
Int. J. Advance. Soft Comput. Appl., Vol. 6, No.1 ,March 2014

ISSN 2074-8523; Copyright © SCRG Publication, 2014

Performance Improvement of Least-Recently-

Used Policy in Web Proxy Cache Replacement

Using Supervised Machine Learning

Waleed Ali
1
*, Sarina Sulaiman

1
, and Norbahiah Ahmad

2

1
Soft Computing Research Group, Faculty of Computing,

Universiti Teknologi Malaysia, 81310 Johor, Malaysia

email: waleedalodini@gmail.com, sarina@utm.my, norbahiah@utm.my

Abstract

 Web proxy caching is one of the most successful solutions for
improving the performance of Web-based systems. In Web proxy
caching, Least-Recently-Used (LRU) policy is the most common
proxy cache replacement policy, which is widely used in Web proxy
cache management. However, LRU are not efficient enough and
may suffer from cache pollution with unwanted Web objects.
Therefore, in this paper, LRU policy is enhanced using popular
supervised machine learning techniques such as a support vector
machine (SVM), a naïve Bayes classifier (NB) and a decision tree
(C4.5). SVM, NB and C4.5 are trained from Web proxy logs files to
predict the class of objects that would be re-visited. More
significantly, the trained SVM, NB and C4.5 classifiers are
intelligently incorporated with the traditional LRU algorithm to
present three novel intelligent Web proxy caching approaches,
namely SVM-LRU, NB-LRU and C4.5-LRU. In the proposed
intelligent LRU approaches, unwanted objects classified by machine
learning classifier are placed in the middle of the cache stack used,
so these objects are efficiently removed at an early stage to make
space for new incoming Web objects. The simulation results
demonstrated that the average improvement ratios of hit ratio
achieved by SVM-LRU, NB-LRU and C4.5-LRU over LRU increased
by 30.15%, 32.60% and 31.05 % respectively, while the average
improvement ratios of byte hit ratio increased by 32.43%, 69.56%
and 28.41%, respectively.

 Keywords: Web proxy server, Cache replacement, Least-Recently-Used (LRU)
policy, Classification, Supervised machine learning.

Waleed Ali et al. 2

1 Introduction

The World Wide Web (Web) is the most common and significant service on the

Internet. The Web contributes greatly to our life in many fields such as education,

entertainment, Internet banking, remote shopping and software downloading. This

has led to rapid growth in the number of Internet users, which resulting in an

explosive increase in traffic or bottleneck over the Internet performance [1-2].

Consequently, this has resulted in problems during surfing some popular Web

sites; for instance, server denials, and greater latency for retrieving and loading

data on the browsers [3-5].

Web caching is a well-known strategy for improving the performance of Web-

based system. In the Web caching, Web objects that are likely to be used in the

near future are kept in a location closer to the user. Web caching mechanisms are

implemented at three levels: client level, proxy level and original server level [6-

7]. Proxy servers play key roles between users and Web sites in reducing the

response time of user requests and saving network bandwidth. In this study, much

emphasis is focused on the Web proxy caching because it is still the most

common strategy used for caching Web pages [1-4, 8].

Due to cache space limitations, a Web proxy cache replacement is required to

manage the Web proxy cache contents efficiently. In the proxy cache replacement,

the proxy cache must effectively decide which objects are worth caching or

replacing with other objects. The Web cache replacement is the core or heart of

Web caching; hence, the design of efficient cache replacement algorithms is

crucial for the success of Web caching mechanisms [4, 6-10]. So, the Web cache

replacement algorithms are also known as Web caching algorithms [9].

In the Web cache replacement, a few important features or factors of Web objects,

such as recency, frequency, size, cost of fetching the object from its origin server

and access latency of object, can influence the performance of Web proxy caching

[4, 6, 10-12]. These factors can be incorporated into the replacement decision for

better performance.

The conventional Web cache replacement approaches consider just some factors

and ignore other factors that have an impact on the efficiency of the Web caching

[4, 9, 13-15]. Thus, the conventional Web proxy cache replacement policies are

no longer efficient enough [4].

Least-Recently-Used (LRU) policy is the most common proxy cache replacement

policy among all the conventional Web proxy caching algorithms, which widely

used in the real and simulation environments [2-3, 8, 14, 16]. The LRU policy

takes into account just the recency factor of the cached objects in cache

replacement process. In LRU, by inserting a new object into the cache, it will be

located on the top of the cache stack. If the object is not popular (e.g., it is used

only once), it will take a long time before it can be moved down to the bottom of

the cache stack (namely least recently used object) and will be deleted from the

3 Performance Improvement of Least-Recently-

cache. Therefore, a large portion of objects, which are stored in the cache, are

never requested again or requested after a long time. This leads to cache pollution,

where the cache is polluted with inactive objects. This causes a reduction of the

effective cache size and negatively affects the performance of Web proxy caching.

Even if we can locate a large space for the proxy cache, this will be not helpful

since the searching for a Web object in a large cache needs a long response time

and an extra processing overhead. Furthermore, a consistency strategy is required

to execute frequently to ensure the pages in the cache are the same as pages in the

origin Web servers. This cause increase of network traffic, and more loads on the

origin servers[1] .

This is motivation to adopt intelligent techniques for solving the Web proxy

caching problems. The second motivation behind the development of intelligent

approaches in Web caching is availability of proxy logs files that can be exploited

as training data. In a Web proxy server, Web proxy logs file records activities of

the users and can be considered as complete and prior knowledge of future access.

Several research works have developed intelligent approaches that are smart and

adaptive to the Web caching environment. These include adoption of supervised

machine learning techniques [8-9, 14, 17-18], fuzzy systems [19], and

evolutionary algorithms [12, 20-21] in Web caching and Web cache replacement.

Recent studies have reported that the intelligent Web caching approaches based on

supervised machine learning techniques are the most common, effective and

adaptive Web caching approaches. A multilayer perceptron network (MLP) [9]

and back-propagation neural network (BBNN) [8, 14], logistic regression (LR)

[22] and multinomial logistic regression(MLR) [23], and adaptive neuro-fuzzy

inference system(ANFIS)[15] have been utilized in Web caching. More details

about intelligent Web caching approaches are given in our previous work [24].

 Most of these studies have utilized an artificial neural network (ANN) in the Web

caching although ANN performance is influenced by the optimal selection of the

network topology and its parameters. Furthermore, ANN training may consume

more time and require extra computational overhead. More significantly,

integration of an intelligent technique in Web cache replacement is still a popular

research subject.

In this paper, alternative supervised machine learning techniques are proposed to

improve the performance of conventional LRU cache replacement policy. Support

vector machine (SVM), naïve Bayes (NB) and decision tree (C4.5) are three

popular supervised learning algorithms, which are identified as three of the most

influential algorithms in data mining [25]. They perform classifications more

accurately and faster than other algorithms in a wide range of applications such as

text classification, Web page classification and bioinformatics applications,

medical filed, military applications, forecasting, finance and marketing [26-32].

Hence, SVM , C4.5 and NB classifiers can be utilized to produce promising

solutions for Web proxy caching.

Waleed Ali et al. 4

This study proposes a concrete contribution to the field of Web proxy cache

replacement. A new intelligent LRU cache replacement approaches with better

performance are designed for use in Web proxy cache. The core of the proposed

intelligent cache replacement approaches is to use common supervised machine

learning techniques to predict whether Web objects would be needed again in the

future. Then, classification decisions are utilized into the conventional LRU

method determining what to remove first from the proxy cache.

The remaining parts of this paper are organized as follows. Background and

related works are presented in Section 2. Principles of Web proxy caching and

replacement are presented in Sections 2.2 and 2.3, while Section 2.4 describes

machine learning classifiers used in this study, including support vector machines,

decision trees and naïve Bayes classifier. A methodology for improving LRU

replacement policy based on machine learning is illustrated in Section 3. Section 4

elucidates implementation and performance evaluation. Finally, Section 5

concludes the paper and discusses possible future works in this area.

2 Web Caching Background and Related Works

2.1 Overview

The term cache has French roots and means, literally, to store [33]. The idea of

caching is used in memory architectures of modern computers for improving the

performance of CPU speed. In a similar manner to caching in memory system,

Web caching stores Web objects in anticipation of future requests. However, the

Web caching significantly differs from traditional memory caching in several

aspects such as the non-uniformity of Web object sizes, retrieval costs, and

cacheability [33]. Significantly, the Web caching has several attractive advantages

to Web users [34]. Firstly, the Web caching reduces user perceived latency.

Secondly, the Web caching reduces network traffic and therefore reducing

network costs for both content provider and consumers. Thirdly, the Web caching

reduces loads on the origin servers. Finally, the Web caching increases reliability

and availability of Web and application servers.

2.2 Web Proxy Caching

Generally, caches are found in browsers and in any of the Web intermediate

between the user agent and the origin server. A Web cache is located in a browser,

proxy server and/or origin server. The browser cache is located in the client

machine. At the origin server, Web pages can be stored in a server-side cache for

reducing the redundant computations and the server load. The proxy cache is

found in the proxy server, which is located between the client machines and origin

server. The proxy servers are often used to achieve some tasks such as firewalls to

provide security, caching, filtering, redirection, and forwarding. They allow and

record users’ requests from the internal network to the outside Internet. A proxy

5 Performance Improvement of Least-Recently-

server behaves like both a client and a server. It acts like a server to clients, and

like a client to servers. A proxy receives requests from clients, processes those

requests, and then it forwards them to origin servers.

The Web proxy caching works on the same principle as the browser caching, but

on a much larger scale. Unlike the browser cache that deals with only a single user,

the proxy server serves hundreds or thousands of users in the same way. When a

request is received, the proxy server checks its cache. If the object is available, the

proxy server sends the object to the client. If the object is not available, or it has

expired, the proxy server will request the object from the origin server and send it

to the client. The requested objects are stored in the proxy’s local cache for future

requests. Hence, the Web proxy caching plays the key roles between users and

Web servers in reducing the response time of user requests and saving the

network bandwidth.

The Web proxy caching is widely utilized by computer network administrators,

technology providers, and businesses to reduce user delays and to reduce Internet

congestion [1-3]. In this study, much emphasis are placed on Web proxy caching

because it is still the most common strategy used for caching Web pages.

2.3 Web Proxy Cache Replacement

Three popular issues have a profound impact on Web proxy caching, namely

cache consistency, cache pre-fetching, and cache replacement [34-36]. The cache

consistency is to ensure the pages in the cache are the same as pages in the origin

Web server. The pre-fetching is a technique for reducing user Web latency by

preloading the Web object that is not requested yet by the user. In other words,

the pre-fetching is a technique that downloads the probabilistic pages that are

not requested by the user, but that could be requested soon by the same user [34].

The cache replacement refers to the process that takes place when the cache

becomes full, and some objects must be removed to make space for new coming

objects.

The Web proxy cache replacement plays an extremely important role in Web

proxy caching. Hence, the design of efficient cache replacement algorithms is

required to achieve highly sophisticated caching mechanism [4, 6-10]. The

effective cache replacement algorithm is vital and has a profound impact on Web

proxy cache management [7]. Therefore, this study pays attention to improvement

of Web proxy cache replacement approaches. In general, cache replacement

algorithms are also called Web caching algorithms [9].

As cache size is limited, a cache replacement policy is needed to handle the cache

content. If the cache is full when an object needs to be stored, the replacement

policy will determine which object is to be evicted to allow space for the new

object. The optimal replacement policy aims to make the best use of available

cache space, improve cache hit rates, and reduce loads on the origin server.

Waleed Ali et al. 6

Most Web proxy servers are still based on conventional replacement policies for

Web proxy cache management. In the proxy cache replacement, Least-Recently-

Used (LRU), Least-Frequently-Used (LFU), Least-Frequently-Used-Dynamic-

Aging (LFU-DA), SIZE, Greedy-Dual-Size (GDS) and Greedy-Dual-Size-

Frequency (GDSF) are the most common Web caching approaches, which still

used in most of the proxy servers and software like squid software. These

conventional Web caching methods form the basis of other Web caching

algorithms [8, 14]. However, these conventional approaches still suffer from some

limitations as shown in Table 1 [9, 37].

Table 1: Conventional Web cache replacement policies

Policy Brief Description Advantage Disadvantage

LRU
The least recently used

objects are removed first.

simple and efficient with

uniform size objects, such

as the memory cache.

ignores download

latency and the size

of Web objects

LFU
The least frequently used

objects are removed first.
simplicity

ignores download

latency and size of

objects and may

store obsolete Web

objects indefinitely.

LFU-DA
Dynamic aging factor (L) is

incorporated into LFU.

� reduces cache pollution

caused by LFU.

� high byte hit ratio

may suffer from hit

ratio

SIZE
Big objects are removed

first

prefers keeping small

Web objects in the cache,

causing high cachet hit

ratio.

� stores small Web

objects even if

these object are

never accessed

again.

� low byte hit ratio.

GDS

It assigns a key value to

each cached object g as

equation below. The object

with the lowest key value is

replaced first.

()
()

()

C g
K g L

S g

= +

where C(g) is the cost of

fetching g from the server;

S(g) is the size of g; and L is

an aging factor.

� overcomes the

weakness of SIZE

policy by removing

objects which are no

longer requested by

users.

� high hit ratio

� does not take into

account the

previous

frequency of Web

objects.

� low byte hit ratio.

GDSF
It extends GDS by

integrating the frequency

factor into the key value

� takes into account the

previous frequency of

Web objects.

� very high hit ratio

� does not take into

account the

predicted accesses

� low byte hit ratio.

7 Performance Improvement of Least-Recently-

Least-Recently-Used (LRU) algorithm is one of the simplest and most common

cache replacement approaches, which removes Web objects from the cache that

have not been used for the longest period of time. In other words, LRU policy

removes the least recently accessed objects first until there is sufficient space for

the new objects. When a Web object is requested by user, the requested Web

object is fetched from a server and placed at the top of the cache stack.

Consequently, the cache stack pushes down the other objects in the stack so the

object in the bottom of the cache stack is evicted from cache. Algorithm of the

conventional LRU is shown in Fig. 1.

 Fig. 1: The algorithm of conventional LRU proxy replacement policy

The reason for the popularity of LRU in the Web proxy caching is the good

performance of LRU when requests exhibit temporal locality, i.e., the Web object

that have been requested in the recent past are likely to be requested again in the

near future. However, if many objects stored by URL in the proxy cache are not

requested again or requested after a long time, the cache usage is exploited

inappropriately due to the cache pollution with unwanted objects. This causes a

low performance of Web proxy caching.

As mentioned earlier, recency, frequency, size, cost of fetching the object and

access latency of object are important features of Web objects, which play an

essential role in making the wise decisions of Web proxy caching and replacement.

In the conventional caching policies, only one factor is considered in cache

replacement decision or few factors are combined using mathematical equation to

predict revisiting of the Web objects in the future. These conventional approaches

are not efficient enough and not adaptive to Web users' interests that change

Begin

 For each Web object g requested by user

 Begin

 If g in cache

 Begin

 Cache hit occurs

 Move g to top of the cache stack

 End

Else

 Begin
Cache miss occurs

Fetch g from origin server.

While no enough space in cache for g

 Evict q such that q object in the bottom of the cache stack

 Insert g at top of the cache stack

End

 End

End

Waleed Ali et al. 8

continuously depending on rapid changes in Web environment. Therefore,

alternative approaches are required in Web caching. Many Web cache

replacement policies have been proposed to improve the performance of Web

caching. However, it is challenging to have an omnipotent policy that performs

well in all environments or for all time due to the preference of these factors is

still based on the environments [6, 10]. Hence, there is a need for an intelligent

and adaptive approach, which can effectively incorporate these factors into Web

caching and replacement decisions.

2.4 Supervised machine learning

Machine learning involves adaptive mechanisms that enable computers to learn by

example and learn from experience like human learning from experiences. The

machine learning can be accomplished in a supervised or an unsupervised

learning. In supervised learning, the data (observations) are labeled with pre-

defined classes. It is like that a teacher gives the classes. On the other hand,

unsupervised learning means that the system acts and observes the consequences

of its actions, without referring to any predefined labels.

In this research, supervised machine learning techniques are proposed to improve

the performance of Web proxy cache replacement. Support vector machine

(SVM), naïve Bayes (NB) and decision tree(C4.5) are three popular supervised

learning algorithms, which are identified as three of the most influential

algorithms in data mining [25] and perform classifications more accurately and

faster than other algorithms in a wide range of applications [26, 30].

Since SVM is formulated as a quadratic programming problem, there is a global

optimum solution in SVM training. Besides, SVM is trained to maximize the

margin, so the generalization ability can be maximized, especially when training

data are scarce and linearly separable. In addition, SVM is robust to outliers

because the margin parameter controls the misclassification error [38]. However,

the generalization ability in SVM is still controlled by changing a kernel function

and its parameters, and the margin parameter. Moreover, SVM may consume

quite longer time compared to others in learning process, especially with large

dataset. Hence, in addition to SVM, NB and C4.5 are also suggested for

improving the performance of Web proxy cache replacement in this study. The

NB and C4.5 are two of the most widely used and practical techniques for

classification in many applications such as finance, marketing, engineering and

medicine [29-32]. In addition to the good classification accuracy in many domains,

the NB and C4.5 are efficient, easy to construct without parameters, and simple to

understand and interpret [25, 27-28, 31].

2.4.1 Support vector machine

The support vector machine (SVM) was invented by Vapnik [39]. The basic

concept of SVM is to use a high dimension space to find a liner boundary or

9 Performance Improvement of Least-Recently-

hyperplane to do binary division (classification) with two classes, positive and

negative samples. The SVM attempts to place hyperplane(solid line in Fig. 2)

between the two different classes, and orient it in such a way that the margin

(dotted lines in Fig. 2) is maximized. The hyperplane is oriented such that the

distance between the hyperplane and the nearest data point in each class is

maximal. The nearest data points are used to define the margins and are known as

support vectors (SVs)(gray circle and square in Fig. 2). The hyperplane can be

expressed as in Eq. (1)

Fig. 2: Classification of data by SVM

(.) 0, ,Nw x b w R b R+ = ∈ ∈ (1)

where the vector w defines the boundary, x is the input vector of dimension N and

b is a scalar threshold. At the margins, where the SVs are located, the Eqs.(2) and

(3) for positive class and negative class, respectively, are as follows:

(.) 1w x b+ = (2)

(.) 1w x b+ = − (3)

SVs correspond to the extremities of the data for a given class. Therefore, to

classify any data point in either positive or negative class, the following decision

Eq. (4) can be used:

() ((.))f x sign w x b= +
(4)

1x

1
i

y = +

2x

1
i

y = −

w

(.) 1w x b+ = +

(.) 1w x b+ = −

(.) 0w x b+ =

Waleed Ali et al. 10

The optimal hyperplane can be obtained as a solution to the following

optimization problem.

Minimize

21
()

2
t w w= (5)

Subject to

((.)) 1, 1,...,
i i

y w x b i l+ ≥ =
(6)

where l is the number of training sets. The solution of the constrained

optimization problem can be obtained using Eq.(7).

i i
w v x=∑ (7)

where
i

x are SVs obtained from training. Putting Eq. (7) in Eq. (4), the decision

function is obtained in Eq. (8).

1

() (.)
l

i i

i

f x sign v x x b
=

 
= + 

 
∑ (8)

However, for many real-life problems, it is not easy to find a hyperplane to

classify the data such as nonlinearly separable data. The nonlinearly separable

data is classified with the same principle of the linear case. However, the input

data is only transformed from the original space into much higher dimensional

space called the feature space. Then, a hyperplane can separate positive and

negative examples in feature space as shown in Fig. 3. Thus, the decision function

becomes as in Eq. (9).

Fig. 3: Transformation from input space to feature space

Input space Feature space

()x∅

11 Performance Improvement of Least-Recently-

The transformation from input space to feature space space is relatively

computation-intensive. Therefore, a kernel function can be used to perform this

transformation and the dot product in a single step. This helps in reducing the

computational load and at the same time retaining the effect of higher-

dimensional transformation. The kernel function (.)
i j

K x x is defined as Eq.(10).

(.) (). ()
i j i j

K x x x x= ∅ ∅ (10)

After substituting Eq. (10) in the decision function (9), the basic form of SVM is

accordingly obtained as Eq. (11).

1

() (.)
l

i i

i

f x sign v K x x b
=

 
= + 

 
∑ (11)

The parameters
i

v are used as weighting factors to determine which of the input

vectors are support vectors. Several kernel functions can be used in SVM to solve

different problems. In this study, RBF kernel given in Eq. (12) is used as kernel

function in SVM training. The parameter γ represents the width of the RBF. In

case there is an overlap between the classes with non-separable data, the range of

parameters
i

v can be limited to reduce the effect of outliers on the boundary

defined by SVs. For non-separable cases, the constraint becomes (0<
i

v <C). For

separable cases, C is infinity while for non-separable cases, it may be varied,

depending on the number of allowable errors in the trained solution: high C

permits few errors while low C allows a higher proportion of errors in the

solution.

2

(,) exp(), 0i j i jk x x x xγ γ= − − > (12)

2.4.2 Naïve Bayes classifier

Naïve Bayes(NB) is very simple Bayesian network which has constrained

structure of the graph [40]. In NB, all the attributes are assumed to be

conditionally independent given the class label. The structure of the NB is

illustrated in Fig. 4. In most of the data sets, the performance of the naïve Bayes

classifier is surprisingly good even if the independence assumption between

1

() ((). ())
l

i i

i

f x sign v x x b
=

 
= ∅ ∅ + 

 
∑ (9)

Waleed Ali et al. 12

attributes is unrealistic [40-41]. Independence between the features ignores any

correlation among them.

Fig. 4: Structure of a naïve Bayes network

NB depends on probability estimations, called a posterior probability, to assign a

class to an observed pattern. The classification can be expressed as estimating the

class posterior probabilities given a test example d as shown in formula (13). The

class with the highest probability is assigned to the example d.

 Pr(|)
j

C c d= (13)

Let 1 2 / /, ,...,
A

A A A be the set of attributes with discrete values in the data set D. Let

C be the class attribute with |C| values, 1 2 / /, ,...,
C

c c c . Given a test example

/ /1 1 / /,...,
AA

d A a A a=< = = > , where
i

a is a possible value of
i

A . The posterior

probability Pr(|)
j

C c d= can be expressed using the Bayes theorem as shown in

Eq. (14).

/ /

/ /

/ /

1 1 / /

1 1 / /

1 1 / /

Pr(,..., |)Pr()
Pr(| ,...,)

Pr(,...,)

A

A

A

A j j

j A

A

A a A a C c C c
C c A a A a

A a A a

= = = =
= = = =

= =

 / /

/ /

1 1 / /

/ /

1 1 / /

1

Pr(,..., |) Pr()

Pr(,..., |) Pr()

A

A

A j j

C

A k j

k

A a A a C c C c

A a A a C c C c
=

= = = =
=

= = = =∑

 (14)

NB assumes that all the attributes are conditionally independent given the class

j
C c= as in Eq. (15),

/ /

/ /

1 1 / /

1

Pr(,..., |) Pr(|)
A

A

A j i i j

i

A a A a C c A a C c
=

= = = = = =∏ (15)

After putting (15) in (14), the decision function is obtained as shown in Eq. (16)

C

1A
2A 3A nA

Class

Attributes

13 Performance Improvement of Least-Recently-

/ /

/ /

1
1 1 / / / /

1 1

Pr() Pr(|)

Pr(| ,...,)

Pr() Pr(|)
A

A

j i i j

i
j A AC

k i i k

k i

C c A a C c

C c A a A a

C c A a C c

=

= =

= = =

= = = =

= = =

∏

∑ ∏

 (16)

In classification tasks, we only need the numerator of Eq. (16) to decide the most

probable class for each example since the denominator is the same for each class.

Thus we can decide the most probable class for given a test example using

formula (17):

/ /

1

arg max Pr() Pr(|)
j

A

j i i j

c i

c C c A a C c
=

= = = =∏ (17)

2.4.3 Decision tree

The most well-know algorithm in the literature for building decision trees is the

C4.5 decision tree algorithm , which was proposed by Quinlan [42]. The basic

concept of the C4.5 is as follow. The tree begins with a root node that represents

the entire given dataset and it recursively splits the data into smaller subsets by

testing for a given attribute at each node. The sub-trees denote the partitions of the

original dataset that satisfy specified attribute value tests. This process typically

continues until the subsets are pure. That means all instances in the subset fall into

the same class, at which time the tree growing is terminated.

In the process of constructing the decision tree, the root node is first selected by

evaluating each attribute on the basis of an impurity function to determine how

well it alone classifies the training examples. The best attribute is selected and

used to test at the root node of the tree. A descendant of the root node is created

for each possible value of this selected attribute, and the training examples are

sorted to the appropriate descendant node. The process is then repeated using the

training examples associated with each descendant node to select the best attribute

to test at that point in the tree.

In decision tree learning, the most popular impurity functions used for attributes

selection are information gain and information gain ratio. In C4.5 algorithm, the

gain ratio is employed for better performance achievement [42].

Waleed Ali et al. 14

3 A Methodology for Improving Least-Recently-Used
Replacement Policy Based on Supervised Machine
Learning

A framework for improving Least-Recently-Used replacement (LRU) policy in

Web proxy cache replacement based on supervised machine learning classifiers is

presented in Fig. 5.

Fig. 5: A framework for improving LRU replacement policy based on supervised

machine learning classifiers

As shown in Fig. 5, the framework consists of two functional components: an

online component and an offline component. The terms online and offline refer to

interactive communications between the users and the proxy server. The offline

component does not deal with the user directly, while online connections between

the users and the proxy are established in the online component to retrieve the

requested object from the proxy cache or the origin server. The offline component

is responsible for training a machine learning classifier, while the intelligent LRU

replacement approaches based on the trained classifier are utilized to effectively manage

the Web proxy cache in the online component.

Proxy logs

file

 Training of SVM, NB

or C4.5

SVM, NB or C4.5

classifier
Actual

Requests

Cache Manager

Server

Cache Buffer

managed by intelligent

LRU

Proxy Cache

Online Offline

Dataset Preprocessing

• Trace preparation

• Dataset preparation

15 Performance Improvement of Least-Recently-

In the online component, when a user requests a Web page, the user

communicates with the proxy, which directly retrieves the requested page from

the proxy cache as shown in Fig. 5. However, sometimes the proxy cache miss

occurs if the requested object is not in the proxy cache or not fresh. In a cache

miss, the proxy server requests the object from the origin server and sends it back

to the client. A copy of the requested object is replicated into the proxy cache to

reduce the response time and the network bandwidth utilization in future requests.

In some situations, a new coming object needs to be stored into the proxy cache;

but the proxy cache is full of Web objects. In these cases, the proxy cache manger

uses the proposed intelligent LRU replacement approaches to remove the

unwanted Web objects in order to release enough space for the new coming object.

3.1 Training of supervised machine learning classifiers

The offline component is responsible for training the machine learning classifiers.

In the proxy servers, information about the behaviours of groups of users in

accessing many Web servers are recorded in files known as proxy logs files. The

proxy logs files can be obtained from proxy servers located in various

organizations or universities. The proxy logs files are considered a complete and

prior knowledge of the users’ interests and can be utilized as training data to

effectively predict the next Web objects.

As the raw proxy datasets are collected, these data must be prepared properly in

order to obtain more accurate results. Dataset pre-processing involves

manipulating the dataset into a suitable form with training of the supervised

machine learning techniques. Data pre-processing requires two steps: trace

preparation and training dataset preparation. In the trace preparation, irrelevant or

not valid requests are removed from log files such as uncacheable and dynamic

requests. On the other hand, training dataset preparation step requires extracting

the desired information from the logs proxy files, and then selecting the

input/output dataset. The important features of Web objects that indicate the

users’ interests are extracted in order to prepare the training dataset. These

features consist of URL ID, timestamp, elapsed time, size and type of Web object.

Subsequently, these features are converted to the input/output dataset or training

patterns required at the training phase. A training pattern takes the

format 1 2 3 4 5 6
, , , , , ,x x x x x x y< > .

 1
x ,..., 6

x represent the input features and y

represents the target output of the requested object. Table 2 shows the inputs and

their meanings for each training pattern.

Waleed Ali et al. 16

4 Table 2: The inputs and their meanings

Input Meaning

1
x Recency of Web object access based on backward-looking sliding window

2
x Frequency of Web object accesses

3
x Frequency of Web object accesses based on backward-looking sliding window

4
x Retrieval time of Web object in milliseconds

5
x Size of Web object in bytes

6
x Type of Web object

1
x and 3

x are extracted based on a backward-looking sliding window in a similar

manner to [8, 43] as shown in Eqs. (18) and (19). The backward-looking and

forward-looking sliding windows of a request are the time before and after when

the request was made.

(,) ,

1

,

Max SWL T if object g was requested before

x

SWL otherwise

∆

=






 (18)

1 ,
3

1

3

1 ,

x if T SWL
i

x
i

otherwise

+ ∆ ≤
−

=







(19)

where T∆ is the time in seconds since object g was last request , and SWL is

sliding window length. If object g is requested for the first time, 3
x will be set to 1.

In a similar way to Foong et al.[22], 6
x is classified into five categories: HTML

with value 1, image with value 2, audio with value 3, video with value 4,

application with value 5 and others with value 0.y is set based on the forward-

looking sliding window. The value of y will be assigned to 1 if the object is re-

requested again within the forward-looking sliding window. Otherwise, the target

output will be assigned to 0. The idea is to use information about a Web object

requested in the past to predict revisiting of such Web object within the forward-

looking sliding window.

Once the proxy dataset is prepared properly, the machine learning classifiers can

be trained depending on the finalized dataset for Web objects classification. The

training phase aims to train SVM, C4.5 and NB to predict the class of a Web

17 Performance Improvement of Least-Recently-

object requested by the user, either as object would be revisited within the

forward-looking sliding window or not.

As recommended by Hsu et al. [44], SVM is trained as follows: prepare and

normalize the dataset, consider the RBF kernel, use cross-validation to find the

best parameters C (margin softness) and γ (RBF width), use the best parameters

to train the whole training dataset, and test. In SVM training, several kernel

functions like polynomial, sigmoid and RBF can be used. However, in this study,

RBF kernel function is used since it is the most often used kernel function and can

achieve a better performance in many applications compared to other kernel

functions [44]. After training, the obtained SVM uses Eq. (11) to predict the class

of a Web objects either objects would be revisited again or not.

Regarding training of NB classifier, the NB classifier assumes that all attributes

are categorical. Therefore, the numerical attributes need to be discretized into an

interval in order to train or construct the NB classifier. In this study, the dataset is

discretized by Minimum Description Length (MDL) given by Fayyad and Irani

[45], and then the NB classifier is constructed depending on the finalized proxy

dataset in order to classify Web objects as objects would be revisited again or not.

In the training phase of NB classifier, it is only required to estimate the prior

probabilities Pr()jC c= and the conditional probabilities Pr(|)i i jA a C c= = from

the proxy training dataset using Eqs. (20) and (21). Then, the NB classifier can

predict class of a Web object using the formula (17), as explained in Section 2.4.2.

#
Pr()

#

j

j

examples of class c
C c

total examples
= = (20)

#
Pr(|)

#

i i j

i i j

j

examples with A a and class c
A a C c

examples of class c

=
= = = (21)

In C4.5 training, the decision tree is constructed in a top-down recursive manner.

Initially, all the training patterns are at the root. Then, the training patterns are

partitioned recursively based on attributes selected based on an impurity function.

Partitioning continues until all patterns for a given node belong to the same class.

After the decision tree is trained, a Web object is classified depending on

traversing the tree top-down according to the attribute values of the given test

pattern until reaching a leaf node. The leaf node represents the predicted class,

either as object that would be re-visited (class 1) or not (class 0). In addition,

probabilities of classes can be obtained by computing the relative frequency of

each class in a leaf. As can be observed from Fig. 6, at the end of each leaf, the

numbers in parentheses show the number of examples in this leaf. If one or more

leaves were not pure, i.e., not all of the same class, the number of misclassified

examples would also be given after a slash.

Waleed Ali et al. 18

Fig. 6: An example of building C4.5 decision tree for Web proxy dataset

3.2 The proposed intelligent LRU replacement approaches
based on machine learning classifiers

LRU policy is the most common proxy cache replacement policy among all the

Web proxy caching algorithms [2-3, 8, 14]. However, LRU policy suffers from

cold cache pollution, which means that unpopular objects remain in the cache for

a long time. In other words, in LRU, a new object is inserted at the top of the

cache stack. If the object is not requested again, it will take some time to be

moved down to the bottom of the stack before removing it from the cache.

In order to reduce the cache pollution in LRU, the trained SVM, NB and C4.5

classifiers are combined with the traditional LRU to form three new intelligent

LRU approaches known as SVM-LRU, NB-LRU and C4.5-LRU.

The proposed intelligent LRU approaches work as follows. When Web object g is

requested by the user, the trained SVM, NB or C4.5 classifier predicts whether the

class of that object would be revisited again or not. If object g is classified as an

object would be re-visited again, object g is placed at the top of the cache stack.

Otherwise, object g is placed in the middle of the cache stack used. As a result,

the intelligent LRU approaches can efficiently remove unwanted objects at an

early stage to make space for new Web objects.

By using this mechanism, cache pollution can be reduced and the available cache

space can be utilized effectively. Consequently, the hit ratio and byte hit ratio can

19 Performance Improvement of Least-Recently-

be greatly improved by using the proposed intelligent LRU approaches. The

algorithm of the proposed intelligent LRU is shown in Fig. 7.

Fig. 7: The algorithm of intelligent LRU approaches

In order to understand the benefits of the proposed intelligent LRU, Fig. 8

illustrates an example of alleviating LRU cache pollution by using the intelligent

LRU. Suppose that sequence of Web objects with fixed size is A B C D E F G B

H C D requested by the users from left to right. The caching and removing of

these objects using LRU policy and the proposed intelligent LRU are illustrated in

Fig. 8.

Begin

 For each Web object g requested by user

 Begin

 If g in cache

 Begin

 Cache hit occurs

 Update information of g

// classify g by SVM, NB or C4.5 classifier

class of g = classifier.classify (common features)

 If class of g =1 // g classified as object will be revisited later

 Move g to top of the cache stack

 Else
 Move g to the middle of the cache stack used

 End

Else

 Begin
Cache miss occurs

Fetch g from origin server.

While no enough space in cache for g

 Begin
 Evict q such that q object in the bottom of the cache stack

 End
 // classify g by SVM, NB or C4.5 classifier

 class of g = classifier.classify (common features)

 If class of g =1 // g classified as object will be revisited later

 Insert g at top of the cache stack

Else
 Insert g in the middle of the cache stack used

 End

 End

End

Waleed Ali et al. 20

Fig. 8: Example of alleviating the cache pollution by the proposed intelligent

LRU

21 Performance Improvement of Least-Recently-

From Fig. 8, it can be observed that objects A, E, F, G, and H are visited only

once, while the objects B, C and D are visited twice by user. In the traditional

LRU policy, all Web objects are initially stored at the top of the cache, so these

objects need longer time to move down to the bottom of the cache (where least

recently used objects are stored) for removal from the cache.

By contrast, the proposed intelligent LRU (see Fig. 8) stores the preferred

objects B, C and D at the top of the cache if the machine learning classifier

predicts correctly revisiting of B, C and D again. On the other hand, if objects A,

E, F, and G are properly classified as objects would not be re-visited soon, then

these objects will be stored in the middle of the proxy cache used. Therefore,

these objects A, E, F and G move down to the bottom of the cache shortly. Hence,

the un-preferred objects are removed in a short time by the intelligent LRU to

make space for new Web objects.

From the above example, it can be noted that the proposed intelligent LRU

approaches efficiently remove unwanted objects early to make space for new Web

objects. Therefore, the cache pollution is lessened and the available cache space is

exploited efficiently. Moreover, the hit ratio and byte hit ratio can be improved

successfully.

4 Performance Evaluation and Discussion

4.1 Raw data collection and pre-processing

The proxy datasets or the proxy logs files were obtained from five proxy servers

located in the United States from the IRCache network and covered fifteen days

[46]. Four proxy datasets (BO2, NY, UC and SV) were collected between 21
st

August and 4
th

 September, 2010, while SD proxy dataset was collected between

21
st

and 28
th

 August, 2010. In this study, the proxy logs files of 21
st
 August, 2010

were used in the training phase, while the proxy logs files of the following days

were used in the simulation to evaluate the proposed intelligent Web proxy cache

replacement approaches against existing works (see Table 3).

Each line in the proxy logs file represents access proxy log entry, which consists

of the ten following fields: timestamp, elapsed time, client address, log tag and

HTTP code, size request method, URL, user identification, hierarchy data and

hostname and content type.

As the raw datasets were collected, some data pre-processing steps were

performed to produce results reflecting the performance of the algorithms. The

dataset pre-processing was achieved in three steps:

Waleed Ali et al. 22

Table 3: Proxy datasets used for evaluating the proposed intelligent caching

approaches

Proxy Dataset
Proxy Server

Name
Location

Duration of

Collection

UC uc.us.ircache.net Urbana-Champaign, Illinois 21/8 – 4/9/2010

BO2 bo.us.ircache.net Boulder, Colorado 21/8 – 4/9/2010

SV sv.us.ircache.net
Silicon Valley, California

(FIX-West)
21/8 – 4/9/2010

SD sd.us.ircache.net San Diego, California 21/8 – 28/8/2010

NY ny.us.ircache.net New York, NY 21/8 – 4/9/2010

Parsing: This involves identifying the boundaries between successive records in

log files as well as the distinct fields within each record.

Filtering: This includes elimination of irrelevant entries such as un-cacheable

requests (i.e., queries with a question mark in the URLs and cgi-bin requests) and

entries with unsuccessful HTTP status codes. We only consider successful entries

with 200 status codes.

Finalizing: This involves removing unnecessary fields. Moreover, each unique

URL is converted to a unique integer identifier for reducing time of simulation.

4.2 Raw data collection and pre-processing

4.2.1 Training phase

Since the trace and logs files were prepared as mentioned earlier; the training

datasets were prepared as explained in Section 3.1. Romano and ElAarag [8]

recommended one day as enough time for training, especially with a dataset

preparation based on SWL. Depending on the recommendations of Romano and

ElAarag [8], the proxy log files covering a single day, 21
st
 August 2010, were

used in this study for training the supervised machine learning classifiers.

Furthermore, Romano and ElAarag [8] have shown the effect of SWL on the

performance of the BPNN classifier. The BPNNs were trained by Romano and

ElAarag [8] with various values of SWL between 30 minutes and two hours. They

concluded that a smaller SWL decreases the training performance. However, a

decreasing SWL can increase the training performance when using large training

datasets. Thus, Romano and ElAarag [8] considered that SWL with 30 minutes

are enough periods on a large dataset. Based on this assumption, in this study,

SWL was set to 30 minutes during the training datasets preparation for all

intelligent classifiers, since our datasets were large as well.

23 Performance Improvement of Least-Recently-

Once the datasets were properly prepared, the machine learning techniques were

implemented using MATLAB and WEKA. The SVM model was trained using the

libsvm library [47]. The generalization capability of SVM is controlled through a

few parameters such as the term C and the kernel parameter like RBF widthγ . To

decide which values to choose for parameter C andγ , a grid search algorithm was

implemented as suggested by Hsu et al. [44]. The parameters that obtain the best

accuracy using a 10-fold cross validation on the training dataset were retained.

Next, a SVM model was trained depending on the optimal parameters to predict

and classify the Web objects whether the objects would be re-visited or not.

Regarding C4.5 training, a J48 learning algorithm was used, which is a Java re-

implementation of C4.5 and provided with WEKA tool. The default values of

parameters and settings were used as determined in WEKA. In NB training, the

datasets were discretized using a MDL method suggested by Fayyad and Irani

[45] with default setup in WEKA. Once the training dataset was prepared and

discretized, NB was trained using WEKA as well. In WEKA, a NB classifier is

available in the Java class “weka.classifiers.bayes.NaiveBayes”.

4.2.2 Classifiers evaluation

The main measure for evaluating a classifier is the correct classification rate

(CCR), which is the number of correctly classified examples in the dataset divided

by the total number of examples in the dataset. In some situations, CCR alone is

insufficient for measuring the performance of a classifier, e.g., when the data is

imbalanced. Therefore, some accurate measures of the classification evaluation

are extracted from a confusion matrix shown in Table 4.

Table 4: Confusion matrix for a two-class problem
 Predicted Positive Predicted Negative

Actual Positive True Positive (TP) False Negative (FN)

Actual Negative False Positive (FP) True Negative (TN)

Table 5: The measures used for evaluating performance of machine learning

classifiers

Measure name Formula

Correct Classification Rate
TP TN

CCR
TP FP FN TN

+
=

+ + +
 (%)

True Positive Rate
TP

TPR
TP FN

=
+

 (%)

True Negative Rate
TN

TNR
TN FP

=
+

 (%)

Geometric Mean *meanG TPR TNR= (%)

This study considers that the Web object belongs to the positive class (minority

class) if the object is re-requested again. Otherwise, the Web object belongs to the

negative class (majority class). It is observed from proxy logs files used in this

Waleed Ali et al. 24

study that the training datasets are imbalanced since many Web objects are visited

just one time by the users. Therefore, like several research works [23, 48-49],

CCR, true positive rate (TPR) or sensitivity, true negative rate (TNR) or

specificity, and geometric mean (GM) are used in this study to evaluate the

classifiers performance as shown in Table 5.

In this paper, both hold-out validation and n-fold cross validation were used in

evaluating the supervised machine learning algorithms. In hold-out validation,

each proxy dataset was randomly divided into training data (70%) and testing data

(30%). In addition, 10-fold cross validation was used in evaluating the supervised

machine learning algorithms since it is commonly used by many researchers.

In order to benchmark the SVM, NB and C4.5, they were compared to both back-

propagation neural network (BPNN) and adaptive neuro-fuzzy inference system

(ANFIS). This is due to the fact that BPNN and ANFIS have good performance in

Web caching area in pervious works [8-9, 14-15, 17-18, 37]. In addition, the SVM,

NB and C4.5 were also compared with BPNN as used in the existing caching

approach NNPCR-2 [8].

Tables 6 and 7 show comparisons between the performance measures of SVM,

NB, C4.5, BPNN, ANFIS and NNPCR-2 for the five proxy datasets in testing

phase using hold-out and 10-fold cross-validations. In Tables 6 and 7, the best and

the worst values of the measures are highlighted in bold font and underline font,

respectively. In hold-out validation shown in Table 6, SVM, NB and C4.5

achieved the averages of CCR around 94.33%, 94.43% and 94.55%, while BPNN,

ANFIS, and NNPCR-2 achieved the averages of CCR around 87.39%, 93.93%

and 86.37% respectively. In 10-fold cross-validation shown in Table 7, SVM, NB

and C4.5 achieved the averages of CCR around 94.53%, 94.59% and 94.79%

respectively, while BPNN and ANFIS, and NNPCR-2 achieved the averages of

CCR around 87.79%, 93.72% and 85.53% respectively. As can be seen from

Tables 6 and 7, SVM, NB, C4.5 and ANFIS produced competitive performances

in terms of CCR. However, it is obvious that SVM, NB and C4.5 achieved higher

CCR when compared to the CCR of BPNN and NNPCR-2. This was due to the

fact that BPNN training could be trapped in a local minimum, while there is a

global optimum solution in SVM training.

In terms of GM, Tables 6 and 7 clearly show that SVM, NB, C4.5 performed well

for the five proxy datasets. In particular, the SVM achieved the best TPR and GM

for all datasets. On the other hand, NNPCR-2 and BPNN achieved the worst TPR

and GM for all datasets. This is because that BPNN and NNPCR-2 tended to

classify most of the patterns as the majority class, i.e, the negative class. This led

to the highest TNR of BPNN and NNPCR-2. On the other hand, SVM was trained

with a penalty (weight) option, which was useful in dealing with imbalanced data.

A higher weight was set to a positive class, while less weight was set to a negative

class. Thus, SVM could predict the positive or minority class, which includes the

objects that will be re-visited in the near future. Moreover, NB and C4.5 were less

25 Performance Improvement of Least-Recently-

susceptible to imbalanced data when compared to BPNN and ANFIS, as can be

observed from Tables 6 and 7. This indicated that SVM, NB and C4.5 had better

GM and TPR when compared to others.

Table 6: Performance measures of machine learning algorithms in hold-out

validation

 BO2 NY UC SV SD Average

SVM

CCR 95.30 91.19 95.54 93.76 95.84 94.326

TPR 86.41 91.95 92.76 91.16 89.17 90.29

TNR 96.16 90.95 95.93 94.36 96.83 94.846

GM

91.15

91.45

94.33

92.97

92.92

92.564

NB

CCR 95.34 91.35 95.74 93.78 95.93 94.428

TPR 82.14 88.22 86.9 82.39 88.94 85.718

TNR 96.61 92.34 96.95 96.95 96.98 95.966

GM

89.08

90.26

91.79

89.38

92.87

90.676

C4.5

CCR 95.68 91.26 95.88 94.02 95.91 94.55

TPR 68.54 89.36 78.27 87.87 83.81 81.57

TNR 98.30 91.86 98.29 95.74 97.72 96.382

GM

82.08

90.60

87.71

91.72

90.50

88.522

BPNN

CCR 94.08 75.90 90.36 87.95 88.65 87.388

TPR 32.62 0.00 20.07 45.69 12.77 22.23

TNR 100.00 100.00 99.99 99.73 99.98 99.94

GM

57.12

0.00

44.79

67.50

35.73

41.028

ANFIS

CCR 95.30 91.23 94.75 92.94 95.43 93.93

TPR 61.55 84.94 62.46 76.53 74.77 72.05

TNR 98.56 93.22 99.17 97.52 98.52 97.398

GM

77.89

88.98

78.71

86.39

85.83

83.56

NNPCR-2

CCR 91.41 76.25 90.05 87.11 87.01 86.366

TPR 7.77 2.49 17.44 40.92 0 13.724

TNR 99.48 99.67 100 99.99 100 99.828

GM 27.8 15.74 41.76 63.97 0 29.854

Waleed Ali et al. 26

Table 7: Performance measures of machine learning algorithms in 10-fold cross

validation

 BO2 NY UC SV SD Average

SVM

CCR 95.5 91.7 95.58 93.88 95.97 94.526

TPR 87.61 92.57 92.62 92.02 89.28 90.82

TNR 96.27 91.43 95.98 94.39 96.95 95.004

GM

91.82

92

94.29

93.2

93.04

92.87

NB

CCR 95.57 91.79 95.71 93.86 96 94.586

TPR 83.46 88.48 87.73 82.72 88.83 86.244

TNR 96.76 92.84 96.79 96.89 97.06 96.068

GM

89.84

90.63

92.15

89.52

92.85

90.998

C4.5

CCR 95.6 92.19 96.03 94.08 96.03 94.786

TPR 67.09 83.5 80.7 86.7 84.23 80.444

TNR 98.38 94.95 98.1 96.09 97.77 97.058

GM

81.2

89.03

88.97

91.27

90.75

88.244

BPNN

CCR 92.21 80.41 90.15 88.06 88.11 87.788

TPR 12.64 21.19 18.23 45.73 7.91 21.14

TNR 99.97 99.25 99.84 99.54 99.92 99.704

GM

26.31

45.5

35.61

64.32

22.47

38.842

ANFIS

CCR 94.67 91.11 95.13 92.38 95.32 93.722

TPR 56.9 84.16 65.26 74.55 73.68 70.91

TNR 98.37 93.32 99.16 97.22 98.51 97.316

GM

74.81

88.62

80.44

85.13

85.19

82.838

NNPCR-2

CCR 91.28 76.42 89.34 83.32 87.29 85.53

TPR 2.36 3.41 10.74 22.43 1.35 8.058

TNR 99.95 99.65 99.92 99.84 99.94 99.86

GM 6.87 16.82 27.97 46.44 6.33 20.886

In addition to above measures, the computational times for training SVM, NB,

C4.5, BPNN, ANFIS and NNPCR-2 were calculated using the same computer

(PC with processor Intel(R), Core(TM)2 Duo CPU E4500 @2.20GHz,ii, and 2

GB RAM) for the five datasets, as shown in Tables 8 and 9. As expected, NB and

C4.5 were faster when compared to the other intelligent techniques used. This is

mainly due to nature of the training algorithm of NB and C4.5. NB was the fastest

among all algorithms, while SVM was slower than NB and C4.5 but faster than

BPNN, NNPCR-2 and ANFIS for all datasets. ANFIS was the slowest among

other algorithms since many antecedent (nonlinear) parameters and consequent

(linear) parameters required to be optimized in ANFIS training.

27 Performance Improvement of Least-Recently-

Table 8: The computational time for training the supervised machine learning

algorithms in hold-out validation

Dataset
Training Time(seconds)

SVM NB C4.5 BPNN ANFIS NNPCR-2

BO2 9.11 0.12 0.36 146.59 41436.63 69.50

NY 69.41 0.35 0.85 316.34 89057.09 153.62

UC 280.30 1.59 3.36 701.18 202033.64 342.61

SV 52.20 0.33 0.69 303.40 85753.53 153.30

SD 291.51 1.32 2.90 693.36 205294.87 345.068

Average 140.506 0.742 1.632 432.174 124715.2 212.8196

Table 9: The computational time for training supervised machine learning

algorithms in 10-fold cross validation

Dataset
Training Time(seconds)

SVM NB C4.5 BPNN ANFIS NNPCR-2

BO2 14.55 0.14 0.26 188.26 65507.18 79.75

NY 126.92 0.51 1.29 385.85 120657.97 167.44

UC 500.15 1.96 4.32 865.07 284267.57 376.03

SV 100.02 0.51 1.05 375.62 115745.14 163.67

SD 436.76 1.84 4.55 851.26 281538.43 764.33

Average 235.68 0.992 2.294 533.212 173543.3 310.244

4.3 Evaluation of intelligent LRU approaches

4.3.1 Web proxy cache simulation

The simulator WebTraff [16] was modified to meet the proposed LRU caching

approaches. WebTraff is a trace-driven simulator for evaluating different

replacement policies such as LRU, LFU, GDS, FIFO, and RAND policies. The

trained classifiers were integrated with WebTraff to simulate the proposed

intelligent LRU Web proxy cache replacement approaches. The WebTraff

simulator receives the prepared log proxy file as input and generates files

containing performance measures as outputs. In addition, the maximum cache size

should be determined in the simulator. The simulator starts automatically with a

cache size of 1 MB, and scales it up by a factor of two for each run until the

maximum desired cache size is reached. The output reported by the simulator

shows cache size (in MB), hit ratio, and byte hit ratio for each cache size

simulated.

Waleed Ali et al. 28

4.3.2 Performance Measures

The hit ratio (HR) and byte hit ratio (BHR) are the most widely used metrics in

evaluating the performance of Web caching [8-10, 14]. HR is defined as the

percentage of requests that can be satisfied by the cache. Note that HR only

indicates how many requests hit and does not indicate how much bandwidth can

be saved. BHR is the number of bytes satisfied from the cache as a fraction of the

total bytes requested by the user. BHR represents the saved network bandwidth

achieved by caching approach.

It is important to note that HR and BHR work in somewhat opposite ways. It is

very difficult for one strategy to achieve the best performance for both metrics [4,

8, 50-51]. This is due to the fact that the strategies that increase HR typically give

preference to small objects, but these strategies tend to decrease BHR by giving

less consideration to larger objects. On the contrary, the strategies that do not give

preference to small objects tend to increase BHR at the expense of HR.

4.3.3 Performance measures of infinite cache

An infinite cache is a cache with enough space to store all requested objects

without the need to replace any object. The infinite cache size is defined as the

total size of all unique requests. Therefore, it is unnecessary to consider any

replacement policy for an infinite cache. In an infinite cache, HR and BHR reach

their maximum values.

In reality, the caches cannot be designed as infinite. A replacement policy is

needed when the cache is full, and this has a great effect on the performance of

Web caching systems. However, in our simulation the infinite cache is required to

determine the maximum cache size in the simulator, which represents the stop

point during the simulation. Table 10 shows some statistical information for the

maximum HR and BHR for the five proxy datasets used in the simulation.

Table 10: Statistics for different proxy datasets used in simulation

 BO2 NY UC SV SD

#Total requests 1210693 3248452 8891764 2496001 29871204

#Cacheable

requests
594989 1518232 2827904 1194098 6059349

#Cacheable bytes 23204930341 68402036319 469362584083 48043794224 230326816876

#Unique requests 530192 1144885 2402406 1012355 5284441

Total size of unique

requests (bytes)
18690093450 56147903761 156538171752 38364029432 190539902251

#Hits 64797 373347 425498 181743 774908

#Byte Hits 4514836891 12254132558 312824412331 9679764792 39786914625

Max HR(%) 10.89 24.59 15.05 15.22 12.79

Max BHR(%) 19.46 17.91 66.65 20.15 17.27

29 Performance Improvement of Least-Recently-

4.3.4 Impact of cache size on performance measures

By using the WebTraff simulator, the proposed SVM-LRU, NB-LRU and C4.5-

LRU approaches were compared with the conventional LRU algorithm across the

five proxy datasets: BO2, NY, UC, SV, and SD. For each dataset, the Web proxy

caching algorithms were simulated with varying limits of the cache size starting at

1 MB to 32 GB in order to determine the impact of cache size on the performance

measures. The simulation was stopped at 32 GB since the performances of all

algorithms became stable and close to the maximum level achieved for a cache of

infinite size.

Figs. 9 and 10 show the HR and BHR of different policies for the five proxy

datasets with varying cache sizes. As can be seen in Figs. 9 and 10, when the

cache size increased, the HR and BHR also provided a boost for all algorithms.

However, the percentage of increase was reduced when the cache size increased.

When the cache size was close to the size of the infinite cache, the performance

became stable and close to its maximum level. On the contrary, when the cache

size was small, the replacement of objects was frequently required. Hence, the

effect of the performance of replacement policy was clearly noted.

As can be observed from Figs. 9 and 10, SVM-LRU, NB-LRU and C4.5-LRU

produced better performances in terms of HR and BHR when compared to the

conventional LRU, especially with small sizes of cache. This was mainly due to

the capability of intelligent LRU approaches for storing the preferred objects for

longer time. Depending on classification decisions, the preferred objects were

placed at the top of cache stack, so these objects took longer time to move down

to the bottom of the cache stack where they would be removed from the cache. On

the other hand, the unwanted objects were removed from the proxy cache at

earlier stage. This eventually reduced the cache pollution. Consequently, the

performance in terms of HR and BHR of LRU was improved by using SVM-LRU,

NB-LRU and C4.5-LRU.

For comparison of intelligent LRU approaches with each other, SVM-LRU, NB-

LRU and C4.5-LRU achieved competitive HR in the different cache sizes across

the five proxy datasets, as can be seen from Fig. 9. This was due to the equivalent

capability of intelligent classifiers to predict the classes of objects, whether

objects would be re-visited or not. In general, C4.5-LRU and SVM-LRU achieved

slightly higher HR when compared to NB-LRU. In terms of BHR, Fig. 10 shows

that SVM-LRU and NB-LRU achieved better BHR when compared to C4.5-LRU

in different proxy cache sizes for most the proxy datasets.

It is important to note that the performance of SVM, NB and C4.5 classifiers were

equivalent in their ability to predict the classes of objects at training phase.

However, the proposed intelligent LRU approaches did not necessarily perform

the same performances at the simulation phase. This was due influence of the size

factor of the objects classified by the classifiers into the cache replacement

decisions and the cache performance, especially the performance in terms of BHR.

Waleed Ali et al. 30

Furthermore, the performance in terms of HR and BHR could be influenced by

changing the sizes of the proxy cache between 1 MB and 32 GB.

In order to clarify the benefits of the intelligent LRU approaches, the

improvement ratio (IR) of the performance in terms of HR and BHR in each

particular cache size can be calculated using Eq. (22).

()
100 (%)

PM CM
IR

CM

−
= × (22)

where IR is the percent of improvement in terms of HR or BHR achieved by the

proposed method (PM) over the conventional method (CM). CM refers the

performance in terms of HR or BHR of the conventional LRU. PM represents the

performance in terms of HR or BHR of the proposed intelligent LRU: SVM-LRU,

NB-LRU and C4.5-LRU.

The average IRs of the performances in terms of HR and BHR of the intelligent

LRU approaches for the five proxy datasets in each particular cache are concluded

and summarized in Table 11. In Table 11 , the highest and the lowest values of the

average IRs are highlighted in bold and underline fonts, respectively.

Table 11: The average IRs (%) achieved by intelligent LRU approaches over

conventional LRU method

Cache Size

(MB)

Average IR of

SVM-LRU

Over LRU (%)

 Average IR of NB-

LRU

Over LRU (%)

 Average IR of

C4.5-LRU

Over LRU (%)

HR BHR HR BHR HR BHR

1 30.15 20.84 32.596 22.966 31.046 20.84

2 23.26 27.05 23.326 57.776 24.14 28.408

4 13.988 29.846 11.722 69.564 15.43 28.118

8 12.318 24.208 12.078 33.312 14.648 25.946

16 9.692 17.58 10.05 21.468 11.452 20.216

32 8.294 14.44 8.408 14.604 9.852 15.832

64 10.408 32.434 11.244 23.454 11.904 22.802

128 5.08 15.054 4.736 10.318 6.568 10.336

256 4.974 7.596 4.174 6.188 6.222 6.938

512 5.804 5.316 5.206 5.066 6.878 5.276

1024 5.65 2.874 5.142 2.898 6.588 2.932

2048 4.422 0.794 3.846 0.794 5.224 1.07

4096 2.87 0.81 2.426 1.104 3.376 0.81

8192 1.422 0.266 1.186 0.25 1.698 0.284

16384 0.718 0.204 0.548 0.2 0.872 0.206

32768 0.38 0.124 0.324 0.112 0.464 0.124

31 Performance Improvement of Least-Recently-

The results in Table 11 show that the average IRs of HR achieved by SVM-LRU,

NB-LRU and C4.5-LRU over LRU increased by 30.15%, 32.60% and 31.05%,

respectively. In terms of the BHR, the average IRs achieved by SVM-LRU, NB-

LRU and C4.5-LRU over LRU increased by 32.43%, 69.56% and 28.41%,

respectively. From Figs. 9 and 10, and Table 11, it can be concluded that the

proposed SVM-LRU, NB-LRU and C4.5-LRU significantly improved the

performance of the conventional LRU method across the five proxy datasets.

Furthermore, C4.5-LRU and SVM-LRU achieved slightly higher HR compared

to HR of NB-LRU, while NB-LRU and SVM-LRU achieved better BHR

compared to BHR of C4.5-LRU for most of the proxy datasets. This means

SVM-LRU performed well in both HR and BHR.

Waleed Ali et al. 32

H
it

 R
a

t
io

(%
)

Cache Size(MB)

Hit Ratio for BO2 Dataset
LRU

SVM-LRU

NB-LRU

C4.5-LRU

H

it
 R

a
t
io

(%
)

Cache Size(MB)

Hit Ratio for NY Dataset
LRU

SVM-LRU

NB-LRU

C4.5-LRU

H
it

 R
a

t
io

(%
)

Cache Size(MB)

Hit Ratio for UC Dataset
LRU

SVM-LRU

NB-LRU

C4.5-LRU

H
it

 R
a

t
io

(%
)

Cache Size(MB)

Hit Ratio for SV Dataset
LRU

SVM-LRU

NB-LRU

C4.5-LRU

H
it

 R
a

ti
o

(%
)

Cache Size(MB)

Hit Ratio for SD Dataset
LRU

SVM-LRU

NB-LRU

C4.5-LRU

Fig. 9: Comparison of hit ratio between intelligent LRU approaches and LRU

33 Performance Improvement of Least-Recently-

B
y

t
e

 H
it

 R
a

t
io

(%
)

Cache Size(MB)

Byte Hit Ratio for BO2 Dataset

LRU

SVM-LRU

NB-LRU

C4.5-LRU

B

y
t
e

 H
it

 R
a

t
io

(%
)

Cache Size(MB)

Byte Hit Ratio for NY Dataset

LRU

SVM-LRU

NB-LRU

C4.5-LRU

B
y

t
e

 H
it

 R
a

t
io

(
%

)

Cache Size(MB)

Byte Hit Ratio for UC Dataset
LRU

SVM-LRU

NB-LRU

C4.5-LRU

B
y
t
e

 H
it

 R
a

t
io

(%
)

Cache Size(MB)

Byte Hit Ratio for SV Dataset

LRU

SVM-LRU

NB-LRU

C4.5-LRU

B
yt

e
 H

it
 R

at
io

(%
)

Cache Size(MB)

Byte Hit Ratio for SD DatasetLRU

SVM-LRU

NB-LRU

C4.5-LRU

Fig. 10: Comparison of byte hit ratio between intelligent LRU approaches and

LRU

Waleed Ali et al. 34

5 Conclusion and Future Works

In order to improve the performance of Web proxy caching, this paper presented a

framework for improving the conventional LRU replacement policy based on

supervised machine learning classifiers. The framework consisted of two

functional components: online and offline components. In the offline component,

SVM, NB and C4.5 were intelligently trained from proxy logs files to classify the

contents of Web proxy cache. In the online component, the trained SVM, NB and

C4.5 classifiers were effectively utilized to improve the performance of the

conventional LRU policy, which widely used in Web proxy cache replacement. In

particular, the conventional LRU technique was extended by efficiently

integrating the classification decisions made by the trained SVM, NB and C4.5

classifiers into cache replacement decisions to obtain more efficient and

intelligent SVM-LRU, NB-LRU and C4.5-LRU approaches. For testing and

evaluating the proposed proxy caching methods, the proxy logs files were

obtained from several proxy servers located around the United States of the

IRCache network, which are the most common proxy datasets used in the research

of Web proxy caching. The experimental results showed that SVM, NB and C4.5

achieved a better accuracy and a much faster than BPNN and ANFIS.

Furthermore, the proposed intelligent LRU approaches were evaluated by trace-

driven simulation and compared with the conventional LRU policy. The

simulation results revealed that the proposed intelligent LRU approaches

considerably improved the performance in terms of hit ratio and byte hit ratio of

the conventional LRU on a range of datasets.

There are some limitations in this study. One of the limitations is that the

classifiers in the proposed intelligent LRU approaches were trained once and then

were used to predict the classes of Web object over the next one or two weeks. A

regular retraining of classifiers would ensure that the proposed intelligent LRU

approaches become more efficient and adaptive. Another limitation is the

preparation of the target outputs in training phase that required extra

computational overhead when looking for the future requests. Therefore,

unsupervised machine learning algorithms can be used for enhancing the

performance of Web caching policies since the unsupervised algorithms do not

need any preparation for the target outputs. Furthermore, other intelligent

classifiers can be also utilized to improve both the hit ratio and the byte hit ratio of

traditional Web caching policies.

ACKNOWLEDGEMENTS.

This work is supported by Ministry of Higher Education (MOHE) and Universiti

Teknologi Malaysia (UTM) under Post-doctoral Fellowship Scheme and Research

University Grant (VOT Q.J130000.2528.03H72). The authors would like to thank

the Research Management Center (RMC) for the research activities and Soft

Computing Research Group (SCRG) for their support and incisive comments in

making this study a success. The authors are also grateful to the National

35 Performance Improvement of Least-Recently-

Laboratory of Applied Network Research (NLANR), which is located in United

States, for providing us with access to traces and proxy logs files.

References

[1] C. Kumar, and J.B. Norris, "A new approach for a proxy-level web caching

mechanism", Decision Support Systems, Vol. 46, No. 1,

(2008), pp. 52-60.

[2] C. Kumar, “Performance evaluation for implementations of a network of

proxy caches", Decision Support Systems, Vol. 46, No. 2, (2009), pp. 492-

500.

[3] C. C. Kaya, G. Zhang, Y. Tan and V. S. Mookerjee, "An admission-control

technique for delay reduction in proxy caching", Decision Support Systems,

Vol. 46, No. 2, (2009),pp. 594-603.

[4] H. ElAarag, "A Quantitative Study of Web Cache Replacement Strategies

Using Simulation", in Web Proxy Cache Replacement Strategies, Springer,

(2013),p p. 17-60.

[5] O. hapelle, V. Vapnik, O. Bousquet and S. Mukherjee, "Choosing multiple

parameters for support vector machines", Machine Learning, Vol. 46, No.(1-

3),(2002), pp. 131-159.

[6] H.T. Chen, "Pre-fetching and Re-fetching in Web caching systems:

Algorithms and Simulation", TRENT UNIVESITY, Peterborough, Ontario,

Canada, (2008).

[7] T. Chen, "Obtaining the optimal cache document replacement policy for the

caching system of an EC website", European Journal of Operational

Research, Vol. 181, No. 2, (2007), pp. 828-841.

[8] S. Romano and H. ElAarag, "A neural network proxy cache replacement

strategy and its implementation in the Squid proxy server", Neural

Computing & Applications, Vol. 20, No. 1, (2011), pp. 59-78.

[9] T. Koskela, J. Heikkonen and K. Kaski, "Web cache optimization with

nonlinear model using object features", Computer Networks, Vol. 43, No. 6,

(2003), pp. 805-817.

[10] W. Kin-Yeung, "Web cache replacement policies: a pragmatic approach",

Network, IEEE, Vol. 20, No. 1, (2006), pp. 28-34.

[11] S. Podlipnig and L. Böszörmenyi, "A survey of Web cache replacement

strategies", ACM Comput. Surv., Vol. 35, No. 4, (2003), pp. 374-398.

[12] A. Vakali, "Evolutionary Techniques for Web Caching", Distrib. Parallel

Databases, Vol. 11, No. 1, (2002), pp. 93-116.

Waleed Ali et al. 36

[13] R. Ayani, T. Yong Meng, and N. Yean Seen, "Cache pollution in Web proxy

servers", Proceedings in International Symposium in Parallel and

Distributed Processing, (2003).

[14] J. Cobb and H. ElAarag, "Web proxy cache replacement scheme based on

back-propagation neural network", Journal of Systems and Software, Vol. 81,

No. 9, (2008), pp. 1539-1558.

[15] W. Ali Ahmed, and S.M. Shamsuddin, "Neuro-fuzzy system in partitioned

client-side Web cache", Expert Systems with Applications, Vol. 38, No. 12,

(2011), pp. 14715-14725.

[16] N. Markatchev, and C. Williamson, "WebTraff: A GUI for Web Proxy

Cache Workload Modeling and Analysis", in Proceedings of the 10th IEEE

International Symposium on Modeling, Analysis, and Simulation of

Computer and Telecommunications Systems, IEEE Computer Society,

(2002), pp. 356.

[17] W. Ali, and S. Shamsuddin, "Intelligent Client-Side Web Caching Scheme

Based on Least Recently Used Algorithm and Neuro-Fuzzy System", in

Advances in Neural Networks , Springer Berlin / Heidelberg , (2009), pp.

70-79.

[18] S. Sulaiman, S. M. Shamsuddin, F. Forkan and A. Abraham, "Intelligent

Web Caching Using Neurocomputing and Particle Swarm Optimization

Algorithm", Proceeding in Second Asia International Conference on

Modeling & Simulation (AICMS 08), (2008).

[19] M.C. Calzaross and G. Vall, "A Fuzzy Algorithm for Web Caching",

Simulation Series Journal, Vol. 35, No. 4, (2003), pp. 630-636.

[20] K. Tirdad, F. Pakzad and A. Abhari, "Cache replacement solutions by

evolutionary computing technique", in Proceedings of the 2009 Spring

Simulation Multiconference Society for Computer Simulation: San Diego,

California, (2009), pp. 1-4.

[21] C. Yan, L. Zeng-Zhi and W. Zhi-Wen, "A GA-based cache replacement

policy", In Proceedings of International Conference on Machine Learning

and Cybernetics, (2004).

[22] A.P. Foong, H. Yu-Hen and D.M. Heisey, "Logistic regression in an

adaptive Web cache", Internet Computing, IEEE, Vol. 3, No. 5, (1999), pp.

27-36.

[23] G. Sajeev and M. Sebastian, "A novel content classification scheme for web

caches", Evolving Systems, Vol. 2, No. 2, (2011), pp. 101-118.

[24] W. Ali, S.M. Shamsuddin, and A.S. Ismail, "A Survey of Web Caching and

Prefetching", Int. J. Advance. Soft Comput. Appl., Vol. 3, No. 1, (2011), pp.

18.

37 Performance Improvement of Least-Recently-

[25] X. Wu, V. Kumar, J. Ross Quinlan, J. Ghosh, Q. Yang, H. Motoda, , G. J.

McLachlan, A. Ng, B. Liu, and P. S. Yu, "Top 10 algorithms in data

mining", Knowledge and Information Systems, Vol. 14, No. 1, (2008), pp. 1-

37.

[26] R.-C. Chen and C.-H. Hsieh, "Web page classification based on a support

vector machine using a weighted vote schema", Expert Systems with

Applications, Vol. 31, No. 2, (2006), pp. 427-435.

[27] L. Fan, K.L. Poh, and P. Zhou, "A sequential feature extraction approach for

naīve bayes classification of microarray data", Expert Systems with

Applications, Vol. 36, No. 6, (2009), pp. 9919-9923.

[28] M. Hall, "A decision tree-based attribute weighting filter for naive Bayes",

Knowledge-Based Systems, Vol. 20, No. 2, (2007), pp. 120-126.

[29] J. Han and M. Kamber, "Data Mining: Concepts and Techniques", Morgan

Kaufmann, (2001).

[30] B. Liu, "Web Data Mining: Exploring Hyperlinks, Contents, and Usage

Data", Springer, (2007).

[31] S. H. Lu, D. A. Chiang, H. C. Keh and H. H. Huang, "Chinese text

classification by the Naīve Bayes Classifier and the associative classifier

with multiple confidence threshold values", Knowledge-Based Systems, Vol.

23, No. 6, (2010), pp. 598-604.

[32] L. Rokach, and O.Z. Maimon, "Data mining with decision trees: theory and

applications", Singapore ; Hackensack, NJ: World Scientific, (2008).

[33] D. Wessels, "Web caching", O'Reilly Media, (2001).

[34] U. Acharjee, "Personalized and Artificial Intelligence Web Caching and

Prefetching", University of Ottawa: Canada, (2006).

[35] A. Datta, K. Dutta, H. Thomas and D. VanderMeer, "World Wide Wait: A

Study of Internet Scalability and Cache-Based Approaches to Alleviate It",

Management Science, Vol. 49, No. 10, (2003), pp. 1425-1444.

[36] J. Jaeeun, L. Gunhoon, C. Haengrae and A. Byoungchul, " A prefetching

Web caching method using adaptive search patterns", Processing in IEEE

Pacific Rim Conference on Communications, Computers and signal

(PACRIM), (2003).

[37] Farhan, "Intelligent Web Caching Architecture, in Faculty of Computer

Science and Information System", Faculty of Computer Science and

Information System, UTM University, Johor,Malaysia, (2007).

[38] S. Abe, "Support vector machines for pattern classification", Springer-

Verlag New York Inc., (2010).

Waleed Ali et al. 38

[39] V. Vapnik, "The nature of statistical learning theory", Springer: New York,

(1995).

[40] N. Friedman, D. Geiger, and M. Goldszmidt, "Bayesian network classifiers",

Machine Learning, Vol. 29, No. 2, (1997), pp. 131-163.

[41] F. Pernkopf, "Bayesian network classifiers versus selective k-NN classifier",

Pattern Recognition, Vol. 38, No. 1, (2005), pp. 1-10.

[42] J.R. Quinlan, "C4.5: Programs forMachine Learning", Morgan Kaufmann,

(1993).

[43] H. ElAarag and S. Romano, "Improvement of the neural network proxy

cache replacement strategy", in Proceedings of the 2009 Spring Simulation

Multiconference, Society for Computer Simulation International: San Diego,

California, (2009), pp. 1-8.

[44] C.W. Hsu, C.C. Chang, and C.J. Lin, "A practical guide to support vector

classification", (2009).

[45] U.M. Fayyad and K.B. Irani, "Multi-interval discretization of continuous-

valued attributes for classification learning", Proceeding in 13th

International Joint Conference on Artificial Intelligence (IJCAI-93), (1993),

pp. 1022-1027.

[46] NLANR, National Lab of Applied Network Research (NLANR), Sanitized

access logs: Available at http://www.ircache.net/, (2010).

[47] C.C. Chang, and C.J. Lin, "LIBSVM: A library for support vector

machines",, http://www.csie.ntu.edu.tw/~cjlin/libsvm, (2001).

[48] A. Fernández, M.J. del Jesus, and F. Herrera, "Hierarchical fuzzy rule based

classification systems with genetic rule selection for imbalanced data-sets",

International Journal of Approximate Reasoning, Vol. 50, No. 3, (2009), pp.

561-577.

[49] A. Fernández, S.García, M. J. del Jesus and F. Herrera, "A study of the

behaviour of linguistic fuzzy rule based classification systems in the

framework of imbalanced data-sets", Fuzzy Sets and Systems, Vol. 159, No.

18, (2008), pp. 2378-2398.

[50] P. Cao and S. Irani, "Cost-Aware WWW Proxy Caching Algorithms", In

Proceedings Of The 1997 Usenix Symposium On Internet Technology And

Systems, Monterey, CA, (1997).

[51] Q. Yang, J.Z. Huang, and M. Ng, " A Data Cube Model for Prediction-

Based Web Prefetching", Journal of Intelligent Information Systems, Vol. 20,

No. 1, (2003), pp. 11-30.

