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Abstract 

     Many hydrologists proclaimed Tank model is able to achieve 
comparable or better forecasting results than more sophisticated 
models even with its simple concept and computation. With the 
development of Artificial Intelligence (AI) in recent years, various 
Global Optimization Methods (GOMs) had been adopted to calibrate 
Tank model parameters automatically. However, these GOMs are 
only able to search optimal result for a single objective function. The 
calibration and validation processes need to be repeated for each 
objective function in searching the optimal solution and this 
consumes a lot of time and effort. Hence, multiobjective particle 
swarm optimization (MOPSO) is adapted in this study to allow PSO 
be able to deal with a few objective optimization functions 
simultaneously. The selected study area is Bedup basin, Samarahan, 
Sarawak, Malaysia. Input data used for model calibration are hourly 
and daily rainfall and runoff. Two sets of objective functions are 
investigated. The first set of optimization function consists of 
ordinary least square (OLS) and root mean square error (RMSE). 
Where else the second set objective function consists of OLS, RMSE 
and coefficient and correlation (R). The accuracy of the simulation 
results are measured using R and Nash-Sutcliffe Coefficient (E2). 
Results revealed that the performance of MOPSO with 3 objective 
functions is slightly better than MOPSO with 2 objective functions 
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for both hourly and daily Tank model. Results also proved that 
MOPSO is able to discover a set of optimal nondominated solution 
through the true Pareto optimal solutions for the test problems 
considered. 

     Keywords: Hydrological Tank model, Particle Swarm Optimization (PSO), 
Multiobjective Optimization, Pareto Optimal solutions. 

1      Introduction 

Tank Model was firstly introduced by Sugawara and Funiyuki in 1956. Tank 

model represents the catchment surface and the underlying system of soil strata 

using a series of tanks and simple equations.  Many hydrologists proclaimed Tank 

model is simple in concept and computation, while achieving forecasting results 

comparable or better than more sophisticated models such as Sacramento Model 

and the Linear Perturbation Model.  

The main challenge in the development of Tank model is searching the optimal 

parameters set. In recent years, hydrologist used automatic calibration technique 

to calibrate the model parameters automatically (Sorooshian & Dracup, 1980; 

James & Burges, 1982; Sorooshian & Gupta, 1983; Hendrickson et al., 1988; 

Franchini, 1996). Among the Global Optimization Methods (GOMs) used, Kuok 

(2010) found that the most reliable and promising auto-calibration method is 

Particle Swarm Optimization (PSO). 

In the past, PSO has proven its ability to solve single objective optimization 

problems (Abido, 2002; Wachowiak et al., 2004; Tasgetiren et al., 2004; Mishra, 

2005). In order to search the most suitable optimization function, Cooper et al. 

(1997) calibrated Tank model with ordinary least squares (OLS), Nash coefficient 

(NAS), root mean square error of the peaks (PKS) and root mean square error of 

the average flows (FLW) separately.  Cooper et al. (1997) repeated the 

experiments for twenty five times for each single objective function and this 

consumed a lot of time and effort. Therefore, multiobjective particle swarm 

optimization (MOPSO) is adapted in this study to allow PSO to deal with 

multiobjective optimization functions simultaneously. Till to date, little work was 

done on multiobjective optimization problems. 

PSO is suitable for solving multiobjective optimization problems due to its ability 

for searching multiple Pareto optimal solutions simultaneously and perform better 

global search within the search space (Zitzler, 1999). PSO is simple in concept 

and easy to implement. Besides, the convergence speed is high and it is able to 

compute efficiently. Concurrently, PSO also found to be flexible and built with 

well-balanced mechanism for enhancing and adapting global and local exploration 

abilities (Abido, 2007).  

In recent years, only a few researchers applied MOPSO in hydrology. Alexandre 

and Darrel (2006) applied MOPSO for finding nondominated Pareto solutions 
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when minimizing deviations from outflow water quality targets. Janga and 

Nagesh (2007) used MOPSO approach to generate Pareto-optimal solutions for 

reservoir operation problems. 

2      Study Area 

The selected study area is Bedup basin, about 47.5km2 in area and located 

approximately 80km from Kuching City, Sarawak, Malaysia. Bedup basin is 

mainly covered with shrubs, low plant and forest. The elevation are varies from 

8m to 686m above mean sea level (JUPEM, 1975). There is no significant land 

use change in the past 30 years. The length of Bedup river is approximately 10km. 

Main soil type of Bedup basin is clayey soils and part of it is covered with coarse 

loamy soil. 

Bedup river is located at upper stream of Batang Sadong, where the tide is not 

reachable. Rating curve equation for Bedup basin is represented by Equation 1 

(DID, 2012).  

                                                     Q=9.19( H )1.9                                                   (1) 

where Q is the discharge (m3/s) and H is the stage discharge (m). These observed 

runoff data were used to compare the model runoff.  

 

 

        Fig. 1:  Locality map of Bedup basin, Sub-basin of Sadong basin, Sarawak 

b) Sadong basin and river network (DID, 2012) c) Bedup basin  
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Fig.1 shows the location of Bedup basin, which is at south west of the land of 

Borneo. Fig. 1b shows the boundary of Sadong basin, and its rainfall and water 

level gauging stations that were installed by Department of Irrigation and 

Drainage (DID) Sarawak. Fig. 1c presents the 5 current rainfall gauging stations 

available within Bedup basin named as Bukit Matuh (BM), Semuja Nonok (SN), 

Sungai Busit (SB), Sungai Merang (SM) and Sungai Teb (ST), and one river stage 

gauging station at Sungai Bedup.  

For calibration and validation purposes, input data fed into Tank model are hourly 

and daily areal rainfall data that obtained through Thiessen Polygon Analysis. 

Area weighted precipitation for BM, SN, SB, SM, ST are 0.17, 0.16, 0.17, 0.18 

and 0.32 respectively. The calibrated Tank model will then carry out computation 

to simulate the hydrograph at Bedup outlet. 

3      Methodology 

3.1    Headings and format Multiobjective Particle Swarm 
Optimization (MOPSO) 

The basic concept of MOPSO is solving an optimization problem by optimizing 

several possibly conflicting objectives simultaneously using an external repository 

and a mutation operator. The reason for optimizing a set of objective functions 

simultaneously is that no one can consider better than any other with respect to all 

objective functions. In MOPSO, the notion of preference must be initially 

established in order to determine which one dominates another. The preference 

widely used by multiobjective optimizers is Pareto preference and the optimal 

solutions discovered are Pareto-optimal solutions. In Pareto preference, the set of 

nondominated obtained is referred to the Pareto set.  

There are two main differences between MOPSO and PSO. The first significant 

difference is a set of nondominated solutions in MOPSO are replacing the single 

global best individual in the single objective PSO. The second difference is there 

might be no single local best individual for each particle of the swarm in MOPSO. 

Hence, choosing the global best and local best to guide the swarm particles 

becomes nontrivial task in MOPSO (Abido, 2007). In addition, elitism is also 

considered by copying any nondominated solution obtained to an external set in 

order to keep the new nondominated solutions obtained during generations. The 

external set is updated regularly to hold only the nondominated solutions.  

Generally, there are 11 steps of computational procedures for MOPSO as listed 

below. Details of computational procedures can refer to Abido (2007) and the 

basic MOPSO procedure is illustrated in Fig.2. 

Step 1 - Initialization 

Step 2 - Time updating 

Step 3 - Weight updating 
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Step 4 - Velocity updating  

Step 5 - Position updating 

Step 6 - Nondominated local set updating 

Step 7 - Nondominated global set updating 

Step 8 - External set updating 

Step 9 - Local best and global best updating 

Step 10 - Stopping criteria 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2: Basic MOPSO procedure 

 

MOPSO consists of three major elements namely:  

a) Nondominated local set, Sj*(t): Sj*(t) stores the nondominated solutions 

obtained by the jth particle up to the current time. As the jth particle moves 

through the search space, the new position is added and the set is updated 

to keep only the nondominated solutions. If nondominated local set size 

exceeds a certain prespecified value, average linkage based hierarchical 

clustering algorithm (Morse, 1980) will be employed to reduce the 

nondominated local set size. 

b) Nondominated global set, S**(t): S**(t) stores the nondominated 

solutions obtained by the jth particle up to the current time. The union of 

all Sj*(t) is formed, and the nondominated solutions out of this union are 

members in S**(t). An average linkage based hierarchical clustering 
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algorithm is employed to reduce the nondominated global set to a 

manageable size. 

c) Local best, Xj*(t) and Global best, Xj**(t): Xj*(t) and Xj**(t) are the 

individual distances between members in Sj*(t) and S**(t) respectively, 

that are measured in the objective space. Xj *(t) and Xj **(t) are selected as 

the local best and the global best of the jth particle respectively when they 

give the minimum distance in Sj*(t) and S**(t) respectively. 

3.2     Tank Model Parameters 

Four vertically connected storage vessels (4-Tank) was selected in this study. The 

4 tanks are named as TS1, TS2, TS3 and TS4 (refer to Fig. 3). Every tank has one 

or more side and bottom outlets. Side outlet flow will happen when the water 

level in each tank is higher than the height of side outlets. The output from the 

bottom outlet of the TS1 (located the top) could be regard as infiltration. 

Meanwhile, the outputs from the bottom outlets for the rest of the tanks (TS2, TS3 

and TS4) could be regarded as percolation.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3: Schematic of Tank model used in this study 

 

The side outlet coefficients of 4-Tank model are C1, C2, C4, C6 and C8. The 

bottom outlet coefficients consist of C3, C5 and C7, and X1, X2, X3, X4 and X5 
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are height of side outlets. Prior to calibration, parameters X3, X4 and X5 were 

found to have little impact to model output and the values obtained are always 

near to 0. Hence, X3, X4 and X5 values are set to 0 in this study. Thereafter, the 

remaining 10 parameters calibrated automatically by MOPSO are C1, C2, C3, C4, 

C5, C6, C7, C8, X1 and X2. The descriptions of 10 parameters are tabulated in 

Table 1.  

 

Table 1: The description of the 10 parameters for Tank model 

No Coefficient Identification 

1 C1 Side outlet coefficients No.1 for TS1 

2 C2 Side outlet coefficients No.2 for TS1 

3 C3 Bottom outlet coefficient from TS1 to TS2 

4 C4 Side outlet coefficients for TS2 

5 C5 Bottom outlet coefficient from TS2 to TS3 

6 C6 Side outlet coefficients for TS3 

7 C7 Bottom outlet coefficient from TS3 to TS4 

8 C8 Side outlet coefficients for TS4 

9 X1 Height of side outlets No.2 for TS1 

10 X2 Height of side outlets No.1 for TS1 

 

The total discharge, Q was calculated using Equation 2.   

                    Q= C1Q1 + C2Q2 + C4Q3 + C6Q4 + C8Q5                        (2) 

3.3     Objective Functions 

This study evaluates two sets of multiobjective functions. The first set consists of 

ordinary least squares (OLS) and root mean squared error (RMSE). Meanwhile, 

the second set composed of OLS, RMSE and coefficient of correlation (R). The 

aim is to investigate the effect of number of objective functions to the accuracy of 

optimization results. 

OLS is a method for estimating the unknown parameters in a linear regression 

model.  OLS minimizes the sum of squared vertical distances between the 

observed responses in the dataset, and the responses predicted by the linear 

approximation. Meanwhile RMSE is used to quantify the difference between an 

estimator and the true value of the quantity being estimated. RMSE also measures 

the average of the square of the "error." Besides, R measures the strength of the 

linear relationship between two variables that is defined in terms of the dataset 

covariance of the variables divided by dataset standard deviations.  

3.4     Model Calibration and Validation 

The input data to hourly Tank model calibration are hourly average areal rainfall 

and discharge data from 8 to 12 Aug 1998. The calibrated model will be validated 
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with 11 sets of hourly data tabulated in Table 2. Meanwhile, daily average areal 

rainfall and discharge data from 1 Aug 1998 to 31 Dec 1998 are used for daily 

Tank model calibration. Thereafter, the optimal daily Tank model will be further 

validated with 11 sets of daily data as presented in Table 3.  

In order to find the optimal parameters set, hourly and daily Tank models will be 

investigated with: 

1. Different probability of mutation (pMut) including 0, 0.1, 0.2, 0.3, 0.4, 0.5, 

0.6, 0.7 and 0.8. 

2. Different number of nondominated solutions in archive (nondomCtr)  0, 

0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7 and 0.8. 

 

Table 2: Validation data sets for hourly model 

 

 

 

 

                                 

 

 

Table 3:Validation data sets for daily model 

Item Period 

1 1 Aug 1992 to 31 Dec 1992 

2 1 Aug 1993 to 31 Dec 1993 

3 1 to 31 Jan 1992 , 1 Apr 1992 to 31 Jul 1992 

4 1 Jan 2000 to 30 Jun 2000 

5 1 Jan 2002 to 30 Jun 2002 

6 1 Jan 2003 to 30 Jun 2003 

7 1 Jan 1990 to 31 May 1990 

8 1 Jan 1993 to 31 May 1993 

9 1 Jul 2000 to 31 Dec 2000 

10 1 Jul 2002 to 31 Dec 2002 

11 1 Jul 2003 to 31 Dec 2003 

Item Period 

1 1-7 Jan 1999 

2 5-8 Apr 1999 

3 5-8 Feb 1999 

4 8-12 Aug 1998 

5 9-12 Sep 1998 

6 15-18 Mac 1999 

7 20-24 Jan 1999 

8 26-31 Jan 1999 

9 5-8 Apr 2000 

10 18-21 Jan 2000 

11 9-12 Oct 2003 
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4      Results and Discussions 

For hourly Tank, the optimal configuration and optimal parameters for 2 and 3 

objective functions are tabulated in Table 4. 

 

Table 4: Optimal configuration and parameters of hourly Tank model for 2 and 3 

objective functions 

 2 objective functions 3 objective functions 

Optimal Configurations 

Numbers of particles in the 

population 

100 100 

Maximum number of generations 1000 1000 

pMut 0.3 0.2 

nondomCtr 0.2 0.2 

Optimal Parameters 

C1 0.04493 0.041006 

C2 0.001212 0.000876 

X1 0.04858 0.038918 

X2 0.049373 0.005549 

C3 0.006541 0.002268 

C4 0.001747 0.01457 

C5 0.035347 0.043932 

C6 0.039015 0.024109 

C7 0.039142 0.043001 

C8 0.037816 0.042907 

 

For hourly calibration set, the best R, E2 and peak error obtained are found to be 

0.7954, 0.7735 and 9.24% respectively for 2 objective functions. As the optimal 

parameters validated with 11 sets of hourly data, the average R, E2 and peak error 

are yielding to 0.8780, 0.7530 and 15.85% respectively. Meanwhile for 3 

objective functions, the optimal R, E2 and peak error for hourly model calibration 

are found to be 0.8535, 0.8704 and 0.43% respectively. The average R, E2 and 

peak error obtained for 11 sets of validation data are improved to 0.8522, 0.8082 

and 10.55% respectively using the optimal parameter set. Validation results for 2 

and 3 objective functions for hourly Tank model are tabulated in Table 5.  

 

Table 5: Validation results for hourly tank model optimized with 2 and 3 objective 

functions. 

 

Storm Event 

2 objective functions 3 objective functions 

R E2 peak 

error% 

R E2 peak 

error% 

1-7 Jan 1999 0.8310 0.8356 21.34 0.8882 0.8090 13.23 

5-8 Apr 1999 0.8349 0.5796 24.26 0.7942 0.5651 21.97 
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5-8 Feb 1999 0.9075 0.6364 19.07 0.8357 0.8307 6.03 

8-12 Aug 1998 0.8450 0.7903 9.24 0.7590 0.7752 0.43 

9-12 Sep 1998 0.9631 0.9033 18.24 0.9453 0.9571 11.83 

15-18 Mac 1999 0.9173 0.6589 18.71 0.8803 0.8621 13.26 

20-24 Jan 1999 0.9138 0.9025 3.88 0.8846 0.9126 8.10 

26-31 Jan 1999 0.8444 0.5723 14.49 0.8507 0.7783 4.58 

5-8 Apr 2000 0.8358 0.9465 4.59 0.8332 0.8679 5.79 

18-21 Jan 2000 0.9042 0.6350 18.62 0.8924 0.7279 19.52 

9-12 Oct 2003 0.8608 0.8221 21.90 0.8105 0.8041 11.31 

Average 0.8780 0.7530 15,85 0.8522 0.8082 10.55 

 

Table 6 presents the optimal configuration and optimal parameters for 2 and 3 

objective functions for daily Tank Model. 

 

Table 6: Optimal configuration and parameters of daily Tank model for 2 and 3 

objective functions.  

 2 objective functions 3 objective functions 

Optimal Configurations 

Numbers of particles in the 

population 

100 100 

Maximum number of generations 1000 1000 

pMut 0.4 0.3 

nondomCtr 0.3 0.3 

Optimal Parameters 

C1 0.751597 0.212304 

C2 0.617975 0.016427 

X1 0.151455 0.140361 

X2 0.564359 0.812545 

C3 0.617435 0.618418 

C4 0.292717 0.191117 

C5 0.71284 0.313945 

C6 0.992902 0.007968 

C7 0.447575 0.95198 

C8 0.761768 0.080796 

 

The best R and E2 obtained for daily model calibration using 2 objective functions 

are found to be 0.7407 and 0.6550 respectively. As the optimal parameters 

validated with 11 sets of data, the average R and E2 are yielding to 0.6543 and 

0.6872 respectively. For 3 objective functions, the optimal R and E2 for daily 

model calibration are found to be 0.8161 and 0.7478 respectively. Meanwhile, the 

average R and E2 obtained are improved to 0.7415 and 0.6944 respectively using 

the optimal parameter set when validated with 11 sets of daily data. Validation 
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results for 2 and 3 objective functions for daily Tank model are tabulated in Table 

7.  

 

Table 7: Validation results for daily tank model optimized with 2 and 3 objective 

functions. 

Storm Event 2 objective functions 3 objective functions 

R E2 R E2 

1 Aug 1992 to 31 Dec 1992 0.6510 0.6637 0.7372 0.5904 

1 Aug 1993 to 31 Dec 1993 0.6267 0.6515 0.7149 0.6623 

1 to 31 Jan 1992 , 1 Apr 1992 to 

31 Jul 1992 

0.7176 0.8221 0.7987 0.7424 

1 Jan 2000 to 30 Jun 2000 0.6472 0.7993 0.7378 0.5445 

1 Jan 2002 to 30 Jun 2002 0.8334 0.8131 0.8920 0.8229 

1 Jan 2003 to 30 Jun 2003 0.5118 0.5047 0.6688 0.7132 

1 Jan 1990 to 31 May 1990 0.5846 0.5990 0.6577 0.5251 

1 Jan 1993 to 31 May 1993 0.6760 0.8503 0.7378 0.8475 

1 Jul 2000 to 31 Dec 2000 0.6711 0.5869 0.7688 0.5952 

1 Jul 2002 to 31 Dec 2002 0.5982 0.5568 0.6849 0.7681 

1 Jul 2003 to 31 Dec 2003 0.6793 0.7116 0.7576 0.8273 

Average 0.6543 0.6872 0.7415 0.6944 

 

As hourly Tank Model optimized with 2 objective functions, the average 

validation results discovered are R=0.8780 and E2=0.7530. Concurrently, average 

R= 0.8522 and E2=0.8082 are obtained when optimized with 3 objective functions 

as illustrated in Fig. 4. Results also indicate that the average peak error for 2 

objective functions is 15.85% and 10.55% for 3 objective functions. This revealed 

that the performance of MOPSO optimized with 3 objective functions is able to 

produce more accurate parameters compared to MOPSO optimized with 2 

objective functions for hourly Tank model. 

Meanwhile for daily Tank model, the average validation results discovered are R= 

0.6543 and E2=0.6872 when optimized with 2 objective functions. Meanwhile, 

average R= 0.7415 and E2=0.6944 are obtained when optimized with 3 objective 

functions as illustrated in Fig. 4. This revealed that the performance of MOPSO 

optimized with 3 objective functions is able to produce more accurate parameters 

compared to MOPSO optimized with 2 objective functions.  

Besides, when daily Tank model optimized with 2 objective functions, part of the 

simulated hydrograph are overestimated, and part of it are underestimated than the 

observed data. In contrast, most of simulated hydrograph are slightly 

underestimated than the observed runoff when daily Tank model optimized with 3 

objective functions. 
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Fig. 4: Comparison of Hourly and Daily Tank Model optimized with 2 and 3 

objective functions 

5      Conclusion 

This study has successfully applied MOPSO to calibrate and optimize hourly and 

daily Tank model’s parameters with 2 and 3 objective functions. Optimal 

R=0.7954, E2=0.7735 and peak error=9.24% are discovered for model calibration 

when hourly Tank model calibrated simultaneously with 2 objective functions. 

Meanwhile, when validated with 11 sets of data, an average R=0.8780, E2=0.7530 

and peak error of 15.85% are obtained. Concurrently, when hourly Tank model 

optimized simultaneously with 3 objective functions, the optimal R, E2 and peak 

error are found to be 0.8535, 0.8704 and 0.43% for model calibration, and average 

R=0.8522 E2=0.8082 and peak error of 10.55% for hourly model validation.  

Besides, adaptation of 2 objective functions has yielded R and E2 to 0.7407 and 

0.6550 respectively for daily model calibration. An average R=0.6543 and 

E2=0.6872 are discovered after validating 11 sets of daily data. Meanwhile, the 

optimal R and E2 are found to be 0.8161 and 0.7478 respectively when adapting 3 

objective functions for daily model calibration, and average R=0.7415 and 

E2=0.6944 are obtained for daily model validation. These results revealed that 

performance of MOPSO is slightly more accurate and robust when adapting 3 

objective functions than 2 objective functions. 

The results also proved that MOPSO has the ability to solve an optimization 

problem by optimizing several possibly conflicting objectives simultaneously 

using an external repository and a mutation operator. Besides, the newly 

developed MOPSO has proven its capability to discover a set of optimal 
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nondominated solution through the true Pareto optimal solutions for the test 

problems considered.  
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