
Int. J. Advance Soft Compu. Appl, Vol. 6, No. 2, July 2014 

ISSN 2074-8523; Copyright © SCRG Publication, 2014 
 

Machine Learning Big Data Framework and 

Analytics for Big Data Problems 
Shafaatunnur Hasan1, Siti Mariyam Shamsuddin2, Noel Lopes3

 

 
1,2UTM Big Data Centre, 

Universiti Teknologi Malaysia, Skudai, Johor 

e-mail: shafaatunnur@gmail.com, mariyam@utm.my 
3
UDI, Polytechnic Institute of Guarda, Portugal 

CISUC, University of Coimbra, Portugal 

e-mail: noel@ipg.pt 

 
Abstract 

     Generally, big data computing deals with massive and high dimensional data 

such as DNA microrray data, financial data, medical imagery, satellite imagery 

and hyperspectral imagery. Therefore, big data computing needs advanced 

technologies or methods to solve the issues of computational time to extract 

valuable information without information loss. In this context, generally, Machine 

Learning (ML) algorithms have been considered to learn and find useful and 

valuable information from large value of data. However, ML algorithms such as 

Neural Networks are computationally expensive, and typically the central 

processing unit (CPU) is unable to cope with these requirements. Thus, we need 

high performance computer to execute faster solutions such Graphical Processing 

Unit (GPU). GPUs provide remarkable performance gains compared to CPUs. 

The GPU is relatively inexpensive with affordable price, availability and 

scalability. Since 2006, NVIDIA provides simplification of the GPU programming 

model with the Compute Unified Device Architecture (CUDA), which supports for 

accessible programming interfaces and industry-standard languages, such as C 

and C++. Since then, General Purpose Graphical Processing Unit (GPGPU) 

using ML algorithms are applied on various applications; including signal and 

image pattern classification in biomedical area. The importance of fast analysis of 

detecting cancer or non-cancer becomes the motivation of this study. Accordingly, 

we proposed machine learning framework and analytics of  Self Organizing Map 

(SOM) and Multiple Back Propagation (MBP) for big biomedical data 

classification problems. Big data such as gene expression datasets are executed on 

high performance computer and Fermi architecture graphical hardware. Based 

on the experiment, MBP and SOM with GPU - Tesla generates faster computing 

times than high performance computer with feasible results in terms of speed 

performance. 

     Keywords: GPGPU, big data framework, machine learning, soft computing, 

SOM, MBP, biomedical classification problems. 
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1      Introduction 

The volume of data being produced is increasing at an exponential rate due to 

our unprecedented capacity to generate, capture and share vast amounts of data. In 

this context, Machine Learning (ML) algorithms can be used to 

extract information from these large volumes of data. However, these algorithms 

are computationally expensive. Their computational requirements are usually 

proportional to the amount of data being processed. Hence, ML algorithms often 

demand prohibitive computational resources when facing large volumes of data. 

As problems become increasingly challenging and demanding (in some cases 

intractable by traditional CPU architectures), often toolkits supporting ML 

software development fail to meet the expectations in terms of computational 

performance. Therefore, the scientific breakthroughs of the future will 

undoubtedly be powered by advanced computing capabilities that will allow 

researchers to manipulate and explore massive datasets [1]. Somehow, the 

pressure is to shift development toward high-throughput parallel architectures, 

crucial for real-world applications. In this context,   highly-parallel and 

programmable devices such as GPU can be used for general-purpose computing 

applications [2]. GPUs can provide remarkable performance gains compared to 

CPUs. Moreover, they are relatively inexpensive with affordable price, 

availability and scalability. Over the last few years, the number of GPU 

implementations of ML algorithms has increased substantially [3]. However, most 

of the implementations are not openly shared. The lack of openly available 

implementations is a serious obstacle to algorithm replication and application to 

new tasks and therefore poses a barrier to the progress of the ML field [4]. By 

using CUDA architecture, an open source GPU machine learning library 

(GPUMLib) was developed by Lopes and Ribeiro [3]. The aim is to provide the 

building blocks for the development of efficient GPU ML software. GPUMLib 

offers several advantages such as useful in adoption of soft computing methods 

particularly on the neural network algorithms and fast detection of errors. 

Moreover, most of the previous studies are focused on using Artificial Neural 

Networks (ANNs) for pattern recognition [5][6][7]. Hence, we proposed Soft 

Computing algorithms for big data problems, particularly in biomedical area. The 

aim is to provide fast analysis in detecting the cancer from non-cancer based on 

the extraction of useful information in gene expression, protein profiling and 

genomic sequence data. This study is also significant to women who have a high 

risk of ovarian cancer due to family or personal history of cancer [8]. The 

remainder of this paper is organized as follows: Section 2 discusses the previous 

studies on the development of Machine Learning methods such as ANN 

algorithms on graphical hardware. Section 3 provides explanation on machine 

learning big data framework and GPUMLib implementation; particularly on SOM 

and MBP. Section 4 presents the experimental setup, followed by experimental 

results and discussion in Section 5. Finally, a conclusion of the study will be 

discussed in Section 6. 
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2      Related Work 

Early studies, Soft Computing algorithm with graphical hardware 

implementation has been proposed in game console application, supervised and 

unsupervised Artificial Neural Network (ANN) algorithms [6]. In 1998, Bohn 

started to implement SOM on Computer Graphics Interface (CGI) Workstation for 

computer graphic applications [9]. Later, Zhongwen et al. started to apply SOM 

algorithm with multi-pass method on commodity GPU’s (ATI 9550 and Nvidia 

5700) and INTEL P4 2.4G for CPU computing [10]. Campbell et al. proposed 

parameter-less SOM which eliminates the parameter of learning rate and 

neighborhood size [11]. Furthermore, SOM is also evaluated on GPU cluster to 

compute the scalability [12]. On the other hand, parallel implementation of SOM 

to observe the suitability for high dimensional problem has been implemented by 

[13][14]. In pattern classification, Kyoung-Su Oh and Keechul Jung applied 

Multilayer Perceptrom (MLP) for text detection [5]. Prabhu proposed 

unsupervised SOM for pattern classifier [15]. Meanwhile, Gadjos et al. applied 

unsupervised SOM for outage database [16]. Subsequently, combination of 

supervised and unsupervised SOM for image segmentation was introduced by 

Faro et al. [7]. Moreover, Takatsuka et al. applied the Geodesic SOM on standard 

machine learning dataset [17]. Their experimental results suggested that the GPU 

speed performance is not significant for small datasets such as iris, but is 

considerable on larger datasets (ionosphere and torus). In medical area, 

preliminary studies focused mainly on detecting the cancer nodule and non-nodule 

based on medical imagery [18]. In addition, Lopes and Ribeiro proposed parallel 

BP and MBP for Ventricular Arrhythmias (VAs) in biomedical applications [19]. 

The aim of their method was to equip fast detection of diseases which highly 

potential to sudden death.  

Based on the previous study, there is still lacking of SOM-GPU 

implementation for high dimensional pattern analysis particularly on biomedical 

area. This is due to most of the studies, proposed feature selection process to cater 

the nature of dataset problems. Furthermore, high dimensional features and 

imbalance dataset have a great influence to the classification accuracy [20]. SOM 

is an algorithm for exploratory data analysis which provides mapping from high 

dimensional features to low dimensional features [21]. However, the distance 

calculation and searching for the Best Matching Unit (BMU) generally increases 

greatly the computational cost. Hence, we proposed a framework of machine 

learning big data analytics and the parallel implementation of SOM and MBP to 

speed up the computation time. The SOM and MBP with GPUMLib 

implementation will be discussed in the next section. 

 



 

 

 

 

 

 

 

S.Hasan et al.                                                                                                     4 

3      Machine Learning Big Data Framework and GPU  
Library (GPUMLib)  

In this study, we propose machine learning big data framework as illustrated in 

Fig.1. This framework envisages the broad picture of machine learning in dealing 

with big data problems. The framework starts with the presentation of multi-

structure input varieties from different sources, follow by the pipeline pre-

processing phase prior to machine learning knowledge discovery. However, in 

this paper, we implement the parallelism on machine learning approaches of big 

data predictive knowledge discovery based on Neural Network (NN) algorithms; 

Multiple Backpropagation (MBP) and Self Organizing Map (SOM) using 

GPUMLib.  

 

 
Fig. 1: Machine Learning Big Data Framework 

 

MBP is an open-source algorithm built-in in GPUMLib [22]. Meanwhile, SOM 

algorithm is proposed in this study for the parallel implementation on the distance 

computation and BMU searching process. In the meantime, the parallelism on 

SOM algorithm uses the GPUMLib memory access and reduction frameworks. 

The GPUMLib memory access framework contains HostArray, HostMatrix, 

DeviceArray, DeviceMatrix and CudaArray classes. The framework manages to 

allocate the memory on the host and device, transfer data between host to device 

and vice versa. In the reduction framework, the MinIndex Kernel is designed to 

compute the minimum of an array and its corresponding index within the array. 

Both algorithms use batch training for parallel implementation and will be 

explained in section 3.1 and 3.2 respectively. 
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3.1      Parallel Multiple backpropagation (MBP) 

MBP networks are designed based on multiple feed-forward architecture. They 

differ from standard BP networks, as they integrate two networks designated by 

main and space networks. The main network contains selective activation neurons 

which determine their importance for the actual stimuli from the space network. 

Therefore, the selective activation neurons choose and respond to specific group 

of patterns based on the input presented to the main network. Consequently, fine-

tuning the network response according to the actual space localization 

features.The main network only calculates its outputs after space network outputs 

are evaluated. The implementation relies in five kernels: FireLayer, 

FireOutputLayer, CalculateLocalGradient, CorrectWeights and 

CorrectOutputWeights which execute in each epoch [22]. Initially, FireLayer and 

FireOutputLayer kernels are launched by the host in order to determine the space 

and main network output. Consequently, the main network weights are adjusted 

using the parallelism of CalculateLocalGradient, CorrectWeights and 

CorrectOutputWeights kernels. Finally, the space network weights are adjusted 

with CorrectOutputWeights kernel. In addition, an Autonomous Training System 

(ATS) is implemented to improve MBP result. The ATS train several MBPs to 

select an appropriate MBP network topology. As new MBP networks are trained, 

its performance is compared with the best MBP found so far. These results are 

then used to determine the number of hidden neurons of a new MBP and adjusted 

accordingly until the termination criterion is satisfied [23].  

3.2      Parallel Self Organizing Map (SOM) 

The SOM implementation, developed in this study, using the GPUMLib is 

executed on GPU (host and device) and CPU (host only). For better 

representation, the implementation is depicted in Fig 2. Basically, the input data 

and the weights are initialized randomly on the host side. Meanwhile, the Best 

Matching Unit (BMU) searching is implemented on the device side. In this 

process, the memory is allocated for the both side (host and device) and also 

transfer from host to device (vice versa). For instance, the weights and input data 

function variables are defined in a HostMatrix (host side) and in a DeviceMatrix 

(device side). Next, the ComputeDistanceskernel<<<L>>>, depicted in Fig. 3 is 

launched. This function is designed purposely to calculate the sum squared 

distance between the input data and weights, i.e. the  Euclidean distance. 

Subsequently, the reduction framework, MinIndex Kernel is launched (See Fig 4). 

The reduction process synchronizes the threads, in order to find the minimum 

value of BMU (x, y). Consequently, the result of each block is written to global 

memory. The minimum values are copied back to the host for updating the 

weights. Hence, the looping process continues until the termination criterion is 

satisfied and finally displays the result. On the other hand, all the processes from 

read the input data to display output are fully executed on the host (CPU) 
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implementation. The distance and BMU are compute on BestMatchingUnit() 

function; without transfer to device (see Fig 2). 

 

 
 

Fig. 2: SOM with GPUMLib Implementation on training the Host (CPU) and 

Device (GPU) 
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__global__ void ComputeDistancesKernel(float * inputData, float * 

weights, int vector, int numberFeatures, float * distances) { 

 extern __shared__ float sdist []; 

 

 int i = blockIdx.x; 

 int j = blockIdx.y; 

 

 int w = i * gridDim.y + j; // weights have two dimensions 

 

 float distance = 0.0; 

 

 for (int feature = threadIdx.x; feature < numberFeatures; 

 feature += blockDim.x) { 

  float fdist = inputData[vector * numberFeatures + feature] –  

   weights[w * numberFeatures + feature]; 

  distance += fdist * fdist; 

 } 

 sdist[threadIdx.x] = distance; 

 

 // reduction 

 __syncthreads(); 

 

 for (int dist = blockDim.x; dist >= 2;) { 

  dist /= 2; 

  if (threadIdx.x < dist) { 

   sdist[threadIdx.x] += sdist[threadIdx.x + dist]; 

  } 

  __syncthreads (); 

 } 

 

 if (threadIdx.x == 0) { 

  distances[w] = sqrt(sdist[0]); 
 } 

} 

Fig. 3: Launching a kernel to compute distances 

 
void KernelMinIndexes(cudaStream_t stream, int blocks, int 

blockSize, cudafloat * inputs, cudafloat * output, int * 

minIndexes, int numInputs, int * indexes) { 

MinSmallArrayIndex< blockSize ><<< blocks, blockSize, blockSize 

* (sizeof(cudafloat) + sizeof(int)), stream>>>(inputs, output, 

minIndexes, numInputs, indexes); 

} 

Fig 4: Launching a kernel to search the minimum value1 

 

4      Experimental Setup 

In this study, high dimensional biomedical dataset including gene expression 

data, protein profiling data and genomic sequence data that are related to 

                                                 
1 http://gpumlib.sourceforge.net 
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classification is shown in Table 1. The Leukemia training dataset consists of 38 

bone marrow samples which categorize as 27 Acute Myeloid Leukemia (ALL) 

and 11 Acute Lymphoblastic Leukemia (AML), over 7129 probes from 6817 

human genes. Also 34 samples testing data are provided, with 20 ALL and 14 

AML [24]. The prostate cancer training set contains 52 prostate tumor samples 

and 50 non-tumors which label as normal with 12600 genes. While, testing set 

consist of 25 tumor and 9 normal samples [25]. The proteomic patterns for 

ovarian cancer were generated by mass spectroscopy, which consists of 91 normal 

and 162 ovarian cancers. The raw spectral data of each sample contains 15154 

identities and 253 samples [8]. All datasets are normalized within the range of 0 to 

1.  

 

Table 1: Biomedical Dataset2 

No Dataset No. of 

Samples 

No. of Features Class Name 

1 Leukimia 72 7129 ALL 

AML 
 

2 Prostate 

Cancer 

136 12600 Tumor 

Normal 
 

3 Ovarian 

Cancer 

253 15154 Tumor 

Normal 
 

The SOM and MBP algorithms are executed on NVIDIA Tesla C2075 graphic 

hardware and Intel Xeon high performance computer. Both algorithms are tested 

on high dimensional biomedical datasets (Leukemia, Prostate Cancer and Ovarian 

Cancer). The SOM algorithm is setup for 1000 iterations in three different size of 

mapping. While the MBP algorithm executes for 10,000 iterations using the 

Autonomous Training System (ATS). Initially, MBP generates 100 networks with 

one and two hidden layers. The biomedical datasets such as Prostate cancer, 

ovarian cancer and leukemia dataset are indicated as large, medium and small 

feature dimensions. Meanwhile, the SOM mapping size (5x10, 10x10 and 10x15) 

are labeled as small, medium and large, respectively.  

 

5      Experimental Result and Analysis 

In this study, the aim of the analysis is to observe the capability of MBP and 

SOM algorithm using graphical hardware (GPU) on high performance computer 

(CPU). In this experiment, the size of SOM mapping dimension is categorized as 

mapping 1=5x10, mapping 2=10x10 and mapping 3= 10x15 (see Table 2). While, 

the number of hidden nodes are set to 100 for the first and a total 15 nodes for the 

                                                 
2 http://datam.i2r.a-star.edu.sg/datasets/krbd/ 
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second MBP network (see Table 3). Hence, large proportion size of mapping 

dimension, number of hidden nodes, iterations and feature dimensions of the 

dataset generates slow computation times for both algorithms. Since the 

computational time depends on certain parameters, we evaluate both algorithms 

with similar datasets, number of nodes and number of iterations. Moreover, the 

speed performance is calculated based on CPU time and GPU time, respectively. 

As a result, the SOM speed on GPU generates approximately three times speed 

up compare to CPU for all datasets as depicted in Fig. 5. Meanwhile, MBP 

produce significant performance with 27 times speed up for 10,000 iterations on 

Leukemia dataset (CPU time= 838s and GPU time=30.654s). Otherwise, SOM 

(Size of Mapping = 10x10) generates 533.726s on CPU; 12 times speed up than 

MBP network (100 nodes) with 6612s for 1000 iterations (see Table 4).  

 

Table 2: SOM (host and device) Speed Performance 

Dataset 
Performance 

Evaluation 
SOM Result 

 

Leukemia 

No. of Iteration 1000 

 Size of Mapping  Mapping 1 Mapping 2 Mapping 3 

5x10 10x10 10x15 

CPU time  356.436 s 533.726 s  

 

974.418 s 

GPU time 115.441 s 207.574 s  

 

301.79 s 

Speed 3.088 x 2.571 x  

 
3.229 x 

Prostate 

Cancer 

 

No. of Iteration 1000 

Size of Mapping Mapping 1 Mapping 2 Mapping 3 

5x10 10x10 10x15 

CPU time  

 

1621.65 s 2618.41 s  

 

4081.941 s 

GPU time 

 

660.474 s 1118.06 s  

 

1565.038 s 

Speed 2.455 x 2.341 x  

 
2.608 x 

Ovarian 

Cancer 

 

No. of Iteration 1000 

Size of Mapping 
Mapping 1 Mapping 2 Mapping 3 

5x10 10x10 10x15 

CPU time 

 

3455.925 s 6354.214 s 9116.06 s 

GPU time 

 

1086.895 s 2061.42 s 3166.077 s 

Speed 3.180 x 3.082 x 2.879 x 
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Fig. 5: SOM speed Analysis 

 

Table 3: MBP-GPU (device) Speed Performance 

Dataset 
Performance 

Evaluation 

 
MBP Result 

 

Leukemia 

MBP Network 7129-100-1 7129-5-10-1 

Min/Max Iteration Min Max Min Max 

No. of Iteration 146 163 230 10000 

GPU time 

 

8.892s 9.928s 0.702s 30.654s 

 

Prostate 

Cancer 

 

  
MBP Network 12600-100-1 12600-5-10-1 

Min/Max Iteration Min Max Min Max 

No. of Iteration 181 225 2996 10000 

GPU time 36.042s 44.805s 23.678s 79.119s 

Ovarian 

Cancer 

 

  

MBP Network 15154-100-1 15154-4-10-1 

Min/Max Iteration Min Max Min Max 

No. of Iteration 152 191 155 10000 

GPU time 

 

77.173s 96.955s 2.075s 134.134s 
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Table 4: MBP-CPU (host) Speed Performance in Leukemia dataset 

Performance 

Evaluation 
MBP Result 

Iteration 1000 10000 1000 10000 

MBP Network 7129-100-1 7129-5-10-1 

CPU time 6612s 48668s 109s 838s 

 

 

6      Conclusion 

In this study, we found that the results are proportionate to the mapping size of 

the SOM architecture and feature dimensions of the datasets. In other words, the 

larger the mapping size and feature dimensions, the slower the computation time 

for both CPU and GPU. This is due to ANNs (SOM and MBP) parameters that 

depend on size of mapping (number of nodes), dataset feature dimensions, 

number of input samples, and termination criterion (number of iterations or 

convergence rate). Our findings are conformed to the findings conducted by 

[12][14], i.e., larger mapping size will increase the memory transfer; thus slower 

the computational time [14]. The current GPU parallel implement of the SOM 

algorithm performs three times (3x) faster than the CPU, while the MBP is 27 

times faster than the CPU. However, the SOM’s speed could be improved with 

the parallelism on updating the weights.  It is important for larger (big data) 

datasets that do not fit on the GPU memory, consists of devising methods 

to choose a representative subset of the data. Alternatively, we can also create 

several maps for different data that could afterwards be merged together latter in a 

bigger map. Furthermore, the aim of SOM-GPUMLib implementation will be 

openly shared in the future. 
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