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Abstract 

     Training Radial Basis Function (RBF) neural network with 
Particle Swarm Optimization (PSO) was considered as a major 
breakthrough that overcome the stuck to the local minimum of Back 
Propagation, time consuming and computation expensive problems 
of Genetic Algorithm. However, PSO converged too fast, and hence 
stuck to the local optimum. Furthermore, particles may move to an 
invisible region. Therefore, to realize the enhancement of the 
learning process of RBF and overcome these PSO problems, 
Harmony Search Algorithm (HSA), a new meta-heuristic algorithm 
was employed to optimize the RBF network and to attain the desired 
objectives. The study has conducted comparative experiments 
between the integrated HSA-RBF network and the PSO-RBF 
network.  The results proved that HSA increased the learning 
capability of RBF neural network in terms of accuracy and correct 
classification percentage, error convergence rate, and less time 
consumption with less mean squared error. The new HSA-RBF 
model provided higher performance in most cases and give 
promising results with better classification proficiency compared 
with that of PSO-RBF network. 

     Keywords: Radial Basis Function, Meta-heuristic, Harmony Search Algorithm, 
Piratical Swam Optimization, Stochastic Global Optimization. 
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1      Introduction 

Artificial Neural Network’s mimicking ability to human talent and their similarity 

to the structure of the neurons of the human brains attracted the eyes of many 

researchers due to its unparalleled properties, such as adaptability, learning and 

generalization capability [43]. Basically the principles of the Artificial Neural 

Networks (ANNs) were first formulated by McCulloch and Pitts in 1943 [32]. 

According to Chan et al. [14], Neural Network  not only have the competence to 

learn a complex nonlinear dataset from massive body of given attributes, but can 

tolerate to fault and noisy condition in resemblance to human brain as well. 

One of the outstanding examples of Neural Networks is Radial Basis Function 

(RBF). According to Gan et al. [22], RBF Neural Network which was originally 

conceived by Broomhead and Lowe in 1988 has characterized with fast training 

speed, strong learning capability and simple topological architecture. Idri et al. 

[35] and Gan et al.  [23], described that it consists of only three different layers 

which are the input layer which accepts source dataset; the hidden layer that uses 

radial basis function to compute its output, and the output layer which represents 

the result of the network.  

The emergence of radial bases function as an alternative of ANN was first 

perceived in late 80’s, although their related counterpart, pattern recognition 

technique has existed long ago [9]. RBF Neural Network was originally perceived 

and added to the ANN by Broomhead and Lowe (1988), who were inspired by the 

local response observation in the biologic neurons.  RBF Networks have been 

implemented in a wide area of engineering and science fields, because of their 

advantages over other well known networks such as: their optimized ability, 

simple topological architecture, accuracy in dynamically nonlinear approximation 

and fast and easy learning algorithms [22]. 

According to Kurban et al. [40], in various literatures, different algorithms were 

proposed for training the RBF Network. Therefore, it is necessary to find the 

appropriate training algorithms for the RBF Neural Network. One of the most 

popular training algorithms in the domain of RBF Neural Networks is the Back-

Propagation technique, which introduces gradient-descent method to minimize the 

mean squared error between the desired outputs and the actual outputs for the 

particular inputs to the networks. However, according to Pan et al. [43], Kattan et 

al. [37] and Hamed et al. [1] training RBF with BP faced some problems such as 

poor convergence and trapping at the local minima. 

To deal with these convergence problems, some researchers proposed two 

derivative based algorithms for training RBF networks, such as the gradient 

descent (GD) algorithm and Kalman filtering (KF). Kurban and Beşdok [40] 

proved that both algorithms need a lengthy time and have convergence 

weaknesses to the local minima and procedure of discovering the optimal gradient. 

Genetic Algorithm performed robust training without suffering from local 
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minimum problem. However, its output production is time consuming and 

computation expensive [34, 54]. 

Particle Swarm Optimization attracted the attention of many researchers after 

several experiments proved its performance is better than GA. Although the 

experiments conducted by many researches showed a plausible achievement, Rini 

et al. [47] mentioned that PSO easily suffers from the partial optimism, which is 

related to the regulation of its speed and direction. Moreover Grosan and 

Abraham [33] summarized the pitfalls of PSO in their book of  “Intelligent 

Systems: A Modern Approach”, with the following three problems: firstly, 

particles tend to cluster, converge too fast and get stuck at local optimum. 

Secondly, the movement of particle carried it into infeasible region and finally, 

inappropriate mapping of particle space into solution space. 

Pan et al. [43] proved that HS which is a new SGO meta-heuristic algorithm is a 

good candidate and the most promising variant for training feed forward NNs. 

More over Soltani et al. [50] confirmed that HS is not only faster than PSO but 

also has a significant convergence rate to reach the optimal solution. 

This paper employs Harmony Search Algorithm (HSA) to improve the learning 

capability of RBF neural network and to achieve higher convergence rate and 

classification performance compared with PSO based RBF neural network. 

2      Radial Basis Function Neural Network 

As in Alejo et al. [5] RBF Neural Network is an extremely powerful type of feed-

forward Neural Network first perceived by Broomhead and Lowe.  RBF strongly 

differ from MLP in terms of usage and activation functions.  

In its basic form, Radial Basis function can be defined as: 

  (1) 

According to Qasem et al. [45] and Kurban and Beşdok [40], RBF network 

gained their popularity due to their simpler architecture, faster learning process, 

and better approximation capabilities compared with other types of ANN. 

Moreover, RBF have attracted a considerable attention and have been applied in 

many science and engineering fields.  

 

 

 

 

 

 

Fig. 1: The structure of RBF Neural Network [42]  
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2.1 RBF Neural Network architecture 

Tsimboukakis and Tambouratzis [51], highlighted that RBF structure strictly 

comprises three layers as shown in Fig. 1. The first layer is the input layer that 

deals with the transmission of the inputs to the network.  The second layer, known 

also as the hidden layer usually contains the activation function of the radial basis 

function. This activation function depends on the Euclidian distance from the 

input pattern vector to the center of hidden neuron.  Finally, the third or the output 

layer usually contains a linear activation function. This output neuron is similar to 

a simple perceptron that obtain its activation as a weighted sum of the hidden 

neurons’ outputs and supplies the results to the network.   

RBF Neural Network configuration which implements the output-input relation is 

a nonlinear mapping with linear mapping composition realized by the hidden 

layer and the output layer respectively [35]. The next section will describe several 

RBFN functions in accordance with their activation functions. 

2.2 RBF activation functions 

Wang [53], ruled out that the value of RBF depends on the distance from the 

origin, i.e., ; or alternatively on the distance from some other point 

c, called a center, so that  Any function  with the 

satisfying property of  is radial basis function. The norm is usually 

Euclidian distance.  

The most common types of RBFs include : 

 

 Gaussian: ∅��� = exp	�−��2�  for some � > 0 

 Multiquadric: ∅��� = ��2 + �2 	  for some � > 0 

 Polyharmonic spline: ∅��� = �� , � = 1,3,5,…and ∅��� = �� 	ln	���, � = 2,4,6,… 

 Thin plate spline: ∅��� = �2	ln	���   

 

Gaussian function is the most commonly used radial basis function.  

2.3 Training RBF Neural Networks 

According to Dhubkarya et al. [17], RBF networks are used mainly in supervised 

applications. In a supervised application, the training set of the data samples are 

usually provided and from there the corresponding network outputs are known. 

Yu et al. [55] and Dhubkarya et al. [17] expressed the simplicity of the design of 

RBF Networks by organizing it into three quite straightforward steps:   

i. Find the number of hidden units 

ii. Determine the parameters of each RBF unit 
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iii. Train the RBF Networks to adjust parameters. 

To determine the weights, the centers, and the width, a training process is used. 

Optimization algorithm for minimizing a suitable error function (E) are applied to 

compute the weights [34]. 

2.4 Construction of the hidden layer of RBF networks 

The construction of hidden layer of the RBF networks can be achieved using 

clustering techniques. The role of clustering in the design of RBFN is to set up an 

initial distribution of receptive fields (hidden neurons) across the input space of 

the input variables [35]. 

According Xie et al. [54] and Idri et al. [35], the basic computations in the Radial 

Basis Function network above include: 

i. Input layer computation 

At the input of hidden unit l, the input vector x is weighted by input weights : 

    (2) 

 

is the input weight between input n and hidden unit is the input weight 

l. 

 

Fig. 2: RBF network with N inputs, L hidden units and M outputs [54] 
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ii. Hidden layer computation  

The output of  the hidden unit l is calculated by: 

    (3) 

Where: the activation function  for hidden unit l is normally chosen as 

Gaussian function;  is the center of hidden unit l and  is the width of hidden 

unit l and  denotes the Euclidian distance. This implies that  has an 

applicable value only when the distance  is smaller than the width  [17]. 

iii. Output layer computation 

The network output m is calculated by: 

         (4) 

Where: m is the index of output;  is the output weight between hidden unit l 

and output unit m;  is the bias weight of output unit m. 

You may notice from this basic computation the existence of four types of 

parameters, the input weight matrix , the output weight matrix , the center 

matrix c and the width vector σ. Normally, the input weights are all set as ‘1’ [54]. 

In the subsequent section, the other three parameters will discussed briefly. 

iv. Computation of the centers 

As in Bors [9], Gan et al. [21] and Noman et al. [42], K-means clustering 

algorithms, learning vector quantization, decision trees, or self-organizing feature 

maps  can be used to find the hidden unit parameters. The centers of the radial 

basis functions are initialized randomly. Upon averaging each cluster the centroid 

vector is updated with the following formula [34, 53]: 

      (5) 

Where:   is the center of the cluster  which has R elements 

v. Computation of the widths  

Determination of the widths of unit function and its inherent complexity is 

considered to be one of the most important tackled aspects. To calculate the 

widths for each hidden neuron of RBFN with the variance , the following 

formula is used as in Hamadneh et al. [34]: 

     (6) 
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Where: is the width of the neuron k.  is the number of elements in the cluster 

 

vi. Computation of weights 

Idri et al. [35] illustrated when the center and the width of RBFN  have been 

evaluated, the weights of the output layer can be determined and adjusted. As in 

Wang [53] the learning rules of the output layer’s weights can be written as: 

             (7) 

 

                         (8) 

 

                   (9) 

 

Here  is the actual output,  is the target output and η is the learning 

rate. 

It is customary to train artificial neural networks before they can achieve their 

desired task. Some learning algorithms that will be used to train RBF network will 

be discussed in the subsequent sections.  

3      Harmony Search Algorithm  

According to Geem and Williams [26] and Geem et al. [29], solutions based on 

traditional mathematics such as linear programming, nonlinear programming and 

dynamic programming suffered from losses on the development of nonlinear real 

world problems, missing the optimality in non-differentiable computing functions 

and dependence of the increase in number of variables and number of evolutions 

of the recursive functions respectively. To overcome these deficiencies, 

researchers introduced heuristic optimization techniques based on simulations. 

Although the aforementioned heuristic algorithms solved several shortcomings of 

the traditional mathematical methods, however, researchers asked themselves 

whether it is possible to develop a heuristic algorithm that can perform better with 

less iteration in compared with the existing ones. Geem et al. [29] developed a 

new meta heuristic stochastic global optimization (SGO) method and named it a 

harmony search algorithm (HSA) [13 and 37]. 

Harmony search (HS) is a resent stochastic search mechanism inspired not by 

biological nor physical processes but by the natural improvisation process of 

music players in which the notes played by each musician is tested in order to find 

the best harmony of all [36, 56]. When applied to optimization problems, the 
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musicians represent the decision variables of the cost function, and HS acts as the 

meta heuristic algorithm which attempts to find a solution vector that optimizes 

this function. During the process, each decision variable (musician) generates a 

value (note) for finding global optimum (best harmony).  

According to Pan et al. [43], HS imposes a few mathematical obligations 

compared with the other existing meta heuristics algorithms. According to Alia 

and Mandava [6], HS has attracted many researchers to use it as an easy and 

successful benchmark in solving many engineering optimization problem such as: 

music composition [24], Sudoku puzzle solving [31], tour planning [30], web 

page clustering [20], ground water modeling [8], soil stability analysis [15], 

ecological conservation [26], energy system dispatch [52], heat exchanger design 

[19], transportation energy modeling [12], satellite heat pipe design [25], medical 

physics [44], RNA structure prediction [41], Medical image [6,7], time tabling 

[2,3,4], image segmentation [8], etc. 

 

 

Fig. 3: Analogy between improvisation and optimization [38] 

 

Table 1: The optimization terms in the musical context [3] 

Musical Terms  Optimization Terms 

Improvisation Generation or construction 

Harmony Solution vector 

Musician Decision variable 

Pitch Value 
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HS isn’t like gradient in differential calculus that deals with continuous variable, 

instead it is a stochastic derivative based on the population density of musicians 

experience that deals with discrete variables [29]. 

Similar to Table 1, Alia and Mandava [6] summarized the analogy between the 

improvisation and the optimization process expressed in [28] in four easy steps 

listed as follows: 

1. Each musician corresponds to each decision variable. 

2. Musical instruments’ pitch range corresponds to the decision 

variable’s value range. 

3. Musical harmony at a certain time corresponds to the solution vector 

at a certain iteration. 

4. Audiences’-aesthetics corresponds to the objective function. 

The five steps of the optimization process of the basic harmony search are as 

follows: [3 and 48]. 

 

Step 1: Initialize the problem and HSA parameters. 

Step 2: Initialize a Harmony Memory (HM). 

Step 3: Improvise a new harmony from HM. 

Step 4: If the new harmony is better than minimum harmony in HM, include 

 the new harmony in HM, and exclude the minimum harmony from  

               HM. 

Step 5: If stopping criteria are not satisfied, go to Step 3. 
 

4      Data Representation 

The process of training RBF neural network needs determining the weights 

between the hidden layer and the output layer of the network which minimizes the 

error and training and testing datasets that should be fully implanted. The 

harmony vector in HM represents the weights of the RBFNN and the XOR, Iris, 

Cancer and Heart Disease Classification datasets are used to ensure reliable results. 

4.1 HS parameter setting 

In the process of training RBFN with HS algorithm, there are five parameter 

settings have been employed in all experiments as shown below: 

Pitch range Value range 

Audio-aesthetic standard Objective function 

Practice Iteration 

Pleasing harmony (Near-) optimal solution  
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Parameter Name Value 

Harmony memory size (HMS) 15 

Harmony memory consideration rate (HMCR) 0.9 

Pitch adjusting rate (PAR) 0.3 

Number of iteration (NI) 100 

Number of decision variables (n) 2 

4.2 Datasets 

XOR Dataset: A connective in logic known as the "exclusive or" or exclusive 

disjunction is a logical operation on two operands that results in a logical value of 

true if and only if one of the operands but not both has a value of true. XOR is a 

basic dataset that widely use to train and test NN. In this study, 4 data patterns are 

used in both algorithms. 

Iris Dataset: The dataset is small consisting of 150 records. The target variable is 

categorical specifying the species of iris. The predictor variables are 

measurements of plant dimensions. The dataset is used for classifying all the 

information into three classes which are iris setosa, iris versicolor, and iris 

virginica. The classification is based on its four input pattern which are sepal 

length, sepal width, petal length and petal width. Each class refers to type of iris 

plant contain 50 instances. In NN learning, the network has four input patterns 

and 3 output patterns. 

Breast cancer dataset: The dataset was originally generated at hospitals at the 

University of Wisconsin Madison, by Dr. William H. Wolberg to correctly 

diagnose breast lumps as either benign or malignant based on data from 

automated microscopic examination of cells collected by needle aspiration. The 

dataset includes nine inputs and one output. The exemplars are split with 599 for 

training, and 100 for testing, totaling 699 exemplars. All inputs are continuous 

variables and 458 (65.5%) of the examples are benign and the remaining 241 

(34.5%) are malignant. 

Heart disease dataset: This database is taken from the Cleveland Clinic 

Foundation and was supplied by Robert Detrano, M.D., Ph.D. of the V.A. Medical 

Center, Long Beach, CA. It is part of the collection of databases at the University 

of California, Irvine (UCI) collected by David Aha. The aim of the dataset is to 

classify the presence or absence of heart disease given the results of various 

medical tests carried out on a patient. The original dataset contains 13 numeric 

attributes and a fourteenth attribute indicating whether the patient has a heart 

condition. This dataset is interesting because it represents real patient data and has 

been used extensively for testing various data mining techniques. 
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4.3 Normalization of datasets 

Normalizing data means fitting the data within unity so that all attributes will take 

a value between 0 and 1. Since some attributes may have inapplicable value that 

can be impossible to apply to some models, (i.e., non-numeric value or numbers 

that are too large or too small to represent, etc.). Gaussian RBF employs exp() 

function which cannot accept any number greater than 709.782, so it is necessary 

to normalize some datasets. The following formula is used to normalize datasets. 

      (10) 

Where  denotes each data point i,  is the minimum amount in all data 

points in the dataset,  is the maximum amount in all data points of the 

dataset and  is the data point at i that is normalized to between 0 and 1. 

4.4 Partition of datasets 

K-fold cross-validation which is the base for all other existing cross-validations is 

applied to these experiments. In k-fold cross validation, the datasets are 

partitioned into an equally or semi-equally k sized segments. Trainings and 

validations are performed on iteration of sub sequent k-iterations, holding out one 

segment of different fold of the data for validation and the remaining k-1 folds for 

training.  In this experiment, a k=10 fold of cross validation is employed so that 

each data exemplars is subdivided into 10 folds. 

5 Training RBF Neural Network Using HS Algorithm 

Schwenker et. al. [49] distinguished three learning schemes for RBF which are, 

one phase learning in which only the weights of the output layer of the RBF is 

adjusted by some kind of optimization algorithm.  The second scheme is two 

phase learning in which both layers of the RBF are trained by determining the 

centers and widths of the hidden layer and subsequently adjusting the weights of 

the output layer and finally, the third scheme is three phase learning in which after 

utilizing the two phase learning, a further optimization process is applied to adjust 

the whole architecture of the RBF. 

This study implemented one-phase learning, whereby the weights of the output 

layer of the RBF network have been initialized by the HS optimization algorithm.  

The acquired difference between the desired target value and the actual output 

value is considered as an error rate and is minimized by updating and adjusting 

the output layer weights with fresh values obtained from HSA.  New output has 

been regenerated repeatedly until set of conditions are satisfied or the end of loop 

is reached.  
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HSA-RBF networks are trained based on the following eight steps.  Meanwhile, 

Fig. 4 illustrates the network architecture of HSA-RBF network. 

Step 1:   Obtain the dataset and normalize if necessary 

Step 2: Decide  on how many hidden neurons there should be using the  

 formula: number of hidden nodes=√(input*output) 

Step 3:    Decide on their centers and the sharpness of their Gaussians. 

Step 4:    Generate the best harmony from HSA and initialize the weights of the  

 RBF output layer with this value. 

Step 5:  Start training the output layer. 

Step 6:  Calculate error rate by finding the difference between the desired   

              output and the actual output values. 

Step 7:  If error rate beyond the threshold, go to step 4 to adjust the weights. 

Step 8:  If the condition is satisfied or end of iteration is reached, stop training 

              process. 

               Fig. 4: The network architecture of HSA-RBF network 

If Difference = 0 

Or Maximum 

iteration reached 

  

• Initialize center  

• Initialize width 

• Calculate the hidden layer of RBF 

• Generate the best harmony 

• Initialize the weights of the RBF output layer with 

the best harmony 

• Load the dataset 

• Initialize input vector 

• Generate the output vector of the RBF 

• Calculate the difference = Target vector – Output 

vector 

• Generate best harmony 

• Update weight with best 

harmony 

• Stop training  

• Generate report 
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6 Results and Discussion 

In this section, several substantial experiments are conducted. The normalized 

UCI machine learning repository datasets, such as, XOR dataset, iris dataset and 

breast cancer dataset are used for the experiments. The analysis from the 

experiments are given in the next sub-section. 

6.1 Analysis on Iris dataset 

In this problem, the iris dataset consisting of three classes; Setosa, Versicolour, 

and Virginica with 150 samples were divided into two parts, 120 input patterns 

are applied to train the network, and 30 input patterns are employed to test the 

network. The network contains four input nodes, three hidden nodes and three 

output nodes. 

In iris learning, HSA-RBF completed the training with its best performance epoch 

at iteration 172 in 71.738 seconds.  The correct classification percentage is 

98.89% and MSE of 0.00833.  Similarly the testing process of HSA-RBF with iris 

dataset reached the best performance epoch at iteration 3 with execution time of 

16.442 seconds. This provides a significant improvement to the overall 

performance of RBF neural network in terms of time, error convergence and 

correct classification. 

Table 2: Result of HSA-RBF on Iris Dataset 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Training Testing 

Number of iterations  500 500 

Number of  samples 120*3 30*3 

No. of correct classifications 356 90 

Execution time in seconds 71.74 16.44 

Mean square error (MSE) 0.0083 0.000 

Correct classification % 98.89% 100% 
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Fig. 5: Convergence of IRIS trained with HSA-RBF neural network 

6.2 Analysis on cancer dataset 

There are two classes in the breast cancer dataset; benign, and malignant.  About 

699 samples have been used for the experiment and the data are divided into two 

parts, 599 input patterns are applied to train the network, and 100 input patterns 

are employed to test the network. The network contains nine input nodes, three 

hidden nodes and one output node. 

 

Table 3: Result of HSA-RBF on Cancer Dataset 

 

 

 

 

 

 

 

 

 

 

 

 

 Training Testing 

Number of iterations  500 500 

Number of  samples 599 100 

No. of correct classifications 552 96 

Execution time in seconds 340.75 64.11 

Mean square error (MSE) 0.0196 0.01 

Correct classification % 92.15% 96% 
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Fig. 6: Convergence of cancer dataset trained with HSA-RBF neural network 

 

In breast cancer dataset, HSA-RBF completed training with the best performance 

epoch at iteration 266 in 340.75 seconds.  The correct classification percentage is 

92.15% and MSE value is 0.0196. Likewise, the testing process of HSA-RBF with 

cancer dataset found best performance epoch at iteration 37 with the execution 

time of 64.11 seconds and the error rate of 0.01.  

This experiment has lowest performance compared with the other two 

experiments conducted in terms of time, error convergence and correct 

classification.  

6.3 Analysis on heart disease dataset 

The heart disease dataset used in this problem is starlog heart dataset. It consists 

of two classes; absence and presence of heart disease.  There are 13 attributes 

extracted from a larger set of 75 attributes. The 270 samples contained by this 

dataset are divided into two parts, 216 input patterns are applied to train the 

network, and 54 input patterns are employed to test the network. The network 

contains 13 input nodes, three hidden nodes and one output node.  
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Table 4: Result of HSA-RBF on Heart Disease Dataset 

 

 

 

 

 

In the heart disease learning, HSA-RBF completed training at iteration 212 in 

182.83 seconds.  The correct classification percentage is 95.37% and MSE value 

is 0.01157. Meanwhile, the testing process of HSA-RBF with heart disease dataset 

found best performance epoch at iteration 165 with execution time of 34.03 

seconds. This provides a significant improvement to the overall performance of 

RBF neural network in terms of time, error convergence and correct classification. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7: Convergence of heart disease dataset trained with HSA-RBF 

6.4 Performance comparisons  

In this section, the classification results of the HSA-RBF are compared with the 

classification accuracy of PSO-RBF in several experiments conducted by Qasem 

[46] and Das [16] in their respective studies and RBF-Alone. The analysis uses 

four datasets, XOR, IRIS, Cancer and Heart disease datasets in order to compare 

 Training Testing 

Number of iterations  500 500 

Number of  samples 216 54 

No. of correct classifications 206 54 

Execution time in seconds 182.83 34.03 

Mean square error (MSE) 0.011574 0.000 

Correct classification % 95.37% 100.00% 
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their correctly classified percentages. Table 6 and the graph in Fig. 8 depict their 

comparative results. 

Table 5:  Comparative summary of Standard RBF, HSA-RBF and PSO-RBF 

 

Dataset 

Standard RBF HSA-RBF PSO-RBF 

Correct 

Classification % 

Correct 

Classification % 

Correct 

Classification % 

IRIS 95.28% 98.89% 95.48% 

Breast Cancer 85.64% 92.15% 97.65% 

Heart Disease 87.96% 95.37% 93.23% 

According to the above summary, the XOR, Iris and Heart disease datasets 

demonstrated that HSA-RBF has better results with higher convergence rate in a 

short period of time than both RBF-Alone and PSO-RBF.  On the other hand, 

breast cancer dataset depicted that for this time PSO-RBF has better convergence 

rate and higher correctly classified result than that of HSA-RBF.  Although both 

algorithms converge to the solution with minimum error, however, HSA-RBF has 

significantly reduced the error rate with minimum iteration since HSA-RBF 

converged in 500 iterations while PSO-RBF converged at 93 iterations for EXOR, 

3774 iterations for iris and 1000 iterations for cancer [46], and HSA-RBF 

classifications are better that that of RBF-Alone and PSO-RBF in most cases. 

Generally, HSA-RBF shows an improved overall performance and considerable 

enhancement in terms of time, error convergence and classification process of 

RBF neural network compared with RBF-Alone and PSO-RBF neural network. 

7 Validation Results 

In this section datasets are validated in crossed-over successive rounds so that 

each data segment receives a chance to be validated against the network. Data 

cross-validations are used for evaluating or comparing learning algorithms. K-fold 

cross-validation which is the base for all other existing cross-validations is applied 

to these experiments.  

Table 6: 10 Fold Cross-Validation of three datasets on HSA-RBF 

              Iris Breast Cancer Heart disease 

No-CV MSE Classification MSE Classification MSE Classification 

1 0.0074 99.01 0.0286 88.55 0.01235 95.06 

2 0.0074 99.01 0.0223 91.10 0.01749 93.00 
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3 0.0074 98.51 0.0302 87.92 0.01337 94.65 

4 0.0056 98.76 0.0254 89.83 0.01543 93.83 

5 0.0125 97.78 0.0278 88.87 0.01337 94.65 

6 0.0074 99.01 0.0250 89.98 0.02160 91.36 

7 0.0074 99.01 0.02385 90.46 0.018520 92.59 

8 0.0000 100.00 0.03021 87.91 0.015430 93.83 

9 0.0074 98.51 0.02504 89.98 0.018520 92.59 

10 0.0111 98.51 0.02901 88.39 0.014400 94.24 

Average 0.00736 98.811 0.02675 89.29 0.016048 93.58 

Table 7 illustrates the validation results of iris, cancer and heart disease datasets 

consisting of 150, 699 and 270 instances respectively. The generalized accuracy 

of the datasets are obtained through dividing the three datasets into 10 folds (10-k 

cross-validations) in which the first round (k = 1) of 15, 70 and 27 patterns 

respectively are used for validation and the remaining exemplars for training. In 

the next round (k = 2) the second patterns of the same size are hold back for 

validation and the rest for training. This will continue until last round (k = 10) of 

same size patterns are used for validation and the rest for training. 

8 Statistical Test of HSA-RBF Classifier 

In this section, summary of statistical tests are conducted on the training and 

testing process of HSA-RBF to increase the strength of the study. There are 500 

separate runs of the network have been done on each of iris, breast cancer, and 

heart disease datasets.  The mean square error and the correctly classified 

percentage of each run is recorded. A statistical hypothesis test is applied to the 

data obtained to make sure that the results are statistically significant. 

Table 7: Statistical test report of Iris, Cancer and Heart 

  Best 

Classification  

Min. 

MSE 
Mean Std Dev Std Err Median Mode 

Ir
is

  
d

a
ta

se
t Training 98.89% 0.0063 0.0378 0.0234 0.0011 0.0271 0.0208 

Testing 100.00% 0.0000 0.0150 0.0101 0.0005 0.0167 0.0167 

T-Test of the MSEs in the training and testing processes of HSA-RBF 7.16E-66 

T-Test of the classification % in training and testing of HSA-RBF 1.15E-107 



 

 

 

 

 

 

 

Mohamed Hassan Ahmed et al.                                                                           96 

 

The statistical student’s t-test conducted separately on the MSEs of each of the 

testing and training results of those 500 runs produced results surprisingly similar 

to t-test result obtained from the relative outcome of the correct classification 

percentages of these training and testing processes in HSA-RBF network. 

8.1 Sensitivity and specificity 

Finally, in this section the specificity and the sensitivity concepts were employed 

on the breast cancer and heart disease medical dataset. Both sensitivity and 

specificity address how often is the medical test right? And they do their test on 

two different populations, those with the disease and those who are well.  

Sensitivity is about those people having the disease while specificity deals with 

the people who have no disease. Sensitivity should answer the question of, among 

the people with disease how often is the test accurate? On the other hand, 

specificity should answer the question of, among the people who are well, how 

often is the test accurate?  

Therefore the sensitivity and specificity in the Table 9 illustrates the diagnostic 

test performance of the HSA-RBF classifier and the amount of true positive or 

negative hits compared with those of false misclassified positive or negative hits. 

Table 8: Sensitivity and Specificity 

Disease Status 

 Breast Cancer Heart Disease 

Test Result Malign Benign Present Absent 

Positive Test 219 96 94 2 

C
a

n
ce

r 
 

d
a

ta
se

t 
Training 92.15% 0.0196 0.0299 0.0029 0.0002 0.0296 0.0288 

Testing 96.00% 0.0100 0.0309 0.0084 0.0004 0.0300 0.0275 

T-Test of the MSEs in the training and testing processes of HSA-RBF 0.0192134 

T-Test of the classification % in training and testing of HSA-RBF 0.0192129 

H
ea

rt
 d

a
ta

se
t Training 95.37% 0.0116 0.0284 0.0053 0.0002 0.0287 0.0283 

Testing 100.00% 0.0000 0.0298 0.0114 0.0005 0.0303 0.0292 

T-Test of the MSEs in the training and testing processes of HSA-RBF 0.0153567 

T-Test of the classification % in training and testing of HSA-RBF 0.0153533 
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Negative Test 1 283 19 101 

Sensitivity 99.55% 83.19% 

Specificity 74.67% 98.06% 

The experiments show that the classification accuracy of the HSA-RBF network 

is high and reliable. The sensitivity obtained from cancer and heart disease 

datasets is 99.55% and 83.19% respectively, while the specificity result of the two 

datasets are 74.67% and 98.06% respectively.  

8.2 Receiver operating characteristics 

A receiver operating characteristics (ROC) graph is a technique for visualizing, 

organizing and selecting classifiers based on their performance. ROC graphs have 

long been used in signal detection theory to depict the tradeoff between hit rates 

and false alarm rates of classifiers; it is a good way of visualizing a classifier's 

performance in order to select a suitable operating point, or decision threshold [11, 

18]. A ROC curve is a graph where the x-axis represents the number of true 

negatives and the y-axis the number of true positives [10].  

 

Fig. 8: ROC curve for HSA-RBF on the breast cancer dataset 

As a case study, the performances of the classification schemes on two real world 

medical data sets are employed. These data sets are chosen to characterize those 

typically found in medical diagnostics; they have primarily continuous input 

attributes and have overlapping output classes. For each dataset, 10 sets of results 

(one for each of the 10-fold cross-validation partitions) were generated. The raw 

data were stored in the form of a confusion matrix. The experiment results 

represented in the form of ROC curves are illustrated in Fig. 8 and Fig. 9.  
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Fig. 9: ROC curve for HSA-RBF on the heart disease dataset 

Bouckaert [10] determined that the area under the ROC Curve (AUC) is a 

summary statistic that indicates higher overall performance with higher AUC. 

AUC is typically calculated by summing over all trapezoids with base to , 

that is:  

    (11) 

The AUC calculations conducted on the two datasets (Breast cancer and Heart 

disease) produced two close results which are 0.9653 and 0.9684 respectively, that 

is slightly over 96%  of the overall performance of the HSA-RBF classifier. 

9 Conclusion 

In this study, the hybrid model of RBF Neural Network and the Harmony Search 

Algorithm is proposed to enhance the learning process of the RBF network.  

Several experiments were carried out using some UCI machine learning datasets, 

such as XOR, Iris, Cancer and Heart disease datasets in order to evaluate the 

abilities of the new model. The proposed model proved a high performance in 

terms of accuracy and correct classification percentage, the convergence rate, the 

least time consumption and mean squared error. However, the model showed a 

slight decrease in performance when the size of the training datasets increases. 

The statistical tests conducted have confirmed the accuracy and reliability of the 

HSA-RBF network. 
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