
Int. J. Advance Soft Compu. Appl, Vol. 7, No. 2, July 2015

ISSN 2074-2827

Clustering Test Cases in Web Application

Regression Testing using Self-Organizing

Maps

Mojtaba Raeisi Nejad Dobuneh
1
, Dayang N. A. Jawawi

1
, Mojtaba Vahidi

Asl
2
, and Mohammad V. Malakooti

3

1
Department of Software Engineering, Faculty of Computing, Universiti

Teknologi Malaysia (UTM), Skudai 81310, Johor, Malaysia

e-mail: rmojtaba2@live.utm.my, dayang@utm.my

2
Faculty of Computer Engineering and Sciences, Shahid Beheshti University

e-mail: mo_vahidi@sbu.ac.ir

3
Faculty of Computer Engineering, Islamic Azad University UAE Branch

e-mail: malakooti@iau.ae

Abstract

 In the software testing domain, different techniques and
approaches are used to support the process of regression testing in
an effective way. Test case prioritization techniques improve the
performance of regression testing, and arrange test cases in order to
detect the faults in a reasonable amount of time. User-session is a
unique feature of web applications that is useful in the process of
regression testing as they comprise precious information about the
application state before and after any change that is made to the
software code. The main challenge is the effectiveness of average
percentage fault detection rate and time constraint in the existing
techniques. Thus, in this research the priority is given to the test
cases, clustered according to some criteria. Using self-organizing
map for clustering helps to obtain a higher fault detection rate in a
relatively small time span.

 Keywords: Clustering test cases, Self-organizing map, Web application,
Prioritization, Regression testing.

1 Introduction

Regression tests are executed when some changes are made in the existing

application in order to check the negative impact of the changes in the rest of the

system or on the expected behavior of other parts of the software. It is a

M. R. N. Dobuneh et al. 2

complicated process for web applications based on modern architectures and

technologies. In this paper, we make use of user session data for website testing.

The real user session data, saved in server side, is beneficial for regression testing

because the tester does not concern about underlying architecture and developing

technology. The test cases that are generated by user sessions do not significantly

depend on different technologies which are used to develop web based

applications. Web applications supply usage logs to testers. The test cases extract

from user data are called “user-session based testing”. The user-sessions provide

informative knowledge about the web interaction of users [1]. In the simplest

form we can easily execute all the existing test cases in the test suite without any

extra handling. Since, he the size of test suites gradually grow due to software

modifications executing the entire test suite would be very expensive. This leads

the software engineers to think about deploying efficient techniques to reduce the

effort that is required for regression testing in different ways. During the

development of an application, a new version of the application is released as a

result of (a) requirements medications and (b) bug fixes [2], [3]. A large number

of reusable test cases may be accumulated from different versions of application

could be applied for testing the newer version of the application. However,

running all the test cases may take a significant amount of time. For example, one

may spend a few weeks on executing all test cases of earlier versions of a given

application [4]. Regarding to the time restrictions, software testers need the

selection and ordering of an optimal subset of test cases for execution.

The three major approaches for regression testing are test suite minimization, test

case selection and test case prioritization [5]. Test case prioritization (TCP) helps

us to find out the different optimal combinations of the test cases. A prioritization

process is not associated with the selection process of test cases, and it is assumed

that all test cases must be executed, but it tries to get the best schedule running of

test cases in a way that if the test process is interrupted or early halted at an

arbitrary point, the best result is achieved in which more faults are detected. TCP

has been introduced by Wong et al. [7]. Structural coverage is the most commonly

used metric for prioritization. The logic of this criterion is that faster structural

coverage of the whole software code leads to maximum detection of faults in a

limited time. Therefore, the aim of this approach is to achieve higher fault

detection rates, with larger structural coverage [8] [9].

2 Background and Motivation

In general, the slight modifications on web applications increase the number of

test cases, considerably. As a result, the effectiveness of conventional testing

process would be decreased. In real world scenario the issue of scalability is

challenging. For example, suppose there are 100,000 test cases need to be

executed. Obviously it is unrealistic to expect a human tester to provide reliable

responses for such a large number of test cases. Our approach using SOM cluster

based prioritization reduces the number of test cases and can be very effective.

3 Clustering Test Cases in Web Application

Instead of prioritizing individual test cases, we prioritize clusters of test cases

using cluster based prioritization techniques [10] [11].

The most appropriate test cases for a web application are session-based because

sessions best reflect real user patterns, making the testing process quite realistic

[6]. The User-Session based techniques are new, useful lightweight mechanisms

of testing. Automating the test process is more feasible and simpler in user-

sessions when applied on web applications. In user-session approaches, the total

interactions of users with the server are collected and the test cases are generated

by using a suitable policy. The client's requests, transported as URLs and

composed of page addresses and name value pairs, are the data to be captured.

These data that can be found in the log files are stored in servers the data

Collected from user sessions can be used to generate a set of http requests and

converted into a real test case. The benefit of the approach is to generate the test

cases without any awareness web application’s internal structure. The test cases

for web application comes from a log file which has some parameters such as date

& time %t, http version %H, request method %m, resource address %U, session

ID %S, response code %s. The log file format example is shown in Table 1.

Table 1: Log file collection

In the following, we briefly review the existing clustering methods based on the

user session and the web application testing. Luo. et al. have developed a

technique which clusters user sessions based on service profile and selects a set of

representative user- sessions from each cluster. Subsequently, each selected user

M. R. N. Dobuneh et al. 4

session is tailored by augmentation with additional requests to cover the

dependence relationships between web pages. A large number of studies have

applied clustering for software testing [9]. Li and Xing presented an approach for

adopted k-means algorithm for partitioning user session data into a reduced

number of clusters. Each cluster represents similar scenarios of user interactions

with a given web application [18]. Liu. et al. have suggested a user-session-based

test cases optimization method based on agglutinate hierarchy clustering. This

method firstly gives the function to calculate the distance between the user

sessions, and then employs the bottom-up agglutinate hierarchical clustering

algorithm to cluster the initial testing cases and produces different kinds of test

suites [19]. Yoo et al. have combined clustering test case based on the dynamic

runtime behavior. clustering test cases, based on their dynamic runtime behavior,

can reduce the required number of pair-wise comparisons significantly [6].

The current researchers apply k-means algorithm for clustering or prioritization

test suite for effectiveness of fault detection rate and time. Although the k-means

algorithm involves some disadvantages [13], it is used in a wide variety of

applications. The number of clusters, k, in the database using the k-means

algorithm assumes to be known prior to the start of the process which is not

realistic for real-world applications. Note they the k-means algorithm is an

iterative technique in which the process is sensitive to the initial conditions (initial

clusters and instance order). The k-means algorithm converges in a finite number

of iterations to a local minimum. The running of the algorithm defines a

deterministic mapping from the initial solution to the final one. A hard and fixed

decision is provided by the vector quantization and especially the k-means

algorithm which does not transmit enough information on the real observations

[14].

It is suggested to improve the method by proposing a new technique that uses

clustering and prioritization together with applied criteria. In this research, we

have proposed a technique that further improved the effectiveness of regression

testing by ordering a set of clustered test cases according to our defined criteria.

Therefore, the problem is to propose a new technique which can be used to

improve the effectiveness of fault detection rate and time.

The permutation of test cases in a way that leads to a faster detection of maximum

available faults in a modified version of web application needs to find good

criteria. The goal of this research is to propose a new technique which merges two

approaches of prioritizing and the clustering test suite to improve one of the test

case prioritization techniques called session-based technique in web application

regression testing. The research aimed to improve the accuracy of existing test

suites with respect to the effectiveness of time and the rate of fault detection.

User session used for web application testing and this approach has been accurate

and adequate for the dynamic web application domain. Therefore, we conduct our

research by using session based test case prioritization for web application testing.

5 Clustering Test Cases in Web Application

The lines of code for large web applications are in the millions and debugging and

error detection for all these lines are time consuming. Thus, there will be so many

object interactions that also required the interactions of users significantly. The

automated testing becomes complicated due to the continuous maintenance

process and due to the changes that occurred in the profiles of the users [12].

The two techniques (clustering and priority test cases) have been used for the

testing approach by different researchers [20]. The clustering techniques generate

a set of test case which is smaller than the original while test cases set may be

very large. Although, we can generate a smaller set of test cases as opposed to the

original suite, but yet these smaller set of test cases can be so large that cannot be

executed completely in terms of time constraint. In this paper, we have proposed a

new technique that can be used for the clustering test suites to improve the

effectiveness of testing by ordering the clustered set of test cases as well as to

introduce the criteria for the ordering. Our technique can be useful for testers who

encountered with limited time and resources but still want to complete the process

of testing. The research goal is to investigate the optimized clustering test cases as

a new technique of test case prioritization for the web application testing

3 Clustering and Prioritizing Test Cases

Priority test cases are one approach to schedule the test cases based on some

criteria that increases the effectiveness in meeting the performance goal. To

reduce the cost of regression testing and the time involved in it, software testers

may prioritize their test cases so that those which are more important, by some

measure, are run earlier in the regression testing process [5]. In previous study

several prioritization criteria have been proposed which could be classified into

five categories: General test case prioritization, Version-specific test case

prioritization, Comparator Techniques, Statement Level Techniques, and Function

Level techniques. In general test case prioritization, the test cases are ordered in

descending order of the number of Parameters that are assigned values in each test

case. In version-specific test case prioritization, the test cases are prioritized such

that the resultant test suite could be most effective for a particular version of the

software. In this technique, the test cases operate at a relatively fine granularity,

including instrumentation, analysis, and prioritization at the level of source code

statements. The comparator techniques use random ordering or the optimal

ordering of the test cases. Statement Level Techniques include approached that

prioritize test cases by considering the attributes of the program at the statement

level. The function level techniques consist of the approaches that prioritize the

test cases by considering the attributes of the program at the functional level.

A prioritization process is not associated with the selection process of test cases.

In test case prioritization (TCP) all test cases will be executed, but to achieve the

best results, some criteria need to be applied to prioritize the test cases. This effort

M. R. N. Dobuneh et al. 6

is helpful to find out the different optimal combinations of the test cases, and it

tries to achieve best schedule running of test cases. It means that, if the test

process is interrupted or early halted at an arbitrary point, the best result that is

finding more faults is achieved. The prioritization criteria which used for

clustering test cases are as follows:

1- Based on number of most common HTTP requests in pages.

2- Ordered dependency of HTTP requests helps to improve the rate of

average percentage fault detection (APFD).

3- Ordered length of HTTP request chains to better APFD rate.

Fig. 1 Proposed solution model

The proposed model generate test cases, prioritizes them according to the

criteria and clusters test cases with self organizing map (SOM) algorithm,

shown in Fig.1. The model comprise of steps define by the following details:

1- Collecting log file of user session in server.

2- Parsing log file by change user session parameters.

3- Generating test cases from user session.

4- Prioritizing test cases based on criteria

5- Using self organizing map for clustering test suites.

6- Calculating average percentage fault detection.

The test case clustering techniques could be categorized into two modes of

partitioned or hierarchical. The partitions of the data are constructed by a

partitioned cluster algorithm that cluster test cases based on the minimal sum of

squared distances from the mean to obtain the optimum result for each cluster.

As Partitioned clustering enumerate itemizes all possible groupings and tries to

find the global optimum, the complexity of the system will be huge. Even for a

small number of objects there exist a large number of partitions. Hence for this

reason, the common solutions are usually with an initial, random partition start.

7 Clustering Test Cases in Web Application

Then, it continues with the refinement and partitioning algorithms for different

sets of initial points, (as representatives intended) to search and find out whether

all solution led to the same partition. The value of similarity or distance can be

calculated from the partition clustering algorithm and the optimum results will be

chosen. Therefore, most of them would be recognized as greedy like algorithm.

A hierarchical decomposition of the objects is created by hierarchical algorithms.

They are (top-down) divisive or (bottom-up) agglomerative: firstly Divisive

algorithm approach begins with a single group of all objects and then be divided

into smaller groups until each of the objects are within a cluster. Secondly

Agglomerative algorithms follow the opposite strategy. They start with those

objects that are within a cluster, then the groups merged based on distance and

similarity of each other. If the objects are in a one group or at any other point the

user wants, the algorithm will stop. This technique followed a greedy like bottom

up merging [16]

3.1 Self Organizing Map

Self-organizing map (SOM) is defined as a neural technique for clustering. It is

demonstrating the two spatial spaces of link among clusters. SOM has been able

to present the data points that are in one or three-dimensional space, that provided

by SOM capabilities. Moreover, due to the easy of visualization and the trade-off

between information content two dimensional spaces have been used more often

[15].

In this research Kohonen’s algorithm is used for clustering by SOM. The test

cases organize into a two dimensional map, according to user session ID and

Resource Address. It is aimed to provide an interactive tool so they can retrieve

information more effectively and efficiently. Our inputs consist of a set of test

cases. The desired output is a two-dimensional map of M nodes.

We modified and match the SOM algorithm for applying to the clustering test

case for web application testing. The SOM algorithm is presented in detail as

follows:

1 – Select two parameters from the log file which are Session ID and resource

address, to put in the array.

2 - Data parameter values are normalized and given in the form of a numeric

matrix.

3 – The matrix is as input of the SOM algorithm

4 – Set the learning rate and neighborhood distance with iteration number for

determining the clusters of test cases by running the SOM algorithm. In this case

examined and

5 - Using the distance function to check the similarity degree between test cases

M. R. N. Dobuneh et al. 8

 (1)

Where x is input sample and w is the weight vector of i
’th

node.

6 - The winner of the competition between nodes in a network node with the

minimum distance is selected

 (2)

For all nodes in ,

The distance value between each node and the winning node is

7 - The weights to all nodes within a topological distance updated by repeat step 6

for all entries of the matrix

8 – The output is provided test suite with similarity test cases in the same groups.

After the network is trained through repeated presentations of all test cases (each

test case is presented for Ω epochs), present unit input vectors of every test case to

the trained network and assign the winning node the session ID and resource

address for related test case. Update the number by labeling the node as the

number of test cases allocated to the node.

4 Case Study

It is an open source web application online bookstore and is selected as a case

study available on www.gotocode.com. The test cases are generated from the real

user session transactions for the web application testing in server-side and each

log file is converted to the test cases. Online book store is a portal for shopping

books. Users are allowed to register on the bookstore, logging in, searching for

books by keyword, browse for books, add books to a shopping cart, rate the books,

update personal information, and log out. Bookstore comprises classes use Java

scripts for its front end and a create database with MySQL for the back end.

Bookstore application has introduced to undergraduate students of Universiti

Teknologi Malaysia (UTM) to collect log files on server side. The log files have

been collected for 60 days.

Consider an example to implement the algorithm for clustering test cases of the

selected web application named as online book store. The normalized matrix S

comes from conversion of the two-parameters of the log file, (session ID and

resource address) as input for SOM clustering. The session ID is based on

hexadecimal unique values for the request that is changed into the decimal

respected value in advance, then normalize the input matrix S as entry of SOM

clustering.

The second parameter mapped from the requested URL’s path related to any

transaction between user and bookstore web application. The mapping code is

given as follows:

9 Clustering Test Cases in Web Application

Switch (temp)

 {Case”Defualt.jsp": Temp=1; break;

 Case”Registration.jsp": temp=2; break;

 Case”Login.jsp": temp=3; break;

 Case”Advsearch.jsp": temp=4; break;

 Case”Shoppingcart.jsp": temp=5; break ;

 Case”Books.jsp":temp=6;break;}.

Fig. 2 Plot SOM sample hits

The clustering output is depicted in Fig. 2 and it is a SOM layer plot that shows the

number of input vectors classified with each neuron. It shows the test cases in

separate clusters based on the similarity and minimum distance. Each neuron has

shown by the number of vectors via size of a colored label.

Fig. 3 shows the plot SOM neighbour weight, distance for the SOM layer showing

neurons as gray-blue labels and their direct neighbor relations with red lines. The

neighbor labels are colored from black to yellow to show how close each neurons

weight vector is to its neighbors.

Fig. 3 SOM output plots

M. R. N. Dobuneh et al. 10

5 Results and Discussion

This section is comprised of verification and validation of the proposed new

technique for web based application. The fault detection rate is defined as the total

number of faults which detected in a shown subset of the ordered test case priority.

For 100% detection of faults, the time used by each prioritized suit is measured

properly. The best possible option to calculate the detection of the total faults is to

detect them in earlier stages of the tests.

The case study is selected in order to verify it by applying criteria to test cases of

web application. The results of applied criteria to the Bookstore are shown in

Table 2. Moreover, the results show the ordered test cases, with SOM clustered,

have detected more faults at early stage of running the test cases. Thus, the rate of

fault finding remains constant until all test cases are executed. Test cases executed

by random to demonstrate effectiveness of the test order with APFD comparable

to the other criteria.

The result of applied criteria to the Bookstore benchmark is shown in Table 2.

The effectiveness of fault detection rate in SOM cluster is increased while it can

find the majority of faults with running half of all test cases. As it can be seen, the

SOM cluster orders test cases for fault detection process result in finding 28 out of

30 faults at early stage of running test cases.

The third criterion which orders test cases based on dependency HTTP requests

enables the proposed technique to detect faults at early stages of running test cases

by 50 % of whole test cases, detecting 28 out of 30 faults. The 28 of total faults

have been detected by first criterion (number of most common HTTP requests in

pages) by executing 60% of existing test cases. The length of HTTP request

prioritization criteria as a second criterion, detects faults by run more than 80 % of

test cases. The test cases executed randomly shows a low fault detection rate for

web application testing.

Table 2: Results for self organizing map test case prioritization

Test case

execution

percentage

Average number of fault detection for Bookstore

fault detected

by numbers of

common http

request

fault detected

by length of

http request

fault detected by

dependency http

request

fault detected by

clustering SOM

fault detected by

random

10% 23 faults 21 faults 23 faults 25 faults 16 faults

20% 25 faults 24 faults 23 faults 25 faults 16 faults

30% 25 faults 26 faults 25faults 26 faults 20 faults

40% 25 faults 26 faults 25 faults 26 faults 24 faults

50% 26 faults 26 faults 28 faults 28 faults 24 faults

60% 28 faults 26 faults 28 faults 28 faults 24 faults

70% 28 faults 26 faults 28 faults 28 faults 24 faults

11 Clustering Test Cases in Web Application

Test case

execution

percentage

Average number of fault detection for Bookstore

fault detected

by numbers of

common http

request

fault detected

by length of

http request

fault detected by

dependency http

request

fault detected by

clustering SOM

fault detected by

random

80% 28 faults 28 faults 28 faults 28 faults 26 faults

90% 28 faults 28 faults 28 faults 28 faults 28 faults

100% 28 faults 28 faults 28 faults 28 faults 28 faults

Fig. 4 Results of APFD

Fig. 4 shows the APFD results of the proposed technique and prioritization

criteria according to Table 2. As could be seen different test case prioritization

criteria have the same APFD. The performance of the proposed clustering

technique is 93.33% in terms of fault detection at an early stage as compared to

the other techniques.

Despite the same APFD for different criteria, considering the running time of test

cases, reveal that the proposed technique based on SOM cluster criterion is more

effective comparing to other criteria.

The test suite contains 291 test cases, and the average time for executing 100% of

test cases is 2.48 seconds. The average time of executing prioritized test cases is

shown in Table 3. As could be seen, prioritization by SOM cluster criteria has the

best running time of test cases with a minimum average time, 0.62 seconds.

M. R. N. Dobuneh et al. 12

Table 3: Test case execution time

Time

Average time of fault detection for Bookstore

by numbers

of common

http request

by length

of http

request

by

dependency

http request

by

clustering

SOM

by

random

1.9 Sec 1.5 Sec 1.2 Sec 0.62 Sec 2.2 Sec

6 Conclusion

In this paper, we have proposed a new web application regression testing based on

real user sessions The proposed technique prioritizes test cases by applying SOM

clustering technique The results of this research show that clustering with SOM

algorithm has performed effectively to prioritize test cases according to user

sessions. This aims to accurately cluster the test cases into groups based on the

similarity parameters that are used in the early stages of the process. The use of

self-organizing map and new prioritization criteria reduce the time of test suite

execution and obtain a higher fault detection rate comparing with random

technique.

References

[1] Elbaum, S., Malishevsky, A. G. and Rothermel, G. 2002. Test case

prioritization: A family of empirical studies, Software Engineering, IEEE

Transactions on. Vol.28, No.2, 159-182.

[2] Pertet, S. and Narasimhan, P. 2005. Causes of Failure in Web Applications

(CMU-PDL-05-109). Parallel Data Laboratory. 48.

[3] Sampath, S., Bryce, R. C., Viswanath, G., Kandimalla, V. and Koru, A. G.

2008. Prioritizing user-session-based test cases for web applications testing,

Proceedings of the 2008 Software Testing, Verification, and Validation, 2008

1st International Conference on: IEEE, 141-150.

[4] Onoma, A. K., Tsai, W.-T., Poonawala, M. and Suganuma, H. 1998

Regression testing in an industrial environment, Communications of the

ACM. Vol.41, No.5, 81-86.

[5] Rothermel, G., Untch, R. H., Chu, C. and Harrold, M. J. 2001. Prioritizing test

cases for regression testing, Software Engineering, IEEE Transactions on.

Vol.27, No.10, 929-948.

[6] Yoo, S. and Harman, M. 2012. Regression testing minimization, selection and

prioritization: a survey. Software Testing, Verification and Reliability,

Vol.22, No.2, 67-120.

13 Clustering Test Cases in Web Application

[7] Wong, W. E., Horgan, J. R., Mathur, A. P. and Pasquini, A. 1999. Test set

size minimization and fault detection effectiveness: A case study in a space

application, Journal of Systems and Software. Vol.48, No.2, 79-89.

[8] Leon, D. and Podgurski, A. 2003. A comparison of coverage-based and

distribution-based techniques for filtering and prioritizing test cases,

Proceedings of the 2003 Software Reliability Engineering: IEEE, 442-453.

[9] Xingmin Luo, Fan Ping, and Mei-Hwa Chen. 2009. Clustering and tailoring

user session data for testing web applications, International Conference on

Software Testing Verification and Validation.

[10] Srikanth, H., Williams, L. and Osborne, J. 2005. System test case

prioritization of new and regression test cases, Proceedings of the 2005

Empirical Software Engineering, International Symposium on: IEEE, 10.

[11] Tonella, P., Avesani, P. and Susi, A. 2006. Using the case-based ranking

methodology for test case prioritization, Proceedings of the 2006 Software

Maintenance, 22nd IEEE International Conference on: IEEE, 123-133.

[12] Kirda, E., Jazayeri, M., Kerer, C. and Schranz, M. 2001. Experiences in

engineering flexible web services, Multimedia, IEEE. Vol.8, No.1, 58-65.

[13] Arvind Kumar Upadhyay, A. K. Misra. 2012. Prioritizing Test Suites Using

Clustering Approach in Software Testing. International Journal of Soft

Computing and Engineering (IJSCE), Vol.2, No.4.

[14] Lazli, L., Mounir, B., Chebira, A., Madani, K. and Laskri, M.T. 2011.

Connectionist probability estimators in HMM using genetic clustering

application for speech recognition and medical diagnosis, International

Journal of Digital Information and Wireless Communications Vol.1, No.1,

14-31.

[15] Kohonen, T. 2001. Self-organizing maps of massive databases. International

Journal of Engineering Intelligent Systems for Electrical Engineering and

Communications, Vol.9, No.4, 179–185.

[16] Raeisi Nejad Dobuneh. M, Jawawi. D. N. A, Malakooti. V. M. 2013. An

Effectiveness Test Case Prioritization Technique for Web Application

Testing. International Journal of Digital Information and Wireless

Communications. Vol.3, No.4, 117-125

[17] Raeisi Nejad Dobuneh. M, Jawawi. D. N. A, Masitah Ghazali, Malakooti. V.

M. 2014 . Development Test Case Prioritization Technique in Regression

Testing Based on Hybrid Criteria. 8th Malaysian Software Engineering

Conference (MySEC), 301-305.

[18] Jin-hua Li and Dan-dan Xing. 2011. User Session Data Based Web

Applications Test With Cluster Analysis, Springer-Verlag Berlin Heidelberg

CSIE, 415–421.

M. R. N. Dobuneh et al. 14

[19] Yue Liu, Kang Wang, Wang Wei, Bofeng Zhang, Hailin Zhong. 2011. User-

session-based Test Cases Optimization Method based on Agglutinate

Hierarchy Clustering, IEEE International Conferences on Internet of Things, and

Cyber, Physical and Social Computing.

[20] Yuan Fang Li, Paramjit K.Das, David L.Dowe. 2014. Two Decades of Web

Application Testing: A Survey of Recent Advances, Information Systems,

Vol.43, (2014), 20–54.

