
Int. J. Advance Soft Compu. Appl, Vol. 6, No. 2, July 2014

ISSN 2074-8523; Copyright © SCRG Publication, 2014

Machine Learning Big Data Framework and

Analytics for Big Data Problems
Shafaatunnur Hasan1, Siti Mariyam Shamsuddin2, Noel Lopes3

1,2UTM Big Data Centre,

Universiti Teknologi Malaysia, Skudai, Johor

e-mail: shafaatunnur@gmail.com, mariyam@utm.my
3
UDI, Polytechnic Institute of Guarda, Portugal

CISUC, University of Coimbra, Portugal

e-mail: noel@ipg.pt

Abstract

 Generally, big data computing deals with massive and high dimensional data

such as DNA microrray data, financial data, medical imagery, satellite imagery

and hyperspectral imagery. Therefore, big data computing needs advanced

technologies or methods to solve the issues of computational time to extract

valuable information without information loss. In this context, generally, Machine

Learning (ML) algorithms have been considered to learn and find useful and

valuable information from large value of data. However, ML algorithms such as

Neural Networks are computationally expensive, and typically the central

processing unit (CPU) is unable to cope with these requirements. Thus, we need

high performance computer to execute faster solutions such Graphical Processing

Unit (GPU). GPUs provide remarkable performance gains compared to CPUs.

The GPU is relatively inexpensive with affordable price, availability and

scalability. Since 2006, NVIDIA provides simplification of the GPU programming

model with the Compute Unified Device Architecture (CUDA), which supports for

accessible programming interfaces and industry-standard languages, such as C

and C++. Since then, General Purpose Graphical Processing Unit (GPGPU)

using ML algorithms are applied on various applications; including signal and

image pattern classification in biomedical area. The importance of fast analysis of

detecting cancer or non-cancer becomes the motivation of this study. Accordingly,

we proposed machine learning framework and analytics of Self Organizing Map

(SOM) and Multiple Back Propagation (MBP) for big biomedical data

classification problems. Big data such as gene expression datasets are executed on

high performance computer and Fermi architecture graphical hardware. Based

on the experiment, MBP and SOM with GPU - Tesla generates faster computing

times than high performance computer with feasible results in terms of speed

performance.

 Keywords: GPGPU, big data framework, machine learning, soft computing,

SOM, MBP, biomedical classification problems.

S.Hasan et al. 2

1 Introduction

The volume of data being produced is increasing at an exponential rate due to

our unprecedented capacity to generate, capture and share vast amounts of data. In

this context, Machine Learning (ML) algorithms can be used to

extract information from these large volumes of data. However, these algorithms

are computationally expensive. Their computational requirements are usually

proportional to the amount of data being processed. Hence, ML algorithms often

demand prohibitive computational resources when facing large volumes of data.

As problems become increasingly challenging and demanding (in some cases

intractable by traditional CPU architectures), often toolkits supporting ML

software development fail to meet the expectations in terms of computational

performance. Therefore, the scientific breakthroughs of the future will

undoubtedly be powered by advanced computing capabilities that will allow

researchers to manipulate and explore massive datasets [1]. Somehow, the

pressure is to shift development toward high-throughput parallel architectures,

crucial for real-world applications. In this context, highly-parallel and

programmable devices such as GPU can be used for general-purpose computing

applications [2]. GPUs can provide remarkable performance gains compared to

CPUs. Moreover, they are relatively inexpensive with affordable price,

availability and scalability. Over the last few years, the number of GPU

implementations of ML algorithms has increased substantially [3]. However, most

of the implementations are not openly shared. The lack of openly available

implementations is a serious obstacle to algorithm replication and application to

new tasks and therefore poses a barrier to the progress of the ML field [4]. By

using CUDA architecture, an open source GPU machine learning library

(GPUMLib) was developed by Lopes and Ribeiro [3]. The aim is to provide the

building blocks for the development of efficient GPU ML software. GPUMLib

offers several advantages such as useful in adoption of soft computing methods

particularly on the neural network algorithms and fast detection of errors.

Moreover, most of the previous studies are focused on using Artificial Neural

Networks (ANNs) for pattern recognition [5][6][7]. Hence, we proposed Soft

Computing algorithms for big data problems, particularly in biomedical area. The

aim is to provide fast analysis in detecting the cancer from non-cancer based on

the extraction of useful information in gene expression, protein profiling and

genomic sequence data. This study is also significant to women who have a high

risk of ovarian cancer due to family or personal history of cancer [8]. The

remainder of this paper is organized as follows: Section 2 discusses the previous

studies on the development of Machine Learning methods such as ANN

algorithms on graphical hardware. Section 3 provides explanation on machine

learning big data framework and GPUMLib implementation; particularly on SOM

and MBP. Section 4 presents the experimental setup, followed by experimental

results and discussion in Section 5. Finally, a conclusion of the study will be

discussed in Section 6.

3 Soft Computing Methods

2 Related Work

Early studies, Soft Computing algorithm with graphical hardware

implementation has been proposed in game console application, supervised and

unsupervised Artificial Neural Network (ANN) algorithms [6]. In 1998, Bohn

started to implement SOM on Computer Graphics Interface (CGI) Workstation for

computer graphic applications [9]. Later, Zhongwen et al. started to apply SOM

algorithm with multi-pass method on commodity GPU’s (ATI 9550 and Nvidia

5700) and INTEL P4 2.4G for CPU computing [10]. Campbell et al. proposed

parameter-less SOM which eliminates the parameter of learning rate and

neighborhood size [11]. Furthermore, SOM is also evaluated on GPU cluster to

compute the scalability [12]. On the other hand, parallel implementation of SOM

to observe the suitability for high dimensional problem has been implemented by

[13][14]. In pattern classification, Kyoung-Su Oh and Keechul Jung applied

Multilayer Perceptrom (MLP) for text detection [5]. Prabhu proposed

unsupervised SOM for pattern classifier [15]. Meanwhile, Gadjos et al. applied

unsupervised SOM for outage database [16]. Subsequently, combination of

supervised and unsupervised SOM for image segmentation was introduced by

Faro et al. [7]. Moreover, Takatsuka et al. applied the Geodesic SOM on standard

machine learning dataset [17]. Their experimental results suggested that the GPU

speed performance is not significant for small datasets such as iris, but is

considerable on larger datasets (ionosphere and torus). In medical area,

preliminary studies focused mainly on detecting the cancer nodule and non-nodule

based on medical imagery [18]. In addition, Lopes and Ribeiro proposed parallel

BP and MBP for Ventricular Arrhythmias (VAs) in biomedical applications [19].

The aim of their method was to equip fast detection of diseases which highly

potential to sudden death.

Based on the previous study, there is still lacking of SOM-GPU

implementation for high dimensional pattern analysis particularly on biomedical

area. This is due to most of the studies, proposed feature selection process to cater

the nature of dataset problems. Furthermore, high dimensional features and

imbalance dataset have a great influence to the classification accuracy [20]. SOM

is an algorithm for exploratory data analysis which provides mapping from high

dimensional features to low dimensional features [21]. However, the distance

calculation and searching for the Best Matching Unit (BMU) generally increases

greatly the computational cost. Hence, we proposed a framework of machine

learning big data analytics and the parallel implementation of SOM and MBP to

speed up the computation time. The SOM and MBP with GPUMLib

implementation will be discussed in the next section.

S.Hasan et al. 4

3 Machine Learning Big Data Framework and GPU
Library (GPUMLib)

In this study, we propose machine learning big data framework as illustrated in

Fig.1. This framework envisages the broad picture of machine learning in dealing

with big data problems. The framework starts with the presentation of multi-

structure input varieties from different sources, follow by the pipeline pre-

processing phase prior to machine learning knowledge discovery. However, in

this paper, we implement the parallelism on machine learning approaches of big

data predictive knowledge discovery based on Neural Network (NN) algorithms;

Multiple Backpropagation (MBP) and Self Organizing Map (SOM) using

GPUMLib.

Fig. 1: Machine Learning Big Data Framework

MBP is an open-source algorithm built-in in GPUMLib [22]. Meanwhile, SOM

algorithm is proposed in this study for the parallel implementation on the distance

computation and BMU searching process. In the meantime, the parallelism on

SOM algorithm uses the GPUMLib memory access and reduction frameworks.

The GPUMLib memory access framework contains HostArray, HostMatrix,

DeviceArray, DeviceMatrix and CudaArray classes. The framework manages to

allocate the memory on the host and device, transfer data between host to device

and vice versa. In the reduction framework, the MinIndex Kernel is designed to

compute the minimum of an array and its corresponding index within the array.

Both algorithms use batch training for parallel implementation and will be

explained in section 3.1 and 3.2 respectively.

5 Soft Computing Methods

3.1 Parallel Multiple backpropagation (MBP)

MBP networks are designed based on multiple feed-forward architecture. They

differ from standard BP networks, as they integrate two networks designated by

main and space networks. The main network contains selective activation neurons

which determine their importance for the actual stimuli from the space network.

Therefore, the selective activation neurons choose and respond to specific group

of patterns based on the input presented to the main network. Consequently, fine-

tuning the network response according to the actual space localization

features.The main network only calculates its outputs after space network outputs

are evaluated. The implementation relies in five kernels: FireLayer,

FireOutputLayer, CalculateLocalGradient, CorrectWeights and

CorrectOutputWeights which execute in each epoch [22]. Initially, FireLayer and

FireOutputLayer kernels are launched by the host in order to determine the space

and main network output. Consequently, the main network weights are adjusted

using the parallelism of CalculateLocalGradient, CorrectWeights and

CorrectOutputWeights kernels. Finally, the space network weights are adjusted

with CorrectOutputWeights kernel. In addition, an Autonomous Training System

(ATS) is implemented to improve MBP result. The ATS train several MBPs to

select an appropriate MBP network topology. As new MBP networks are trained,

its performance is compared with the best MBP found so far. These results are

then used to determine the number of hidden neurons of a new MBP and adjusted

accordingly until the termination criterion is satisfied [23].

3.2 Parallel Self Organizing Map (SOM)

The SOM implementation, developed in this study, using the GPUMLib is

executed on GPU (host and device) and CPU (host only). For better

representation, the implementation is depicted in Fig 2. Basically, the input data

and the weights are initialized randomly on the host side. Meanwhile, the Best

Matching Unit (BMU) searching is implemented on the device side. In this

process, the memory is allocated for the both side (host and device) and also

transfer from host to device (vice versa). For instance, the weights and input data

function variables are defined in a HostMatrix (host side) and in a DeviceMatrix

(device side). Next, the ComputeDistanceskernel<<<L>>>, depicted in Fig. 3 is

launched. This function is designed purposely to calculate the sum squared

distance between the input data and weights, i.e. the Euclidean distance.

Subsequently, the reduction framework, MinIndex Kernel is launched (See Fig 4).

The reduction process synchronizes the threads, in order to find the minimum

value of BMU (x, y). Consequently, the result of each block is written to global

memory. The minimum values are copied back to the host for updating the

weights. Hence, the looping process continues until the termination criterion is

satisfied and finally displays the result. On the other hand, all the processes from

read the input data to display output are fully executed on the host (CPU)

S.Hasan et al. 6

implementation. The distance and BMU are compute on BestMatchingUnit()

function; without transfer to device (see Fig 2).

Fig. 2: SOM with GPUMLib Implementation on training the Host (CPU) and

Device (GPU)

7 Soft Computing Methods

__global__ void ComputeDistancesKernel(float * inputData, float *

weights, int vector, int numberFeatures, float * distances) {

 extern __shared__ float sdist [];

 int i = blockIdx.x;

 int j = blockIdx.y;

 int w = i * gridDim.y + j; // weights have two dimensions

 float distance = 0.0;

 for (int feature = threadIdx.x; feature < numberFeatures;

 feature += blockDim.x) {

 float fdist = inputData[vector * numberFeatures + feature] –

 weights[w * numberFeatures + feature];

 distance += fdist * fdist;

 }

 sdist[threadIdx.x] = distance;

 // reduction

 __syncthreads();

 for (int dist = blockDim.x; dist >= 2;) {

 dist /= 2;

 if (threadIdx.x < dist) {

 sdist[threadIdx.x] += sdist[threadIdx.x + dist];

 }

 __syncthreads ();

 }

 if (threadIdx.x == 0) {

 distances[w] = sqrt(sdist[0]);
 }

}

Fig. 3: Launching a kernel to compute distances

void KernelMinIndexes(cudaStream_t stream, int blocks, int

blockSize, cudafloat * inputs, cudafloat * output, int *

minIndexes, int numInputs, int * indexes) {

MinSmallArrayIndex< blockSize ><<< blocks, blockSize, blockSize

* (sizeof(cudafloat) + sizeof(int)), stream>>>(inputs, output,

minIndexes, numInputs, indexes);

}

Fig 4: Launching a kernel to search the minimum value1

4 Experimental Setup

In this study, high dimensional biomedical dataset including gene expression

data, protein profiling data and genomic sequence data that are related to

1 http://gpumlib.sourceforge.net

S.Hasan et al. 8

classification is shown in Table 1. The Leukemia training dataset consists of 38

bone marrow samples which categorize as 27 Acute Myeloid Leukemia (ALL)

and 11 Acute Lymphoblastic Leukemia (AML), over 7129 probes from 6817

human genes. Also 34 samples testing data are provided, with 20 ALL and 14

AML [24]. The prostate cancer training set contains 52 prostate tumor samples

and 50 non-tumors which label as normal with 12600 genes. While, testing set

consist of 25 tumor and 9 normal samples [25]. The proteomic patterns for

ovarian cancer were generated by mass spectroscopy, which consists of 91 normal

and 162 ovarian cancers. The raw spectral data of each sample contains 15154

identities and 253 samples [8]. All datasets are normalized within the range of 0 to

1.

Table 1: Biomedical Dataset2

No Dataset No. of

Samples

No. of Features Class Name

1 Leukimia 72 7129 ALL

AML

2 Prostate

Cancer

136 12600 Tumor

Normal

3 Ovarian

Cancer

253 15154 Tumor

Normal

The SOM and MBP algorithms are executed on NVIDIA Tesla C2075 graphic

hardware and Intel Xeon high performance computer. Both algorithms are tested

on high dimensional biomedical datasets (Leukemia, Prostate Cancer and Ovarian

Cancer). The SOM algorithm is setup for 1000 iterations in three different size of

mapping. While the MBP algorithm executes for 10,000 iterations using the

Autonomous Training System (ATS). Initially, MBP generates 100 networks with

one and two hidden layers. The biomedical datasets such as Prostate cancer,

ovarian cancer and leukemia dataset are indicated as large, medium and small

feature dimensions. Meanwhile, the SOM mapping size (5x10, 10x10 and 10x15)

are labeled as small, medium and large, respectively.

5 Experimental Result and Analysis

In this study, the aim of the analysis is to observe the capability of MBP and

SOM algorithm using graphical hardware (GPU) on high performance computer

(CPU). In this experiment, the size of SOM mapping dimension is categorized as

mapping 1=5x10, mapping 2=10x10 and mapping 3= 10x15 (see Table 2). While,

the number of hidden nodes are set to 100 for the first and a total 15 nodes for the

2 http://datam.i2r.a-star.edu.sg/datasets/krbd/

9 Soft Computing Methods

second MBP network (see Table 3). Hence, large proportion size of mapping

dimension, number of hidden nodes, iterations and feature dimensions of the

dataset generates slow computation times for both algorithms. Since the

computational time depends on certain parameters, we evaluate both algorithms

with similar datasets, number of nodes and number of iterations. Moreover, the

speed performance is calculated based on CPU time and GPU time, respectively.

As a result, the SOM speed on GPU generates approximately three times speed

up compare to CPU for all datasets as depicted in Fig. 5. Meanwhile, MBP

produce significant performance with 27 times speed up for 10,000 iterations on

Leukemia dataset (CPU time= 838s and GPU time=30.654s). Otherwise, SOM

(Size of Mapping = 10x10) generates 533.726s on CPU; 12 times speed up than

MBP network (100 nodes) with 6612s for 1000 iterations (see Table 4).

Table 2: SOM (host and device) Speed Performance

Dataset
Performance

Evaluation
SOM Result

Leukemia

No. of Iteration 1000

 Size of Mapping Mapping 1 Mapping 2 Mapping 3

5x10 10x10 10x15

CPU time 356.436 s 533.726 s

974.418 s

GPU time 115.441 s 207.574 s

301.79 s

Speed 3.088 x 2.571 x

3.229 x

Prostate

Cancer

No. of Iteration 1000

Size of Mapping Mapping 1 Mapping 2 Mapping 3

5x10 10x10 10x15

CPU time

1621.65 s 2618.41 s

4081.941 s

GPU time

660.474 s 1118.06 s

1565.038 s

Speed 2.455 x 2.341 x

2.608 x

Ovarian

Cancer

No. of Iteration 1000

Size of Mapping
Mapping 1 Mapping 2 Mapping 3

5x10 10x10 10x15

CPU time

3455.925 s 6354.214 s 9116.06 s

GPU time

1086.895 s 2061.42 s 3166.077 s

Speed 3.180 x 3.082 x 2.879 x

S.Hasan et al. 10

Fig. 5: SOM speed Analysis

Table 3: MBP-GPU (device) Speed Performance

Dataset
Performance

Evaluation

MBP Result

Leukemia

MBP Network 7129-100-1 7129-5-10-1

Min/Max Iteration Min Max Min Max

No. of Iteration 146 163 230 10000

GPU time

8.892s 9.928s 0.702s 30.654s

Prostate

Cancer

MBP Network 12600-100-1 12600-5-10-1

Min/Max Iteration Min Max Min Max

No. of Iteration 181 225 2996 10000

GPU time 36.042s 44.805s 23.678s 79.119s

Ovarian

Cancer

MBP Network 15154-100-1 15154-4-10-1

Min/Max Iteration Min Max Min Max

No. of Iteration 152 191 155 10000

GPU time

77.173s 96.955s 2.075s 134.134s

11 Soft Computing Methods

Table 4: MBP-CPU (host) Speed Performance in Leukemia dataset

Performance

Evaluation
MBP Result

Iteration 1000 10000 1000 10000

MBP Network 7129-100-1 7129-5-10-1

CPU time 6612s 48668s 109s 838s

6 Conclusion

In this study, we found that the results are proportionate to the mapping size of

the SOM architecture and feature dimensions of the datasets. In other words, the

larger the mapping size and feature dimensions, the slower the computation time

for both CPU and GPU. This is due to ANNs (SOM and MBP) parameters that

depend on size of mapping (number of nodes), dataset feature dimensions,

number of input samples, and termination criterion (number of iterations or

convergence rate). Our findings are conformed to the findings conducted by

[12][14], i.e., larger mapping size will increase the memory transfer; thus slower

the computational time [14]. The current GPU parallel implement of the SOM

algorithm performs three times (3x) faster than the CPU, while the MBP is 27

times faster than the CPU. However, the SOM’s speed could be improved with

the parallelism on updating the weights. It is important for larger (big data)

datasets that do not fit on the GPU memory, consists of devising methods

to choose a representative subset of the data. Alternatively, we can also create

several maps for different data that could afterwards be merged together latter in a

bigger map. Furthermore, the aim of SOM-GPUMLib implementation will be

openly shared in the future.

ACKNOWLEDGEMENTS
This work is supported by Universiti Teknologi Malaysia under Flagship Project:

QJ130000.2428.02G38. The authors would like to thanks Research Management

Centre (RMC), Universiti Teknologi Malaysia (UTM) for the support in R & D,

and Soft Computing Research Group (SCRG) for the inspiration in making this

study a success. The authors would also like to thank the anonymous reviewers

who have contributed enormously to this work.

References

[1] Hey, T., Tansley, S., Tolle, K., editors (2009). The Fourth Paradigm: Data-

Intensive Scientific Discovery. Microsoft Research.

S.Hasan et al. 12

[2] Owens, J. D., Houston, M., Luebke, D., Green, S., Stone, J. E., Phillips, J. C.

(2008). GPU computing. Proceedings of the IEEE, 96(5):879–899.

[3] Lopes, N., Ribeiro, B., Quintas, R. (2010): GPUMLib: A new Library to

combine Machine Learning algorithms with Graphics Processing Units. HIS

2010: 229-232

[4] Sonnenburg, S., Braun, M. L., Ong, C. S., Bengio, S., Bottou,L., Holmes, G.,

LeCun, Y., M¨ uller, K.-R., Pereira, F.,Rasmussen, C. E., R¨ atsch, G., Sch¨

olkopf, B., Smola, A.,Vincent, P., Weston, J., and Williamson, R. C. (2007).The

need for open source software in machine learning.Journal of Machine Learning

Research, 8:2443–2466.

[5] Kyoung S. H. Keechul J., (2004). GPU implementation of neural networks,

Pattern Recognition, vol. 37, (6), pp. 1311-1314.

[6] Meuth, R., Wunsch, D. C. (2007). A Survey of Neural Computation on

Graphics Processing Hardware. IEEE 22nd International Symposium on

Intelligent Control, 2007. ISIC 2007.

[7] Faro, A., Giordano, D., Palazzo, S. (2012). Integrating unsupervised and

supervised clustering methods on a GPU platform for fast image segmentation.

3rd International Conference on Image Processing Theory, Tools and

Applications (IPTA), 2012

[8] Petricoin III, Emanuel F., Ali M. A., Ben A. H., Peter J. L., Vincent A. F.,

Seth M. S., Gordon B. M. et al. (2002): Use of proteomic patterns in serum to

identify ovarian cancer. The lancet 359, no. 9306 572-577

[9] Bohn, C.A. (1998). Kohonen Feature Mapping Through Graphics Hardware.

In Proceedings of 3rd Int. Conference on Computational Intelligence and

Neurosciences.

[10] Zhongwen L., Hongzhi L., Zhengping Y., Xincai W., (2005) Self-Organizing

Maps computing on Graphic Process Unit, in 1 3th European Symposium on

Artificial Neural Networks, Belgium, pp. 557-562.

[11] Campbell, A., Berglund, E., Streit, A. (2005). Graphics Hardware

Implementation of the Parameter-Less Self-organising Map. In M. Gallagher, J.

Hogan & F. Maire (Eds.), Intelligent Data Engineering and Automated Learning -

IDEAL 2005 (Vol. 3578, pp. 343-350): Springer Berlin Heidelberg.

13 Soft Computing Methods

[12] McConnell, S., Sturgeon, R., Henry, G., Mayne, A., Hurley, R. (2012).

Scalability of Self-organizing Maps on a GPU cluster using OpenCL and CUDA.

Paper presented at the Journal of Physics: Conference Series.

[13] Platos, J., Gajdos, P. (2010). Large data real-time classification with Non-

negative Matrix Factorization and Self-Organizing Maps on GPU. International

Conference on.Computer Information Systems and Industrial Management

Applications (CISIM)

[14] Gajdoš, P., Platoš, J. (2013) GPU Based Parallelism for Self-Organizing

Map, in Proceedings of the Third International Conference on Intelligent Human

Computer Interaction (IHCI 2011), Prague, Czech Republic, August, 2011. vol.

179, M. Kudělka, et al., Eds., ed: Springer Berlin Heidelberg, pp. 231-242.

[15] Prabhu, R. D. (2008). SOMGPU: An unsupervised pattern classifier on

Graphical Processing Unit, in Evolutionary Computation,CEC 2008. IEEE World

Congress on Computational Intelligence, pp. 1011-1018.

[16] Gajdoš, P., Krátký, M., Bednár, D., Baca, R., Gono, R., Walder, J. (2011).

Efficient Computation of SOM for Outage Database. ELNET 2011, 51.

[17] Takatsuka, M., Bui, M. (2010). Parallel Batch Training of the Self-

Organizing Map Using OpenCL. In K. Wong, B. S. Mendis & A. Bouzerdoum

(Eds.), Neural Information Processing. Models and Applications (Vol. 6444, pp.

470-476): Springer Berlin Heidelberg.

[18] Eklund, A., Dufort, P., Forsberg, D., LaConte, S. M. (2013). Medical Image

Processing on the GPU - Past, Present and Future. Medical Image Analysis.

Elsevier.

[19] Lopes, N., Ribeiro, B. (2009). Fast pattern classification of ventricular

arrhythmias using graphics processing units. In Proceedings of the 14th

Iberoamerican Conference on Pattern Recognition (CIARP 2009), LNCS 5856,

pages 603–610. Springer.

[20] Tanwani, A., Farooq, M. (2009). The Role of Biomedical Dataset in

Classification. In C. Combi, Y. Shahar & A. Abu-Hanna (Eds.), Artificial

Intelligence in Medicine,Vol. 5651, pp. 370-374, Springer Berlin Heidelberg.

[21] Kohonen, T. (2001): Self-Organizing Maps. Springer Series in Information

Sciences.Vol. 30. (3
rd

 ed) Extended Edition. Springer-Berlin.

S.Hasan et al. 14

[22] Lopes, N., Ribeiro, B. (2009). GPU implementation of the multiple back-

propagation algorithm. In Intelligent Data Engineering and Automated Learning-

IDEAL 2009 (pp. 449-456). Springer Berlin Heidelberg.

[23] Lopes, N., Ribeiro, B. (2010). A strategy for dealing with missing values by

using selective activation neurons in a multi-topology framework. The 2010

International Joint Conference on Neural Networks (IJCNN), pp. 1-5. IEEE.

[24] Golub, T. R., Donna K. S, Pablo T., Christine H., Michelle G., Jill P. M.,

Hilary C. et al. (1999). Molecular classification of Cancer: Class Discovery and

Class Prediction by Gene Expression Monitoring. Science 286, no. 5439: 531-537.

[25] Singh, D., Phillip G. F., Kenneth R., Donald G. J., Judith M., Christine L.,

Pablo T. et al. (2002). Gene Expression Correlates of Clinical Prostate Cancer

Behavior. Cancer Cell 1, no. 2: 203-209.

