynomial. By using the direct Lyapunov method,
we develop a simple design technique, which allows to study
the stability of the nonlinear system of fishing. And main ob-
jective is to obtain simple sufficient conditions used to obtain
the stability of our system around the equilibrium point of ref-
erence. The proposed approach is that sufficient conditions
demonstrate the overall stability of the system under study
can be presented as feasibility tests. The results are tested by
numerical examples.

Keywords: Continuous structured model, Hermite-Biehler theorem, Hur-
witz polynomial, Lyapunov approach, Stability.



2 Global Stabilization of a Fish Population

1 Introduction

The exploitation of fish populations provides some classic examples of disas-
trous exploitation of a renewable resource. In practice, the management of a
fishery is a decision with multiple objectives. One of the desirable objectives
in the management of fish resources is the conservation of the fish population
(perenniality of the stock). The formulation of good harvesting policies which
take into account these objective recur the stability analysis study of harvested
fish population models around the positive equilibrium point.
Over the past decades, several authors have studied the dynamic behavior of
the stage structured fish population model. It is usually discussed as having
stable equilibrium and unstable one. Its analysis was realized by usual tools
of automatic control. Its origin can be traced back to Clarck [3] who applied
the optimal control design approach to fisheries management. The continu-
ous age structured model was built and studied by Touzaeu [24]. She showed
the local stability of the nontrivial equilibrium under general biological as-
sumptions, using the method of linearization and some results of cooperative
systems (see [23]). In [4, 5, 7, 8, 9, 10, 13, 14, 15, 16, 17, 18, 19] the au-
thors built a quadratic Lyapunov function which permits stabilization of the
continuous age structured model around the nontrivial steady states, under
the condition that each predator lays more eggs than it consumes. They were
interested in constructing a state feedback law that allowed to stabilize the
system. In [4, 5, 6] we are interested in the design of a fishing strategy by
constructing a linear feedback control law that permits to stabilize the studied
system using Riccati equation. In [8] the problem of global state regulation
via output feedback was investigated to study a structured fishing model, in
order to stabilize its states around a non-trivial equilibrium. The two stages
of the juvenile and adults ages of fish population are considered. In order to
apply the tools of automatic control to this model, the fishing effort is used
as a control term, the age classes as a states and the quantity of captured fish
per unit of effort as a measured output. A Lyapunov function is adapted to
study the stability and stabilization of the studied system around the non-
trivial steady states. In our last previous work, we consider the problem of
stabilizing a continuous fish population system via a state feedback control.
The model considered is structured in n age classes and includes a non-linear
stock-recruitment relationship. In our case, the variation of the fishing effort
is used as a control term, the age classes as states and the quantity of captured
fish per unit of effort as a measured output. The back stepping approach is
employed to stabilize the studied system around a reference equilibrium point.
Explicit expression of a bounded fishing effort and a Lyapunov function are
given [6, 7, 16].
In this paper we attempt to solve the stability problem of the fish popula-
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tion model. We first construct the Lyapunov function based on the structure
of the studied system, that contains the cannibalism term which is expressed
as a Lotka-Volterra predation term between the adults and the juveniles and
the competition term that can be interpreted as an intra-stage competition
for food and space in a limited environment. The we formulate some biolog-
ically meaningful sufficient conditions for the stability of positive stationary
solutions of the studied system. The global asymptotic stability of the non
trivial steady state follows from the classical Lyapunov technique. Finally a
numerical simulation is taken to verify some of the key results we obtained.

2 The model and preliminaries

The modeling of the exploitation of biological resources like fisheries and fore-
stries has gained importance in recent years. In order to stabilize and conserve
fish population in marine ecosystems, various dynamic models for commercial
fishing was proposed and analyzed by considering the economic and biological
factors: Global models that gives a general vision of the stock, which is repre-
sented with a single variable [3, 21] and structured models that distinguishes
between several stages (classes of ages, of size...) of the stock, the evolution of
each one is described separately [4, 5, 8, 13, 14, 16, 19, 24].
In this work, we focus on the study of a structured model containing a stage of
juvenile [24]. The exploited fish population model considered is structured in
(n+1) age classes (n ≥ 2), where every stage i is described by the evolution of
it’s biomass xi for 0 ≤ i ≤ n. Stage 0 is the pre-recruits stage, each stage in the
stock (i = 1, . . . , n) is characterized by its fecundity, mortality and predation
rates. In addition, a fishing effort is included in the global mortality term.
For n = 4, the dynamic of the fish population can be represented in the fol-
lowing system of differentials equations (see [23, 24]):

ẋ0(t) = −α0x0(t) +
4∑

i=1

filixi(t)−
4∑

i=0

pixi(t)x0(t)

ẋ1(t) = αx0(t)− (α1 + q1E) x1(t)
... =

...
ẋ4(t) = αx3(t)− (α4 + q4E) x4(t)

(1)

Where:
xi(t) and E are respectively the abundance of class i, and the fishing effort (in
unit effort×times−1).
p0 and pi represent respectively the juvenile competition parameter and pre-
dation of class i on class 0 (in time−1×number−1).
fi and li are respectively the average number of recruits (no dimension) and
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reproduction efficiency of class i (in time−1×number−1).
qi the relative catchability coefficient of class i ( in unit effort−1).
The linear aging coefficient α is supposed to be constant and defined as:
αi = α +Mi (in time−1).
Mi is the natural mortality class rate i (in time−1).

Origin is an equilibrium point corresponding to a depleted population and
thus does have a great interest. Under the assumptions of nonlinearity and
survival following (see [5, 23, 24]):

One non linearity at least must be considered:

4∑
0

pi ̸= 0. (2)

The spawning coefficient must be big enough so as to avoid extinction:

4∑
1

filiπi > α0 where πi =
αi∏i

1 (αj + qjE)
(3)

The system (1) admits the nontrivial equilibrium point x∗ as follows:

x∗
0 =

∑4
1 filiπi − α0

p0 +
∑4

1 piπi

and x∗
i = πiX

∗
0 for i = 1, . . . , 4.

Remark 2.1. For biological view, the assumption (2) means that the model
have at least a nonlinear term. The second assumption (3) translate a survival
condition and means that the spawning rate must be greater than the mortality
of the stage 0 and its aging coefficient.

3 Global stability analysis

In the qualitative analysis of ordinary differential equations describing a biolog-
ical system one relevant question is to determine conditions on the parameters
of the model that ensures the global stability of an equilibrium point. In
the direct method of Lyapunov the stability is granted by the existence of a
positive definite function in a neighborhood of the equilibrium point, whose
total time derivative is negative semi-definite. Such Lyapunov functions are
usually difficult to obtain and no general recipe to construct them exists. To
this end and to solve the problem of global stability of the fish population
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model (1), we are interested in constructing an appropriate Lyapunov func-
tion. Our investigation is based on previous works that concern the stability
study of Lotka-Volterra systems (epidemic systems, predator, ecological sys-
tems,...) (see [2, 4, 5, 7]). More specifically, a Lyapunov function is adapted
to our polynomial system, such that, its total time derivative is negative semi-
definite.

3.1 Main Results

The methods described in this section poses the problem of stability as a sim-
ple polynomial positivity test of a univariate polynomial. In the literature we
find works that address the links between stability defined by Hurwitz and
Hermite-Biehler theorem (see [1, 12, 22]).
In [11], the authors have proven a new method deduced from the stability
criterion of Hemite-Biehler which reduces to a simple algebraic criterion (for
a polynomial of orderm we have to check the positivity of a single polynomial).

Consider the property of interlacing zeros when a polynomial:

P (z) = αmz
m + αm−1z

m−1 + . . .+ α1z + α0 where αm > 0

is written as follows:

P (z) = P e
(
z2
)
+ zP o

(
z2
)

where m = 2k is even, P e and P o are then developed as follows:

P e (z2) = α2k(z
2)k + . . .+ α2z

2 + α0

P o (z2) = α2k−1(z
2)k−1 + . . .+ α3z

2 + α1

and where m = 2k + 1 is odd, P e retains the same form as in the case where
m is even, but P o is then given by:

P o
(
z2
)
= α2k+1(z

2)k+1 + . . .+ α3z
2 + α1

In the following theorem we cite a result of further theoretical practical crite-
rion Hermite.

Theorem 3.1. (see [11]) The real polynomial P (z) is stable if and only if
two conditions are verified:

Roots of P e(−z2) are real,
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For all z ∈ IR,

W (P e (−z2) , zP o (−z2)) =

∣∣∣∣∣∣∣
P e(−z2) zP o(−z2)

dP e(−z2)

dz

d(zP o(−z2))

dz

∣∣∣∣∣∣∣ > 0

3.2 Global stability for a dynamical system of a fish
population

In the following proposition, we will demonstrate the global stability of our
system (1) under the assumptions (2) and (3), using the theorem 3.1.

Proposition 3.2. For a constant fishing effort and under the (2) and (3).
x∗ is globally asymptotically stable equilibrium point for the system (1) under
the following sufficient conditions:

p̄i ≥ 0 for i = 1, . . . , 4,

p̄1 ≥ 3max

(
p̄2

p0X∗
2

,

√
p̄3X

∗
1

αX∗
2X

∗
3

) (4)

where: p̄i = pi −
fili
X∗

0

for i = 1, . . . , 4.

Proof 3.3. We consider the following Lyapunov function:

V (x) =
4∑
0

(
xi − x∗

i − x∗
i ln

(
xi

x∗
i

))
It is clear that the function V is positive definite and satisfactory: V (x∗) = 0
and V (x) > 0 for all x ̸= x∗.
The derivative of V along the solutions of system (1) is:

V̇ (x) = (x− x∗)⊤ A (x− x∗) + (x− x∗)⊤ A1 (x− x∗) .

where

A =


p0 −p̄1 −p̄2 −p̄3 −p̄4
α
x∗
1

0 0 0 0

0 α
x∗
2

0 0 0

0 0 α
x∗
3

0 0

0 0 0 α
x∗
4

0

 ,
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A1 =


0 0 0 0 0
α
x∗
1

−α1 0 0 0

0 α
x∗
2

−α2 0 0

0 0 α
x∗
3

−α3 0

0 0 0 α
x∗
4

−α4

 ,

p̄i = pi −
fili
x∗
0

and αi = αi + qiE for i = 1, . . . , 4.

For the second term of V̇ (x) is negative definite. It remains to show that the
matrix (−A) is positive definite, its characteristic polynomial can be written
as:

P (z) = z4 + p0z
3 +

αp̄1
X∗

1

z2 +
αp̄2

X∗
1X

∗
2

z +
αp̄3

X∗
1X

∗
2X

∗
3

(5)

In this case we have m = 4 so we will have:


P e (−z2) = z4 − αp̄1

X∗
1

z2 +
αp̄3

X∗
1X

∗
2X

∗
3

zP o (−z2) = −p0z
3 +

αp̄2
X∗

1X
∗
2

z

Firstly, we show that the polynomial P e (−z2) admits only real roots.
In the expression of P e (−z2) = 0, let s = z2, we have the following equation:

s2 − αp̄1
X∗

1

s+
αp̄3

X∗
1X

∗
2X

∗
3

= 0

and that this equation has solutions s real, it suffices that its discriminant is
positive. This is guaranteed under the condition (4). More solutions s are
positive, which proves that the solutions z are all real.
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secondly, it was:

W (P e(−z2), zP o(−z2))

=

∣∣∣∣∣∣∣
P e(−z2) zP o(−z2)

dP e(−z2)

dz

d(zP o(−z2))

dz

∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣

z4 − αp̄1
x∗
1

z2 +
αp̄3

x∗
1x

∗
2x

∗
3

−p0z
3 +

αp̄2
x∗
1x

∗
2

z

4z3 − 2
αp̄1
x∗
1

z −3p0z
2 +

αp̄2
x∗
1x

∗
2

∣∣∣∣∣∣∣∣∣∣∣
= p0z

6 +

(
−3αp̄2
x∗
1x

∗
2

+
αp0p̄1
x∗
1

)
z4

+

(
α2p̄1p̄2
x∗
1
2x∗

2

− 3αp0p̄3
x∗
1x

∗
2x

∗
3

)
z2 +

α2p̄2p̄3
x∗
1
2x∗

2
2x∗

3

= p0z
6 +

α

X∗
1

(
−3p̄2

x∗
2

+ p0p̄1

)
z4

+
α

x∗
1x

∗
2

(
αp̄1p̄2
x∗
1

− 3p0p̄3
x∗
3

)
z2 +

α2p̄2p̄3
x∗
1
2x∗

2
2x∗

3

Gold under the conditions (4), be reduced to prove that the coefficients:(
−3p̄2

x∗
2

+ p0p̄1

)
and

(
αp̄1p̄2
x∗
1

− 3p0p̄3
x∗
3

)
a positive.

Then W (P e(−z2), zP o(−z2)) > 0. So after the theorem below, the polyno-
mial P (z) is stable.

3.3 Numerical example

For the purpose of illustration, we review results obtained from the stabi-
lization of a fishery characterized by the parameter values,in an appropri-
ate units for n = 4: p0 = 1, p1 = 0.5, p2 = 0.9, p3 = 1.8, p4 = 1.4,
f1 = f2 = f3 = f4 = 0.5, l1 = 5, l2 = 10, l3 = 20, l4 = 15, α0 = 2.6,
α1 = α2 = α3 = α4 = 1.8 and α = 1.8.
The initial state and the constant fishing effort, the corresponding stable equi-
librium is x∗ = (5.71, 4.57, 3.66, 1.54, 0.52).
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It’s clair that the parameter values given here satisfy the assumptions (2) and
(3). Secondly the sufficient condition (4) is verified in this case.
The time evolution of the states xi are shown in Fig. 1. From the solution
curves, we infer that the system is globally stable about the interior equilibrium
point.

Figure 1: The time evolution of the states x0, x1, x2, x3 and x4.

4 Conclusion

An approach for global asymptotic stability of the polynomial fish popula-
tion systems was presented in this paper. This approach is based on the
construction of Lyapunov function. Sufficient conditions for the existence of
such Lyapunov functions ensuring the stability of the nonlinear studied sys-
tems are proved and derived after considerable developments. To this end the
Lyapunov function based on the functions used to a wide class of biological
systems whas adapted to our model. The results obtained extend previous
study [4, 5, 7, 8, 13, 23] focusing on the solution to the same problem solved
using other tools of control engineering. The proposed method permits to
prove that the condition X∗

0 ≤ fili
pi

for i = 1, . . . , n on which the authors in [13]
are based to study the stability of the non trivial steady state, is not necessary.
The advantage of the proposed approach is that the derived conditions proving
the stability of the studied systems. The simulation results demonstrate the
effectiveness of our results.
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[24] Touzeau, S. and J. L. Gouzé, ”On the stock-recruitment relationships
in rish population models”, Environmental Modeling and Assessment, 3,
(1998), 87-93.


