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Abstract 

     Web proxy caching is one of the most successful solutions for 
improving the performance of Web-based systems. In Web proxy 
caching, Least-Recently-Used (LRU) policy is the most common 
proxy cache replacement policy, which is widely used in Web proxy 
cache management. However, LRU are not efficient enough and 
may suffer from cache pollution with unwanted Web objects. 
Therefore, in this paper, LRU policy is enhanced using popular 
supervised machine learning techniques such as a support vector 
machine (SVM), a naïve Bayes classifier (NB) and a decision tree 
(C4.5). SVM, NB and C4.5 are trained from Web proxy logs files to 
predict the class of objects that would be re-visited. More 
significantly, the trained SVM, NB and C4.5 classifiers are 
intelligently incorporated with the traditional LRU algorithm to 
present three novel intelligent Web proxy caching approaches, 
namely SVM-LRU, NB-LRU and C4.5-LRU. In the proposed 
intelligent LRU approaches, unwanted objects classified by machine 
learning classifier are placed in the middle of the cache stack used, 
so these objects are efficiently removed at an early stage to make 
space for new incoming Web objects. The simulation results 
demonstrated that the average improvement ratios of hit ratio 
achieved by SVM-LRU, NB-LRU and C4.5-LRU over LRU increased 
by 30.15%, 32.60% and 31.05 % respectively, while the average 
improvement ratios of byte hit ratio increased by 32.43%, 69.56% 
and 28.41%, respectively.  

     Keywords: Web proxy server, Cache replacement, Least-Recently-Used (LRU) 
policy, Classification, Supervised machine learning. 
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1      Introduction 

The World Wide Web (Web) is the most common and significant service on the 

Internet. The Web contributes greatly to our life in many fields such as education, 

entertainment, Internet banking, remote shopping and software downloading. This 

has led to rapid growth in the number of Internet users, which resulting in an 

explosive increase in traffic or bottleneck over the Internet performance [1-2]. 

Consequently, this has resulted in problems during surfing some popular Web 

sites; for instance, server denials, and greater latency for retrieving and loading 

data on the browsers [3-5]. 

Web caching is a well-known strategy for improving the performance of Web-

based system. In the Web caching, Web objects that are likely to be used in the 

near future are kept in a location closer to the user. Web caching mechanisms are 

implemented at three levels: client level, proxy level and original server level [6-

7]. Proxy servers play key roles between users and Web sites in reducing the 

response time of user requests and saving network bandwidth. In this study, much 

emphasis is focused on the Web proxy caching because it is still the most 

common strategy used for caching Web pages [1-4, 8]. 

Due to cache space limitations, a Web proxy cache replacement is required to 

manage the Web proxy cache contents efficiently. In the proxy cache replacement, 

the proxy cache must effectively decide which objects are worth caching or 

replacing with other objects. The Web cache replacement is the core or heart of 

Web caching; hence, the design of efficient cache replacement algorithms is 

crucial for the success of Web caching mechanisms [4, 6-10]. So, the Web cache 

replacement algorithms are also known as Web caching algorithms [9]. 

In the Web cache replacement, a few important features or factors of Web objects, 

such as recency, frequency, size, cost of fetching the object from its origin server 

and access latency of object, can influence the performance of Web proxy caching 

[4, 6, 10-12]. These factors can be incorporated into the replacement decision for 

better performance. 

The conventional Web cache replacement approaches consider just some factors 

and ignore other factors that have an impact on the efficiency of the Web caching 

[4, 9, 13-15]. Thus, the conventional Web proxy cache replacement policies are 

no longer efficient enough [4].  

Least-Recently-Used (LRU) policy is the most common proxy cache replacement 

policy among all the conventional Web proxy caching algorithms, which widely 

used in the real and simulation environments [2-3, 8, 14, 16]. The LRU policy 

takes into account just the recency factor of the cached objects in cache 

replacement process. In LRU, by inserting a new object into the cache, it will be 

located on the top of the cache stack. If the object is not popular (e.g., it is used 

only once), it will take a long time before it can be moved down to the bottom of 

the cache stack (namely least recently used object) and will be deleted from the 
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cache. Therefore, a large portion of objects, which are stored in the cache, are 

never requested again or requested after a long time. This leads to cache pollution, 

where the cache is polluted with inactive objects. This causes a reduction of the 

effective cache size and negatively affects the performance of Web proxy caching.  

Even if we can locate a large space for the proxy cache, this will be not helpful 

since the searching for a Web object in a large cache needs a long response time 

and an extra processing overhead. Furthermore, a consistency strategy is required 

to execute frequently to ensure the pages in the cache are the same as pages in the 

origin Web servers. This cause increase of network traffic, and more loads on the 

origin servers[1] .  

This is motivation to adopt intelligent techniques for solving the Web proxy 

caching problems. The second motivation behind the development of intelligent 

approaches in Web caching is availability of proxy logs files that can be exploited 

as training data. In a Web proxy server, Web proxy logs file records activities of 

the users and can be considered as complete and prior knowledge of future access. 

Several research works have developed intelligent approaches that are smart and 

adaptive to the Web caching environment. These include adoption of supervised 

machine learning techniques [8-9, 14, 17-18], fuzzy systems [19], and 

evolutionary algorithms [12, 20-21] in Web caching and Web cache replacement. 

Recent studies have reported that the intelligent Web caching approaches based on 

supervised machine learning techniques are the most common, effective and 

adaptive Web caching approaches.  A multilayer perceptron network (MLP) [9] 

and back-propagation neural network (BBNN) [8, 14], logistic regression (LR) 

[22] and multinomial logistic regression(MLR) [23], and adaptive neuro-fuzzy 

inference system(ANFIS)[15] have been utilized in Web caching. More details 

about intelligent Web caching approaches are given in our previous work [24]. 

 Most of these studies have utilized an artificial neural network (ANN) in the Web 

caching although ANN performance is influenced by the optimal selection of the 

network topology and its parameters. Furthermore, ANN training may consume 

more time and require extra computational overhead. More significantly, 

integration of an intelligent technique in Web cache replacement is still a popular 

research subject. 

In this paper, alternative supervised machine learning techniques are proposed to 

improve the performance of conventional LRU cache replacement policy. Support 

vector machine (SVM), naïve Bayes (NB) and decision tree (C4.5) are three 

popular supervised learning algorithms, which are identified as three of the most 

influential algorithms in data mining [25]. They perform classifications more 

accurately and faster than other algorithms in a wide range of applications such as 

text classification, Web page classification and bioinformatics applications, 

medical filed, military applications, forecasting, finance and marketing [26-32]. 

Hence, SVM , C4.5 and NB classifiers can be utilized to produce promising 

solutions for Web proxy caching.  
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This study proposes a concrete contribution to the field of Web proxy cache 

replacement.  A new intelligent LRU cache replacement approaches with better 

performance are designed for use in Web proxy cache. The core of the proposed 

intelligent cache replacement approaches is to use common supervised machine 

learning techniques to predict whether Web objects would be needed again in the 

future. Then, classification decisions are utilized into the conventional LRU 

method determining what to remove first from the proxy cache.  

The remaining parts of this paper are organized as follows. Background and 

related works are presented in Section 2. Principles of Web proxy caching and 

replacement are presented in Sections 2.2 and 2.3, while Section 2.4 describes 

machine learning classifiers used in this study, including support vector machines, 

decision trees and naïve Bayes classifier. A methodology for improving LRU 

replacement policy based on machine learning is illustrated in Section 3. Section 4 

elucidates implementation and performance evaluation. Finally, Section 5 

concludes the paper and discusses possible future works in this area. 

2      Web Caching Background and Related Works 

2.1      Overview 

The term cache has French roots and means, literally, to store [33]. The idea of 

caching is used in memory architectures of modern computers for improving the 

performance of CPU speed. In a similar manner to caching in memory system, 

Web caching stores Web objects in anticipation of future requests. However, the 

Web caching significantly differs from traditional memory caching in several 

aspects such as the non-uniformity of Web object sizes, retrieval costs, and 

cacheability [33]. Significantly, the Web caching has several attractive advantages 

to Web users [34]. Firstly, the Web caching reduces user perceived latency. 

Secondly, the Web caching reduces network traffic and therefore reducing 

network costs for both content provider and consumers. Thirdly, the Web caching 

reduces loads on the origin servers.  Finally, the Web caching increases reliability 

and availability of Web and application servers. 

2.2      Web Proxy Caching 

Generally, caches are found in browsers and in any of the Web intermediate 

between the user agent and the origin server. A Web cache is located in a browser, 

proxy server and/or origin server. The browser cache is located in the client 

machine. At the origin server, Web pages can be stored in a server-side cache for 

reducing the redundant computations and the server load. The proxy cache is 

found in the proxy server, which is located between the client machines and origin 

server. The proxy servers are often used to achieve some tasks such as firewalls to 

provide security, caching, filtering, redirection, and forwarding. They allow and 

record users’ requests from the internal network to the outside Internet. A proxy 
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server behaves like both a client and a server. It acts like a server to clients, and 

like a client to servers. A proxy receives requests from clients, processes those 

requests, and then it forwards them to origin servers. 

The Web proxy caching works on the same principle as the browser caching, but 

on a much larger scale. Unlike the browser cache that deals with only a single user, 

the proxy server serves hundreds or thousands of users in the same way.  When a 

request is received, the proxy server checks its cache. If the object is available, the 

proxy server sends the object to the client. If the object is not available, or it has 

expired, the proxy server will request the object from the origin server and send it 

to the client. The requested objects are stored in the proxy’s local cache for future 

requests.  Hence, the Web proxy caching plays the key roles between users and 

Web servers in reducing the response time of user requests and saving the 

network bandwidth. 

The Web proxy caching is widely utilized by computer network administrators, 

technology providers, and businesses to reduce user delays and to reduce Internet 

congestion [1-3]. In this study, much emphasis are placed on Web proxy caching 

because it is still the most common strategy used for caching Web pages. 

2.3      Web Proxy Cache Replacement 

Three popular issues have a profound impact on Web proxy caching, namely 

cache consistency, cache pre-fetching, and cache replacement [34-36]. The cache 

consistency is to ensure the pages in the cache are the same as pages in the origin 

Web server.  The pre-fetching is a technique for reducing user Web latency by 

preloading the Web object that is not requested yet by the user. In other words, 

the pre-fetching is a technique that downloads the probabilistic pages that are 

not requested by the user, but that could be requested soon by the same user [34]. 

The cache replacement refers to the process that takes place when the cache 

becomes full, and some objects must be removed to make space for new coming 

objects.  

The Web proxy cache replacement plays an extremely important role in Web 

proxy caching. Hence, the design of efficient cache replacement algorithms is 

required to achieve highly sophisticated caching mechanism [4, 6-10]. The 

effective cache replacement algorithm is vital and has a profound impact on Web 

proxy cache management [7]. Therefore, this study pays attention to improvement 

of Web proxy cache replacement approaches. In general, cache replacement 

algorithms are also called Web caching algorithms [9].  

As cache size is limited, a cache replacement policy is needed to handle the cache 

content. If the cache is full when an object needs to be stored, the replacement 

policy will determine which object is to be evicted to allow space for the new 

object. The optimal replacement policy aims to make the best use of available 

cache space, improve cache hit rates, and reduce loads on the origin server.  



 

 

 

 

 

 

 

Waleed Ali et al.                                                                                                   6 

Most Web proxy servers are still based on conventional replacement policies for 

Web proxy cache management. In the proxy cache replacement, Least-Recently-

Used (LRU), Least-Frequently-Used (LFU), Least-Frequently-Used-Dynamic-

Aging (LFU-DA), SIZE, Greedy-Dual-Size (GDS) and Greedy-Dual-Size-

Frequency (GDSF) are the most common Web caching approaches, which still 

used in most of the proxy servers and software like squid software. These 

conventional Web caching methods form the basis of other Web caching 

algorithms [8, 14]. However, these conventional approaches still suffer from some 

limitations as shown in Table 1 [9, 37]. 

Table 1: Conventional Web cache replacement policies 

Policy Brief Description Advantage Disadvantage 

LRU 
The least recently used 

objects are removed first. 

 

simple and efficient with 

uniform size objects, such 

as the memory cache. 

 

ignores download 

latency and the size 

of Web objects 

 

LFU 
The least frequently used 

objects are removed first. 
simplicity 

ignores  download 

latency and size  of 

objects and may 

store obsolete Web 

objects indefinitely. 

 

LFU-DA 
Dynamic aging factor (L) is 

incorporated into LFU. 

� reduces cache pollution 

caused by LFU. 

� high byte hit ratio 

 

may suffer from hit 

ratio 

 

SIZE 
Big objects are removed 

first 

prefers keeping  small 

Web objects in the cache, 

causing  high cachet hit 

ratio. 

� stores small Web 

objects even if 

these object are 

never accessed 

again. 

� low byte hit ratio. 

 

GDS 

It assigns a key value to 

each cached object  g as 

equation below. The object 

with the lowest key value is 

replaced first. 

( )
( )

( )

C g
K g L

S g

= +  

where C(g) is the cost of 

fetching g from  the server; 

S(g) is the size of g; and L is 

an aging factor. 
 

� overcomes the 

weakness of SIZE 

policy by removing 

objects which are no 

longer requested by 

users. 

� high hit ratio 

 

� does not take into 

account the 

previous 

frequency of Web 

objects. 

� low byte hit ratio. 

GDSF 
It extends GDS by 

integrating  the frequency 

factor  into the key value   

� takes into account the 

previous frequency of 

Web objects. 

� very high hit ratio 

� does not take into 

account the  

predicted accesses  

� low byte hit ratio. 
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Least-Recently-Used (LRU) algorithm is one of the simplest and most common 

cache replacement approaches, which removes Web objects from the cache that 

have not been used for the longest period of time. In other words, LRU policy 

removes the least recently accessed objects first until there is sufficient space for 

the new objects. When a Web object is requested by user, the requested Web 

object is fetched from a server and placed at the top of the cache stack. 

Consequently, the cache stack pushes down the other objects in the stack so the 

object in the bottom of the cache stack is evicted from cache. Algorithm of the 

conventional LRU is shown in Fig. 1.  

                   

     Fig. 1:  The algorithm of conventional LRU proxy replacement policy 

The reason for the popularity of LRU in the Web proxy caching is the good 

performance of LRU when requests exhibit temporal locality, i.e., the Web object 

that have been requested in the recent past are likely to be requested again in the 

near future. However, if many objects stored by URL in the proxy cache are not 

requested again or requested after a long time, the cache usage is exploited 

inappropriately due to the cache pollution with unwanted objects. This causes a 

low performance of Web proxy caching. 

As mentioned earlier, recency, frequency, size, cost of fetching the object and 

access latency of object are important features of Web objects, which play an 

essential role in making the wise decisions of Web proxy caching and replacement. 

In the conventional caching policies, only one factor is considered in cache 

replacement decision or few factors are combined using mathematical equation to 

predict revisiting of the Web objects in the future. These conventional approaches 

are not efficient enough and not adaptive to Web users' interests that change 

Begin 

 

     For each Web object g requested by user 

      Begin 

 If g in cache  

 Begin 

 Cache hit occurs 

 Move g to top of the cache stack    

 End      
    

Else     

 Begin   
Cache miss occurs 

Fetch g from origin server. 

While no enough space in cache for g 

             Evict q  such that q object in the bottom  of the cache stack 

       Insert g at top of the cache stack 

End 

     End  

 

End  
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continuously depending on rapid changes in Web environment. Therefore, 

alternative approaches are required in Web caching. Many Web cache 

replacement policies have been proposed to improve the performance of Web 

caching. However, it is challenging to have an omnipotent policy that performs 

well in all environments or for all time due to the preference of these factors is 

still based on the environments [6, 10]. Hence, there is a need for an intelligent 

and adaptive approach, which can effectively incorporate these factors into Web 

caching and replacement decisions.  

2.4      Supervised machine learning 

Machine learning involves adaptive mechanisms that enable computers to learn by 

example and learn from experience like human learning from experiences. The 

machine learning can be accomplished in a supervised or an unsupervised 

learning. In supervised learning, the data (observations) are labeled with pre-

defined classes. It is like that a teacher gives the classes. On the other hand, 

unsupervised learning means that the system acts and observes the consequences 

of its actions, without referring to any predefined labels.  

In this research, supervised machine learning techniques are proposed to improve 

the performance of Web proxy cache replacement. Support vector machine 

(SVM), naïve Bayes (NB) and decision tree(C4.5) are three popular supervised 

learning algorithms, which are identified as three of the most influential 

algorithms in data mining [25] and perform classifications more accurately and 

faster than other algorithms in a wide range of applications [26, 30].   

Since SVM is formulated as a quadratic programming problem, there is a global 

optimum solution in SVM training.  Besides, SVM is trained to maximize the 

margin, so the generalization ability can be maximized, especially when training 

data are scarce and linearly separable. In addition, SVM is robust to outliers 

because the margin parameter controls the misclassification error [38]. However, 

the generalization ability in SVM is still controlled by changing a kernel function 

and its parameters, and the margin parameter. Moreover, SVM may consume 

quite longer time compared to others in learning process, especially with large 

dataset. Hence, in addition to SVM, NB and C4.5 are also suggested for 

improving the performance of Web proxy cache replacement in this study.  The 

NB and C4.5 are two of the most widely used and practical techniques for 

classification in many applications such as finance, marketing, engineering and 

medicine [29-32]. In addition to the good classification accuracy in many domains, 

the NB and C4.5 are efficient, easy to construct without parameters, and simple to 

understand and interpret [25, 27-28, 31].  

2.4.1      Support vector machine 

The support vector machine (SVM) was invented by Vapnik [39]. The basic 

concept of SVM is to use a high dimension space to find a liner boundary or 
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hyperplane to do binary division (classification) with two classes, positive and 

negative samples. The SVM attempts to place hyperplane(solid line in Fig. 2) 

between the two different classes, and orient it in such a way that the margin 

(dotted lines in Fig. 2) is maximized. The hyperplane is oriented such that the 

distance between the hyperplane and the nearest data point in each class is 

maximal. The nearest data points are used to define the margins and are known as 

support vectors (SVs)(gray circle and square in Fig. 2).  The hyperplane can be 

expressed as in Eq. (1)  

                          

Fig. 2: Classification of data by SVM 

 

( . ) 0, ,Nw x b w R b R+ = ∈ ∈  (1)       

where the vector w defines the boundary, x is the input vector of dimension N and 

b is a scalar threshold. At the margins, where the SVs are located, the Eqs.(2) and 

(3) for positive class and negative class, respectively, are as follows: 

( . ) 1w x b+ =     (2) 

( . ) 1w x b+ = −   (3) 

SVs correspond to the extremities of the data for a given class. Therefore, to 

classify any data point in either positive or negative class, the following decision 

Eq. (4) can be used: 

( ) (( . ) )f x sign w x b= +  
(4) 

1x  

1
i

y = +  

2x  

1
i

y = −  

w  

( . ) 1w x b+ = +

( . ) 1w x b+ = −

( . ) 0w x b+ =  
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The optimal hyperplane can be obtained as a solution to the following 

optimization problem. 

Minimize 

21
( )

2
t w w=  (5) 

Subject to  

(( . ) ) 1, 1,...,
i i

y w x b i l+ ≥ =  
(6) 

where l is the number of training sets. The solution of the constrained 

optimization problem can be obtained using Eq.(7). 

i i
w v x=∑    (7) 

where 
i

x  are SVs obtained from training. Putting Eq. (7) in Eq. (4), the decision 

function is obtained in Eq. (8). 

1

( ) ( . )
l

i i

i

f x sign v x x b
=

 
= + 

 
∑  (8) 

However, for many real-life problems, it is not easy to find a hyperplane to 

classify the data such as nonlinearly separable data. The nonlinearly separable 

data is classified with the same principle of the linear case. However, the input 

data is only transformed from the original space into much higher dimensional 

space called the feature space. Then, a hyperplane can separate positive and 

negative examples in feature space as shown in Fig. 3. Thus, the decision function 

becomes as in Eq. (9). 

         

Fig. 3: Transformation from input space to feature space 

Input space Feature space 

( )x∅  
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The transformation from input space to feature space space is relatively 

computation-intensive. Therefore, a kernel function can be used to perform this 

transformation and the dot product in a single step. This helps in reducing the 

computational load and at the same time retaining the effect of higher-

dimensional transformation. The kernel function ( . )
i j

K x x is defined as Eq.(10). 

( . ) ( ). ( )
i j i j

K x x x x= ∅ ∅   (10) 

After substituting Eq. (10) in the decision function (9), the basic form of SVM is 

accordingly obtained as Eq. (11). 

1

( ) ( . )
l

i i

i

f x sign v K x x b
=

 
= + 

 
∑  (11) 

The parameters 
i

v  are used as weighting factors to determine which of the input 

vectors are support vectors. Several kernel functions can be used in SVM to solve 

different problems. In this study, RBF kernel given in Eq. (12) is used as kernel 

function in SVM training. The parameter γ  represents the width of the RBF. In 

case there is an overlap between the classes with non-separable data, the range of 

parameters 
i

v  can be limited to reduce the effect of outliers on the boundary 

defined by SVs. For non-separable cases, the constraint becomes (0<
i

v <C). For 

separable cases, C is infinity while for non-separable cases, it may be varied, 

depending on the number of allowable errors in the trained solution: high C 

permits few errors while low C allows a higher proportion of errors in the 

solution. 

2

( , ) exp( ), 0i j i jk x x x xγ γ= − − >   (12) 

 

2.4.2      Naïve Bayes classifier 

Naïve Bayes(NB) is very simple  Bayesian network which  has constrained 

structure of the graph [40]. In NB, all the attributes are assumed to be 

conditionally independent given the class label. The structure of the NB is 

illustrated in Fig. 4.  In most of the data sets, the performance of the naïve Bayes 

classifier is surprisingly good even if the independence assumption between 

1

( ) ( ( ). ( ))
l

i i

i

f x sign v x x b
=

 
= ∅ ∅ + 

 
∑   (9) 



 

 

 

 

 

 

 

Waleed Ali et al.                                                                                                   12 

attributes is unrealistic [40-41]. Independence between the features ignores any 

correlation among them. 

 

                                                      

Fig. 4: Structure of a naïve Bayes network 

NB depends on probability estimations, called a posterior probability, to assign a 

class to an observed pattern. The classification can be expressed as estimating the 

class posterior probabilities given a test example d as shown in formula (13). The 

class with the highest probability is assigned to the example d. 

                          Pr( | )
j

C c d=        (13) 

Let 1 2 / /, ,...,
A

A A A  be the set of attributes with discrete values in the data set D. Let 

C be the class attribute with |C| values, 1 2 / /, ,...,
C

c c c . Given a test example 

/ /1 1 / /,...,
AA

d A a A a=< = = > ,  where 
i

a  is a possible value of
i

A . The posterior 

probability Pr( | )
j

C c d=  can be expressed using the Bayes theorem as shown in 

Eq. (14).  

/ /

/ /

/ /

1 1 / /

1 1 / /

1 1 / /

Pr( ,..., | )Pr( )
Pr( | ,..., )

Pr( ,..., )

A

A

A

A j j

j A

A

A a A a C c C c
C c A a A a

A a A a

= = = =
= = = =

= =

 

 / /

/ /

1 1 / /

/ /

1 1 / /

1

Pr( ,..., | ) Pr( )

Pr( ,..., | ) Pr( )

A

A

A j j

C

A k j

k

A a A a C c C c

A a A a C c C c
=

= = = =
=

= = = =∑
 

 

 

 

 (14) 

NB assumes that all the attributes are conditionally independent given the class 

j
C c=  as in Eq. (15), 

/ /

/ /

1 1 / /

1

Pr( ,..., | ) Pr( | )
A

A

A j i i j

i

A a A a C c A a C c
=

= = = = = =∏  (15) 

After putting (15) in (14), the decision function is obtained as shown in Eq. (16) 

C 

1A 
2A 3A nA

Class 

Attributes 
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/ /

/ /

1
1 1 / / / /

1 1

Pr( ) Pr( | )

Pr( | ,..., )

Pr( ) Pr( | )
A

A

j i i j

i
j A AC

k i i k

k i

C c A a C c

C c A a A a

C c A a C c

=

= =

= = =

= = = =

= = =

∏

∑ ∏

 

                     (16) 

In classification tasks, we only need the numerator of Eq. (16) to decide the most 

probable class for each example since the denominator is the same for each class. 

Thus we can decide the most probable class for given a test example using 

formula (17): 

/ /

1

arg max Pr( ) Pr( | )
j

A

j i i j

c i

c C c A a C c
=

= = = =∏    (17) 

2.4.3      Decision tree 

The most well-know algorithm in the literature for building decision trees is the 

C4.5 decision tree algorithm , which was proposed by Quinlan [42]. The basic 

concept of the C4.5 is as follow. The tree begins with a root node that represents 

the entire given dataset and it recursively splits the data into smaller subsets by 

testing for a given attribute at each node. The sub-trees denote the partitions of the 

original dataset that satisfy specified attribute value tests. This process typically 

continues until the subsets are pure. That means all instances in the subset fall into 

the same class, at which time the tree growing is terminated.  

In the process of constructing the decision tree, the root node is first selected by 

evaluating each attribute on the basis of an impurity function to determine how 

well it alone classifies the training examples. The best attribute is selected and 

used to test at the root node of the tree. A descendant of the root node is created 

for each possible value of this selected attribute, and the training examples are 

sorted to the appropriate descendant node. The process is then repeated using the 

training examples associated with each descendant node to select the best attribute 

to test at that point in the tree. 

In decision tree learning, the most popular impurity functions used for attributes 

selection are information gain and information gain ratio. In C4.5 algorithm, the 

gain ratio is employed for better performance achievement [42].  



 

 

 

 

 

 

 

Waleed Ali et al.                                                                                                   14 

3      A Methodology for Improving Least-Recently-Used 
Replacement Policy Based on Supervised Machine 
Learning 

A framework for improving Least-Recently-Used replacement (LRU) policy in 

Web proxy cache replacement based on supervised machine learning classifiers is 

presented in Fig. 5.  

 

Fig. 5: A framework for improving LRU replacement policy based on supervised 

machine learning classifiers 

As shown in Fig. 5, the framework consists of two functional components: an 

online component and an offline component. The terms online and offline refer to 

interactive communications between the users and the proxy server. The offline 

component does not deal with the user directly, while online connections between 

the users and the proxy are established in the online component to retrieve the 

requested object from the proxy cache or the origin server. The offline component 

is responsible for training a machine learning classifier, while the intelligent LRU 

replacement approaches based on the trained classifier are utilized to effectively manage 

the Web proxy cache in the online component. 
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In the online component, when a user requests a Web page, the user 

communicates with the proxy, which directly retrieves the requested page from 

the proxy cache as shown in Fig. 5. However, sometimes the proxy cache miss 

occurs if the requested object is not in the proxy cache or not fresh. In a cache 

miss, the proxy server requests the object from the origin server and sends it back 

to the client. A copy of the requested object is replicated into the proxy cache to 

reduce the response time and the network bandwidth utilization in future requests. 

In some situations, a new coming object needs to be stored into the proxy cache; 

but the proxy cache is full of Web objects. In these cases, the proxy cache manger 

uses the proposed intelligent LRU replacement approaches to remove the 

unwanted Web objects in order to release enough space for the new coming object. 

3.1      Training of supervised machine learning classifiers 

The offline component is responsible for training the machine learning classifiers. 

In the proxy servers, information about the behaviours of groups of users in 

accessing many Web servers are recorded in files known as proxy logs files. The 

proxy logs files can be obtained from proxy servers located in various 

organizations or universities. The proxy logs files are considered a complete and 

prior knowledge of the users’ interests and can be utilized as training data to 

effectively predict the next Web objects. 

As the raw proxy datasets are collected, these data must be prepared properly in 

order to obtain more accurate results. Dataset pre-processing involves 

manipulating the dataset into a suitable form with training of the supervised 

machine learning techniques. Data pre-processing requires two steps: trace 

preparation and training dataset preparation. In the trace preparation, irrelevant or 

not valid requests are removed from log files such as uncacheable and dynamic 

requests. On the other hand, training dataset preparation step requires extracting 

the desired information from the logs proxy files, and then selecting the 

input/output dataset. The important features of Web objects that indicate the 

users’ interests are extracted in order to prepare the training dataset. These 

features consist of URL ID, timestamp, elapsed time, size and type of Web object. 

Subsequently, these features are converted to the input/output dataset or training 

patterns required at the training phase. A training pattern takes the 

format 1 2 3 4 5 6
, , , , , ,x x x x x x y< > .

 1
x ,..., 6

x  represent the input  features and y  

represents the target output of the requested object. Table 2 shows the inputs and 

their meanings for each training pattern.  
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4 Table 2: The inputs and their meanings 

Input Meaning 

1
x  Recency of Web object access based on backward-looking sliding window 

2
x  Frequency of Web object accesses  

3
x  Frequency of Web object accesses based on backward-looking sliding window 

4
x  Retrieval time of Web object in milliseconds 

5
x  Size of Web object in bytes 

6
x  Type of Web object 

1
x  and 3

x are extracted based on a backward-looking sliding window in a similar 

manner to [8, 43] as shown in Eqs. (18) and (19). The backward-looking and 

forward-looking sliding windows of a request are the time before and after when 

the request was made. 

( , ) ,

1

,

Max SWL T if object g was requested before

x

SWL otherwise

∆

=






 (18) 

1 ,
3

1

3

1 ,

x if T SWL
i

x
i

otherwise

+ ∆ ≤
−

=







 
(19) 

where T∆ is the time in seconds since object g was last request , and SWL is 

sliding window length. If object g is requested for the first time, 3
x will be set to 1. 

In a similar way to Foong et al.[22], 6
x  is classified into five categories: HTML 

with value 1, image with value 2, audio with value 3, video with value 4, 

application with value 5 and  others  with value 0.y  is set based on the forward-

looking sliding window. The value of y  will be assigned to 1 if the object is re-

requested again within the forward-looking sliding window. Otherwise, the target 

output will be assigned to 0. The idea is to use information about a Web object 

requested in the past to predict revisiting of such Web object within the forward-

looking sliding window.  

Once the proxy dataset is prepared properly, the machine learning classifiers can 

be trained depending on the finalized dataset for Web objects classification. The 

training phase aims to train SVM, C4.5 and NB to predict the class of a Web 
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object requested by the user, either as object would be revisited within the 

forward-looking sliding window or not. 

As recommended by Hsu et al. [44], SVM is trained as follows: prepare and 

normalize the dataset, consider the RBF kernel, use cross-validation to find the 

best parameters C (margin softness) and γ  (RBF width), use the best parameters 

to train the whole training dataset, and test. In SVM training, several kernel 

functions like polynomial, sigmoid and RBF can be used. However, in this study, 

RBF kernel function is used since it is the most often used kernel function and can 

achieve a better performance in many applications compared to other kernel 

functions [44]. After training, the obtained SVM uses Eq. (11) to predict the class 

of a Web objects either objects would be revisited again or not. 

Regarding training of NB classifier, the NB classifier assumes that all attributes 

are categorical. Therefore, the numerical attributes need to be discretized into an 

interval in order to train or construct the NB classifier.  In this study, the dataset is 

discretized by Minimum Description Length (MDL) given by Fayyad and Irani 

[45], and then the NB classifier is constructed depending on the finalized proxy 

dataset in order to classify Web objects as objects would be revisited again or not. 

In the training phase of NB classifier, it is only required to estimate the prior 

probabilities Pr( )jC c=  and the conditional probabilities Pr( | )i i jA a C c= = from 

the proxy training dataset using Eqs. (20) and (21). Then, the NB classifier can 

predict class of a Web object using the formula (17), as explained in Section 2.4.2. 

#
Pr( )

#

j

j

examples of class c
C c

total examples
= =    (20) 

#
Pr( | )

#

i i j

i i j

j

examples with A a and class c
A a C c

examples of class c

=
= = =  (21) 

In C4.5 training, the decision tree is constructed in a top-down recursive manner. 

Initially, all the training patterns are at the root. Then, the training patterns are 

partitioned recursively based on attributes selected based on an impurity function. 

Partitioning continues until all patterns for a given node belong to the same class.  

After the decision tree is trained, a Web object is classified depending on 

traversing the tree top-down according to the attribute values of the given test 

pattern until reaching a leaf node. The leaf node represents the predicted class, 

either as object that would be re-visited (class 1) or not (class 0). In addition, 

probabilities of classes can be obtained by computing the relative frequency of 

each class in a leaf. As can be observed from Fig. 6, at the end of each leaf, the 

numbers in parentheses show the number of examples in this leaf. If one or more 

leaves were not pure, i.e., not all of the same class, the number of misclassified 

examples would also be given after a slash. 
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Fig. 6:  An example of building C4.5 decision tree for Web proxy dataset 

3.2      The proposed intelligent LRU replacement approaches 
based on machine learning classifiers 

LRU policy is the most common proxy cache replacement policy among all the 

Web proxy caching algorithms [2-3, 8, 14]. However, LRU policy suffers from 

cold cache pollution, which means that unpopular objects remain in the cache for 

a long time. In other words, in LRU, a new object is inserted at the top of the 

cache stack. If the object is not requested again, it will take some time to be 

moved down to the bottom of the stack before removing it from the cache. 

In order to reduce the cache pollution in LRU, the trained SVM, NB and C4.5 

classifiers are combined with the traditional LRU to form three new intelligent 

LRU approaches known as SVM-LRU, NB-LRU and C4.5-LRU.  

The proposed intelligent LRU approaches work as follows. When Web object g is 

requested by the user, the trained SVM, NB or C4.5 classifier predicts whether the 

class of that object would be revisited again or not. If object g is classified as an 

object would be re-visited again, object g is placed at the top of the cache stack. 

Otherwise, object g is placed in the middle of the cache stack used. As a result, 

the intelligent LRU approaches can efficiently remove unwanted objects at an 

early stage to make space for new Web objects.  

By using this mechanism, cache pollution can be reduced and the available cache 

space can be utilized effectively. Consequently, the hit ratio and byte hit ratio can 
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be greatly improved by using the proposed intelligent LRU approaches. The 

algorithm of the proposed intelligent LRU is shown in Fig. 7. 

 

Fig. 7: The algorithm of intelligent LRU approaches 

In order to understand the benefits of the proposed intelligent LRU, Fig. 8 

illustrates an example of alleviating LRU cache pollution by using the intelligent 

LRU. Suppose that sequence of Web objects with fixed size is A B C D E F G B 

H C D requested by the users from left to right. The caching and removing of 

these objects using LRU policy and the proposed intelligent LRU are illustrated in 

Fig. 8. 

Begin 

 

     For each Web object g requested by user 

      Begin 

 If g in cache  

 Begin 

 Cache hit occurs 

 Update information of g  

// classify g by SVM, NB or C4.5 classifier 

class of g = classifier.classify ( common features) 

    If class of g =1   // g classified as object will be revisited later 

        Move g to top of the cache stack 

     Else  
         Move g to the middle of the cache stack used 

 End      
    

Else     

 Begin   
Cache miss occurs 

Fetch g from origin server. 

While no enough space in cache for g 

         Begin 
     Evict q  such that q object in the bottom  of the cache stack 

          End 
   // classify g by  SVM, NB or C4.5 classifier 

   class of g = classifier.classify ( common features) 

  If class of g =1   // g classified as object will be revisited later 

      Insert g at top of the cache stack 

Else 
      Insert g in the middle of the cache stack used 

 End 

     End  

 

End  
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Fig. 8:  Example of alleviating the cache pollution by the proposed intelligent 

LRU 
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From Fig. 8, it can be observed that objects A, E, F, G, and H are visited only 

once, while the objects B, C and D are visited twice by user. In the traditional 

LRU policy, all Web objects are initially stored at the top of the cache, so these 

objects need longer time to move down to the bottom of the cache (where  least 

recently used  objects are stored) for removal from the cache.  

By contrast, the proposed intelligent LRU (see  Fig.  8) stores the preferred 

objects B, C and D at the top of the cache if the machine learning classifier 

predicts correctly revisiting of B, C and D again. On the other hand, if objects A, 

E, F, and G are properly classified as objects would not be re-visited soon, then 

these objects will be stored in the middle of the proxy cache used. Therefore, 

these objects A, E, F and G move down to the bottom of the cache shortly. Hence, 

the un-preferred objects are removed in a short time by the intelligent LRU to 

make space for new Web objects. 

From the above example, it can be noted that the proposed intelligent LRU 

approaches efficiently remove unwanted objects early to make space for new Web 

objects. Therefore, the cache pollution is lessened and the available cache space is 

exploited efficiently. Moreover, the hit ratio and byte hit ratio can be improved 

successfully.  

4      Performance Evaluation and Discussion 

4.1    Raw data collection and pre-processing 

The proxy datasets or the proxy logs files were obtained from five proxy servers 

located in the United States from the IRCache network and covered fifteen days 

[46]. Four proxy datasets (BO2, NY, UC and SV) were collected between 21
st
 

August and 4
th

 September, 2010, while SD proxy dataset was collected between 

21
st 

and 28
th

 August, 2010.  In this study, the proxy logs files of 21
st
 August, 2010 

were used in the training phase, while the proxy logs files of the following days 

were used in the simulation to evaluate the proposed intelligent Web proxy cache 

replacement approaches against existing works (see Table 3).   

Each line in the proxy logs file represents access proxy log entry, which consists 

of the ten following fields: timestamp, elapsed time, client address, log tag and 

HTTP code, size request method, URL, user identification, hierarchy data and 

hostname and content type. 

As the raw datasets were collected, some data pre-processing steps were 

performed to produce results reflecting the performance of the algorithms. The 

dataset pre-processing was achieved in three steps: 
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Table 3: Proxy datasets used for evaluating the proposed intelligent caching 

approaches 

Proxy Dataset 
Proxy Server 

Name 
Location 

Duration of 

Collection 

UC uc.us.ircache.net  Urbana-Champaign, Illinois  21/8 – 4/9/2010  

BO2 bo.us.ircache.net  Boulder, Colorado  21/8 – 4/9/2010 

SV sv.us.ircache.net  
Silicon Valley, California 

(FIX-West)  
21/8 – 4/9/2010 

SD sd.us.ircache.net  San Diego, California  21/8 – 28/8/2010 

NY ny.us.ircache.net New York, NY 21/8 – 4/9/2010 

Parsing: This involves identifying the boundaries between successive records in 

log files as well as the distinct fields within each record.  

Filtering: This includes elimination of irrelevant entries such as un-cacheable 

requests (i.e., queries with a question mark in the URLs and cgi-bin requests) and 

entries with unsuccessful HTTP status codes. We only consider successful entries 

with 200 status codes. 

Finalizing:  This involves removing unnecessary fields. Moreover, each unique 

URL is converted to a unique integer identifier for reducing time of simulation. 

4.2      Raw data collection and pre-processing 

4.2.1    Training phase 

Since the trace and logs files were prepared as mentioned earlier; the training 

datasets were prepared as explained in Section  3.1. Romano and ElAarag [8] 

recommended one day as enough time for training, especially with a dataset 

preparation based on SWL. Depending on the recommendations of Romano and 

ElAarag [8], the proxy log files covering a single day, 21
st
 August 2010, were 

used in this study for training the supervised machine learning classifiers. 

Furthermore, Romano and ElAarag [8] have shown the effect of SWL on the 

performance of the BPNN classifier. The BPNNs were trained by Romano and 

ElAarag [8] with various values of SWL between 30 minutes and two hours. They 

concluded that a smaller SWL decreases the training performance. However, a 

decreasing SWL can increase the training performance when using large training 

datasets. Thus, Romano and ElAarag [8] considered that SWL with 30 minutes 

are enough periods on a large dataset. Based on this assumption, in this study, 

SWL was set to 30 minutes during the training datasets preparation for all 

intelligent classifiers, since our datasets were large as well.  
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Once the datasets were properly prepared, the machine learning techniques were 

implemented using MATLAB and WEKA. The SVM model was trained using the 

libsvm library [47]. The generalization capability of SVM is controlled through a 

few parameters such as the term C and the kernel parameter like RBF widthγ . To 

decide which values to choose for parameter C andγ , a grid search algorithm was 

implemented as suggested by Hsu et al. [44]. The parameters that obtain the best 

accuracy using a 10-fold cross validation on the training dataset were retained. 

Next, a SVM model was trained depending on the optimal parameters to predict 

and classify the Web objects whether the objects would be re-visited or not. 

Regarding C4.5 training, a J48 learning algorithm was used, which is a Java re-

implementation of C4.5 and provided with WEKA tool. The default values of 

parameters and settings were used as determined in WEKA. In NB training, the 

datasets were discretized using a MDL method suggested by Fayyad and Irani 

[45] with default setup in WEKA. Once the training dataset was prepared and 

discretized, NB was trained using WEKA as well. In WEKA, a NB classifier is 

available in the Java class “weka.classifiers.bayes.NaiveBayes”.  

4.2.2    Classifiers evaluation 

The main measure for evaluating a classifier is the correct classification rate 

(CCR), which is the number of correctly classified examples in the dataset divided 

by the total number of examples in the dataset. In some situations, CCR alone is 

insufficient for measuring the performance of a classifier, e.g., when the data is 

imbalanced. Therefore, some accurate measures of the classification evaluation 

are extracted from a confusion matrix shown in Table 4. 

Table 4: Confusion matrix for a two-class problem 
 Predicted Positive Predicted Negative 

Actual Positive True Positive (TP) False Negative (FN) 

Actual Negative False Positive (FP) True Negative (TN) 

Table 5: The measures used for evaluating performance of machine learning 

classifiers 

Measure name Formula  

Correct Classification Rate 
TP TN

CCR
TP FP FN TN

+
=

+ + +
 (%) 

True Positive Rate 
TP

TPR
TP FN

=
+

 (%) 

True Negative Rate 
TN

TNR
TN FP

=
+

 (%) 

Geometric Mean *meanG TPR TNR=   (%) 

This study considers that the Web object belongs to the positive class (minority 

class) if the object is re-requested again. Otherwise, the Web object belongs to the 

negative class (majority class). It is observed from proxy logs files used in this 



 

 

 

 

 

 

 

Waleed Ali et al.                                                                                                   24 

study that the training datasets are imbalanced since many Web objects are visited 

just one time by the users. Therefore, like several research works [23, 48-49], 

CCR, true positive rate (TPR) or sensitivity, true negative rate (TNR) or 

specificity, and geometric mean (GM) are used in this study to evaluate the 

classifiers performance as shown in Table 5. 

In this paper, both hold-out validation and n-fold cross validation were used in 

evaluating the supervised machine learning algorithms. In hold-out validation, 

each proxy dataset was randomly divided into training data (70%) and testing data 

(30%). In addition, 10-fold cross validation was used in evaluating the supervised 

machine learning algorithms since it is commonly used by many researchers. 

In order to benchmark the SVM, NB and C4.5, they were compared to both back-

propagation neural network (BPNN) and adaptive neuro-fuzzy inference system 

(ANFIS). This is due to the fact that BPNN and ANFIS have good performance in 

Web caching area in pervious works [8-9, 14-15, 17-18, 37]. In addition, the SVM, 

NB and C4.5 were also compared with BPNN as used in the existing caching 

approach NNPCR-2 [8]. 

Tables 6 and 7 show comparisons between the performance measures of SVM, 

NB, C4.5, BPNN, ANFIS and NNPCR-2 for the five proxy datasets in testing 

phase using hold-out and 10-fold cross-validations. In Tables 6 and 7, the best and 

the worst values of the measures are highlighted in bold font and underline font, 

respectively. In hold-out validation shown in Table 6, SVM, NB and C4.5 

achieved the averages of CCR around 94.33%, 94.43% and 94.55%, while BPNN, 

ANFIS, and NNPCR-2 achieved the averages of CCR around 87.39%, 93.93% 

and 86.37% respectively. In 10-fold cross-validation shown in Table 7, SVM, NB 

and C4.5 achieved the averages of CCR around 94.53%, 94.59% and 94.79% 

respectively, while BPNN and ANFIS, and NNPCR-2 achieved the averages of 

CCR around 87.79%, 93.72% and 85.53% respectively. As can be seen from 

Tables 6 and 7, SVM, NB, C4.5 and ANFIS produced competitive performances 

in terms of CCR. However, it is obvious that SVM, NB and C4.5 achieved higher 

CCR when compared to the CCR of BPNN and NNPCR-2. This was due to the 

fact that BPNN training could be trapped in a local minimum, while there is a 

global optimum solution in SVM training. 

In terms of GM, Tables 6 and 7 clearly show that SVM, NB, C4.5 performed well 

for the five proxy datasets. In particular, the SVM achieved the best TPR and GM 

for all datasets. On the other hand, NNPCR-2 and BPNN achieved the worst TPR 

and GM for all datasets. This is because that BPNN and NNPCR-2 tended to 

classify most of the patterns as the majority class, i.e, the negative class. This led 

to the highest TNR of BPNN and NNPCR-2. On the other hand, SVM was trained 

with a penalty (weight) option, which was useful in dealing with imbalanced data. 

A higher weight was set to a positive class, while less weight was set to a negative 

class. Thus, SVM could predict the positive or minority class, which includes the 

objects that will be re-visited in the near future. Moreover, NB and C4.5 were less 
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susceptible to imbalanced data when compared to BPNN and ANFIS, as can be 

observed from Tables 6 and 7. This indicated that SVM, NB and C4.5 had better 

GM and TPR when compared to others.  

Table 6: Performance measures of machine learning algorithms in hold-out 

validation 

 BO2 NY UC SV SD Average 

SVM 

CCR 95.30 91.19 95.54 93.76 95.84 94.326 

TPR 86.41 91.95 92.76 91.16 89.17 90.29 

TNR 96.16 90.95 95.93 94.36 96.83 94.846 

GM 

 

91.15 

 

91.45 

 

94.33 

 

92.97 

 

92.92 

 

92.564 

 

NB 

CCR 95.34 91.35 95.74 93.78 95.93 94.428 

TPR 82.14 88.22 86.9 82.39 88.94 85.718 

TNR 96.61 92.34 96.95 96.95 96.98 95.966 

GM 

 

89.08 

 

90.26 

 

91.79 

 

89.38 

 

92.87 

 

90.676 

 

C4.5 

CCR 95.68 91.26 95.88 94.02 95.91 94.55 

TPR 68.54 89.36 78.27 87.87 83.81 81.57 

TNR 98.30 91.86 98.29 95.74 97.72 96.382 

GM 

 

82.08 

 

90.60 

 

87.71 

 

91.72 

 

90.50 

 

88.522 

 

BPNN 

CCR 94.08 75.90 90.36 87.95 88.65 87.388 

TPR 32.62 0.00 20.07 45.69 12.77 22.23 

TNR 100.00 100.00 99.99 99.73 99.98 99.94 

GM 

 

57.12 

 

0.00 

 

44.79 

 

67.50 

 

35.73 

 

41.028 

 

ANFIS 

CCR 95.30 91.23 94.75 92.94 95.43 93.93 

TPR 61.55 84.94 62.46 76.53 74.77 72.05 

TNR 98.56 93.22 99.17 97.52 98.52 97.398 

GM 

 

77.89 

 

88.98 

 

78.71 

 

86.39 

 

85.83 

 

83.56 

 

NNPCR-2 

CCR 91.41 76.25 90.05 87.11 87.01 86.366 

TPR 7.77 2.49 17.44 40.92 0 13.724 

TNR 99.48 99.67 100 99.99 100 99.828 

GM 27.8 15.74 41.76 63.97 0 29.854 
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Table 7: Performance measures of machine learning algorithms in 10-fold cross 

validation 

 BO2 NY UC SV SD Average 

SVM 

CCR 95.5 91.7 95.58 93.88 95.97 94.526 

TPR 87.61 92.57 92.62 92.02 89.28 90.82 

TNR 96.27 91.43 95.98 94.39 96.95 95.004 

GM 

 

91.82 

 

92 

 

94.29 

 

93.2 

 

93.04 

 

92.87 

 

NB 

CCR 95.57 91.79 95.71 93.86 96 94.586 

TPR 83.46 88.48 87.73 82.72 88.83 86.244 

TNR 96.76 92.84 96.79 96.89 97.06 96.068 

GM 

 

89.84 

 

90.63 

 

92.15 

 

89.52 

 

92.85 

 

90.998 

 

C4.5 

CCR 95.6 92.19 96.03 94.08 96.03 94.786 

TPR 67.09 83.5 80.7 86.7 84.23 80.444 

TNR 98.38 94.95 98.1 96.09 97.77 97.058 

GM 

 

81.2 

 

89.03 

 

88.97 

 

91.27 

 

90.75 

 

88.244 

 

BPNN 

CCR 92.21 80.41 90.15 88.06 88.11 87.788 

TPR 12.64 21.19 18.23 45.73 7.91 21.14 

TNR 99.97 99.25 99.84 99.54 99.92 99.704 

GM 

 

26.31 

 

45.5 

 

35.61 

 

64.32 

 

22.47 

 

38.842 

 

ANFIS 

CCR 94.67 91.11 95.13 92.38 95.32 93.722 

TPR 56.9 84.16 65.26 74.55 73.68 70.91 

TNR 98.37 93.32 99.16 97.22 98.51 97.316 

GM 

 

74.81 

 

88.62 

 

80.44 

 

85.13 

 

85.19 

 

82.838 

 

NNPCR-2 

CCR 91.28 76.42 89.34 83.32 87.29 85.53 

TPR 2.36 3.41 10.74 22.43 1.35 8.058 

TNR 99.95 99.65 99.92 99.84 99.94 99.86 

GM 6.87 16.82 27.97 46.44 6.33 20.886 

In addition to above measures, the computational times for training SVM, NB, 

C4.5, BPNN, ANFIS and NNPCR-2 were calculated using the same computer 

(PC with processor Intel(R), Core(TM)2 Duo CPU E4500 @2.20GHz,ii, and 2 

GB RAM) for the five datasets, as shown in Tables 8 and 9. As expected, NB and 

C4.5 were faster when compared to the other intelligent techniques used. This is 

mainly due to nature of the training algorithm of NB and C4.5. NB was the fastest 

among all algorithms, while SVM was slower than NB and C4.5 but faster than 

BPNN, NNPCR-2 and ANFIS for all datasets. ANFIS was the slowest among 

other algorithms since many antecedent (nonlinear) parameters and consequent 

(linear) parameters required to be optimized in ANFIS training. 
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Table 8: The computational time for training the supervised machine learning 

algorithms in hold-out validation 

Dataset 
Training Time(seconds) 

SVM NB C4.5 BPNN ANFIS NNPCR-2 

BO2 9.11 0.12 0.36 146.59 41436.63 69.50 

NY 69.41 0.35 0.85 316.34 89057.09 153.62 

UC 280.30 1.59 3.36 701.18 202033.64 342.61 

SV 52.20 0.33 0.69 303.40 85753.53 153.30 

SD 291.51 1.32 2.90 693.36 205294.87 345.068 

Average 140.506 0.742 1.632 432.174 124715.2 212.8196 

 

Table 9: The computational time for training supervised machine learning 

algorithms in 10-fold cross validation 

Dataset 
Training Time(seconds) 

SVM NB C4.5 BPNN ANFIS NNPCR-2 

BO2 14.55 0.14 0.26 188.26 65507.18 79.75 

NY 126.92 0.51 1.29 385.85 120657.97 167.44 

UC 500.15 1.96 4.32 865.07 284267.57 376.03 

SV 100.02 0.51 1.05 375.62 115745.14 163.67 

SD 436.76 1.84 4.55 851.26 281538.43 764.33 

Average 235.68 0.992 2.294 533.212 173543.3 310.244 

4.3      Evaluation of intelligent LRU approaches 

4.3.1    Web proxy cache simulation 

The simulator WebTraff [16] was modified to meet the proposed LRU caching 

approaches. WebTraff is a trace-driven simulator for evaluating different 

replacement policies such as LRU, LFU, GDS, FIFO, and RAND policies. The 

trained classifiers were integrated with WebTraff to simulate the proposed 

intelligent LRU Web proxy cache replacement approaches. The WebTraff 

simulator receives the prepared log proxy file as input and generates files 

containing performance measures as outputs. In addition, the maximum cache size 

should be determined in the simulator. The simulator starts automatically with a 

cache size of 1 MB, and scales it up by a factor of two for each run until the 

maximum desired cache size is reached. The output reported by the simulator 

shows cache size (in MB), hit ratio, and byte hit ratio for each cache size 

simulated. 
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4.3.2    Performance Measures 

The hit ratio (HR) and byte hit ratio (BHR) are the most widely used metrics in 

evaluating the performance of Web caching [8-10, 14]. HR is defined as the 

percentage of requests that can be satisfied by the cache. Note that HR only 

indicates how many requests hit and does not indicate how much bandwidth can 

be saved. BHR is the number of bytes satisfied from the cache as a fraction of the 

total bytes requested by the user. BHR represents the saved network bandwidth 

achieved by caching approach.  

It is important to note that HR and BHR work in somewhat opposite ways. It is 

very difficult for one strategy to achieve the best performance for both metrics [4, 

8, 50-51]. This is due to the fact that the strategies that increase HR typically give 

preference to small objects, but these strategies tend to decrease BHR by giving 

less consideration to larger objects. On the contrary, the strategies that do not give 

preference to small objects tend to increase BHR at the expense of HR. 

4.3.3    Performance measures of infinite cache 

An infinite cache is a cache with enough space to store all requested objects 

without the need to replace any object. The infinite cache size is defined as the 

total size of all unique requests.  Therefore, it is unnecessary to consider any 

replacement policy for an infinite cache. In an infinite cache, HR and BHR reach 

their maximum values.  

In reality, the caches cannot be designed as infinite. A replacement policy is 

needed when the cache is full, and this has a great effect on the performance of 

Web caching systems. However, in our simulation the infinite cache is required to 

determine the maximum cache size in the simulator, which represents the stop 

point during the simulation. Table 10 shows some statistical information for the 

maximum HR and BHR for the five proxy datasets used in the simulation. 

Table 10: Statistics for different proxy datasets used in simulation 

 BO2 NY UC SV  SD 

#Total requests 1210693 3248452 8891764 2496001 29871204 

#Cacheable 

requests 
594989 1518232 2827904 1194098 6059349 

#Cacheable bytes 23204930341 68402036319 469362584083 48043794224 230326816876 

#Unique requests 530192 1144885 2402406 1012355 5284441 

Total size of unique 

requests  ( bytes) 
18690093450 56147903761 156538171752  38364029432 190539902251 

#Hits  64797 373347 425498 181743 774908 

#Byte Hits  4514836891 12254132558 312824412331 9679764792 39786914625 

Max HR(%) 10.89 24.59 15.05 15.22 12.79 

Max BHR(%) 19.46 17.91 66.65 20.15 17.27 
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4.3.4    Impact of cache size on performance measures 

By using the WebTraff simulator, the proposed SVM-LRU, NB-LRU and C4.5-

LRU approaches were compared with the conventional LRU algorithm across the 

five proxy datasets: BO2, NY, UC, SV, and SD. For each dataset, the Web proxy 

caching algorithms were simulated with varying limits of the cache size starting at 

1 MB to 32 GB in order to determine the impact of cache size on the performance 

measures. The simulation was stopped at 32 GB since the performances of all 

algorithms became stable and close to the maximum level achieved for a cache of 

infinite size.  

Figs. 9 and 10 show the HR and BHR of different policies for the five proxy 

datasets with varying cache sizes. As can be seen in Figs. 9 and 10, when the 

cache size increased, the HR and BHR also provided a boost for all algorithms. 

However, the percentage of increase was reduced when the cache size increased. 

When the cache size was close to the size of the infinite cache, the performance 

became stable and close to its maximum level. On the contrary, when the cache 

size was small, the replacement of objects was frequently required. Hence, the 

effect of the performance of replacement policy was clearly noted.  

As can be observed from Figs. 9 and 10, SVM-LRU, NB-LRU and C4.5-LRU 

produced better performances in terms of HR and BHR when compared to the 

conventional LRU, especially with small sizes of cache. This was mainly due to 

the capability of intelligent LRU approaches for storing the preferred objects for 

longer time. Depending on classification decisions, the preferred objects  were 

placed at the top of cache stack, so these objects took longer time to move down 

to the bottom of the cache stack where they would be removed from the cache. On 

the other hand, the unwanted objects were removed from the proxy cache at 

earlier stage. This eventually reduced the cache pollution. Consequently, the 

performance in terms of HR and BHR of LRU was improved by using SVM-LRU, 

NB-LRU and C4.5-LRU. 

For comparison of intelligent LRU approaches with each other, SVM-LRU, NB-

LRU and C4.5-LRU achieved competitive HR in the different cache sizes across 

the five proxy datasets, as can be seen from Fig. 9. This was due to the equivalent 

capability of intelligent classifiers to predict the classes of objects, whether 

objects would be re-visited or not. In general, C4.5-LRU and SVM-LRU achieved 

slightly higher HR when compared to NB-LRU. In terms of BHR, Fig. 10 shows 

that SVM-LRU and NB-LRU achieved better BHR when compared to C4.5-LRU 

in different proxy cache sizes for most the proxy datasets.  

It is important to note that the performance of SVM, NB and C4.5 classifiers were 

equivalent in their ability to predict the classes of objects at training phase. 

However, the proposed intelligent LRU approaches did not necessarily perform 

the same performances at the simulation phase. This was due influence of the size 

factor of the objects classified by the classifiers into the cache replacement 

decisions and the cache performance, especially the performance in terms of BHR. 
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Furthermore, the performance in terms of HR and BHR could be influenced by 

changing the sizes of the proxy cache between 1 MB and 32 GB. 

In order to clarify the benefits of the intelligent LRU approaches, the 

improvement ratio (IR) of the performance in terms of HR and BHR in each 

particular cache size can be calculated using Eq. (22). 

( )
100 (%)

PM CM
IR

CM

−
= ×  (22) 

where IR is the percent of improvement in terms of HR or BHR achieved by the 

proposed method (PM) over the conventional method (CM). CM refers the 

performance in terms of HR or BHR of the conventional LRU. PM represents the 

performance in terms of HR or BHR of the proposed intelligent LRU: SVM-LRU, 

NB-LRU and C4.5-LRU.  

The average IRs of the performances in terms of HR and BHR of the intelligent 

LRU approaches for the five proxy datasets in each particular cache are concluded 

and summarized in Table 11. In Table 11 , the highest and the lowest values of the 

average IRs are highlighted in bold and underline fonts, respectively.  

Table 11:  The average IRs (%) achieved by intelligent LRU approaches over 

conventional LRU method 

Cache Size 

(MB) 

Average IR of 

SVM-LRU  

Over LRU (%) 

 Average IR of NB-

LRU  

Over LRU (%) 

 Average IR of 

C4.5-LRU  

Over LRU (%) 

HR BHR  HR BHR  HR BHR 

1 30.15 20.84  32.596 22.966  31.046 20.84 

2 23.26 27.05  23.326 57.776  24.14 28.408 

4 13.988 29.846  11.722 69.564  15.43 28.118 

8 12.318 24.208  12.078 33.312  14.648 25.946 

16 9.692 17.58  10.05 21.468  11.452 20.216 

32 8.294 14.44  8.408 14.604  9.852 15.832 

64 10.408 32.434  11.244 23.454  11.904 22.802 

128 5.08 15.054  4.736 10.318  6.568 10.336 

256 4.974 7.596  4.174 6.188  6.222 6.938 

512 5.804 5.316  5.206 5.066  6.878 5.276 

1024 5.65 2.874  5.142 2.898  6.588 2.932 

2048 4.422 0.794  3.846 0.794  5.224 1.07 

4096 2.87 0.81  2.426 1.104  3.376 0.81 

8192 1.422 0.266  1.186 0.25  1.698 0.284 

16384 0.718 0.204  0.548 0.2  0.872 0.206 

32768 0.38 0.124  0.324 0.112  0.464 0.124 
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The results in Table 11 show that the average IRs of HR achieved by SVM-LRU, 

NB-LRU and C4.5-LRU over LRU increased by 30.15%, 32.60% and 31.05%, 

respectively. In terms of the BHR, the average IRs achieved by SVM-LRU, NB-

LRU and C4.5-LRU over LRU increased by 32.43%, 69.56% and 28.41%, 

respectively. From Figs. 9 and 10, and Table 11, it can be concluded that the 

proposed SVM-LRU, NB-LRU and C4.5-LRU significantly improved the 

performance of the conventional LRU method across the five proxy datasets. 

Furthermore, C4.5-LRU and SVM-LRU achieved slightly higher HR compared 

to HR of NB-LRU, while NB-LRU and SVM-LRU achieved better BHR 

compared to BHR of C4.5-LRU for most of the proxy datasets. This means 

SVM-LRU performed well in both HR and BHR. 
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Fig. 9: Comparison of hit ratio between intelligent LRU approaches and LRU 
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Fig. 10: Comparison of byte hit ratio between intelligent LRU approaches and 

LRU 
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5      Conclusion and Future Works 

In order to improve the performance of Web proxy caching, this paper presented a 

framework for improving the conventional LRU replacement policy based on 

supervised machine learning classifiers. The framework consisted of two 

functional components: online and offline components. In the offline component, 

SVM, NB and C4.5 were intelligently trained from proxy logs files to classify the 

contents of Web proxy cache. In the online component, the trained SVM, NB and 

C4.5 classifiers were effectively utilized to improve the performance of the 

conventional LRU policy, which widely used in Web proxy cache replacement. In 

particular, the conventional LRU technique was extended by efficiently 

integrating the classification decisions made by the trained SVM, NB and C4.5 

classifiers into cache replacement decisions to obtain more efficient and 

intelligent SVM-LRU, NB-LRU and C4.5-LRU approaches. For testing and 

evaluating the proposed proxy caching methods, the proxy logs files were 

obtained from several proxy servers located around the United States of the 

IRCache network, which are the most common proxy datasets used in the research 

of Web proxy caching. The experimental results showed that SVM, NB and C4.5 

achieved a better accuracy and a much faster than BPNN and ANFIS. 

Furthermore, the proposed intelligent LRU approaches were evaluated by trace-

driven simulation and compared with the conventional LRU policy. The 

simulation results revealed that the proposed intelligent LRU approaches 

considerably improved the performance in terms of hit ratio and byte hit ratio of 

the conventional LRU on a range of datasets.  

There are some limitations in this study. One of the limitations is that the 

classifiers in the proposed intelligent LRU approaches were trained once and then 

were used to predict the classes of Web object over the next one or two weeks. A 

regular retraining of classifiers would ensure that the proposed intelligent LRU 

approaches become more efficient and adaptive. Another limitation is the 

preparation of the target outputs in training phase that required extra 

computational overhead when looking for the future requests. Therefore, 

unsupervised machine learning algorithms can be used for enhancing the 

performance of Web caching policies since the unsupervised algorithms do not 

need any preparation for the target outputs. Furthermore, other intelligent 

classifiers can be also utilized to improve both the hit ratio and the byte hit ratio of 

traditional Web caching policies.  
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