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Abstract 

     Accurate forecast of water demand is one of the main problems in 
developing management strategy for the optimal control of water 
supply system. In this paper, a hybrid model which combines 
empirical mode decomposition (EMD) and least square support 
vector machine (LSSVM) model is proposed to forecast water 
demand. This hybrid is formulated specifically to address in 
modelling water demand that has high non-linear and non-
stationary time series which can hardly be properly modelled and 
accurately forecasted by traditional statistical models.  EMD is used 
to decompose the water demands into several intrinsic mode 
functions (IMFs) component and one residual component. LSSVM 
is built to forecast these IMFs and residual series individually, and 
all of these forecasting values are then aggregated to produce the 
final forecasted value for water demand series.  To assess the 
effectiveness and predictability of proposed models, monthly water 
demand record data from Batu Pahat city in Johor of Peninsular 
Malaysia, has been used as a case study. Empirical results suggest 
that the proposed model outperforms the single LSSVM and 
artificial neural network (ANN) model without EMD preprocessing 
and EMD-ANN model. Thus, the EMD-LSSVM model is an effective 
method for water demand forecasting. 

     Keywords: Water demand, forecasting, ANN, EMD, LSSVM. 

1      Introduction 

Water is a basic need and known as the most important resource in any urban 

development program. Most of the decisions in urban planning and sustainable 

development are highly dependent on the forecasting of water demand. Accurate 
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water demand forecasting is becoming an essential tool for designers and 

managers in the successful of an operation, management and modernization of 

water delivery systems.  

Forecasting of water demand variables is a very active field of study and there is 

still a great deal of work to be done in this field. Previous works are done mainly 

by using traditional statistical models such as multiple regression [1-3] and 

autoregressive integrated moving average (ARIMA) models [4-6]. ARIMA 

model, the mostly used approach, relies on the direct identification of pattern 

existing in historical water demand data. The popularity of the ARIMA models is 

due to its statistical properties such as the well-known Box-Jenkins methodology, 

forecasting capabilities and richness of information regarding time-related 

changes. However, ARIMA models are basically linear assuming and have a 

limited ability to capture non-stationary and non-linearity that occurred in water 

demand data.   

Recently, many artificial intelligence (AI) methods such as Artificial Neural 

Networks (ANN) [7], fuzzy methods [8], support vector machines (SVM) models 

[9,10] and dynamic artificial neural network models [4] have been successfully 

applied extensively to forecast the water demand data. Among these AI models, 

ANN has been frequently adopted as the modelling approach [2-4, 6, 7, 9-11]. 

Previous works on water demand forecasting [2, 5, 6, 10] show that the use of 

ANN provides very satisfactory results. More advanced, least square support 

vector machine (LSSVM), which is developed by Suykens and co-workers [12], is 

a very demanding research field nowadays. This model is a reformulation of the 

traditional support vector machines (SVM) that alters inequality constraints into 

equal conditions and employs a squared loss function, which is a differential 

setting relative to traditional SVM. The LSSVM can approach the non-linear 

system with high precision, making it a powerful tool for modelling and 

forecasting non-linear characteristic of time series. After several years of 

development, LSSVM model has been successfully used to solve forecasting 

problems in various fields such as wind speed [13], stream flow [14-16], water 

demand [17] and short term electric load [18]. Nevertheless, these AI models have 

their own disadvantages. For example, the performance of ANN in some specific 

situations is inconsistent and suffers from some weakness such as locally optimal 

solutions and over-fitting, which can make the forecasting precision unsatisfactory 

[19]. In addition, ANNs are unstable learning techniques where small changes in 

training data sets or parameter selection can produce a huge change in predicted 

outputs [20].  While other AI models such as SVM, LSSVM and ANN are 

sensitive to parameter selection [21].  

In order to construct more efficient statistical and AI models, previous studies 

have proposed a number of hybrid models. For example, Pulido-Calvo and 

Gutierrez-Estrada [6] used hybrid methodology of ANN, fuzzy logic and genetic 

algorithm to forecast in Andalucía, Spain. Pulido-Calvo et al. [2] combined linear 

regressions and ANN to forecast water demand in irrigation districts with 
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telemetry systems.  Nasseri et al. [22] developed a hybrid model which combines 

Extended Kalman Filter and Genetic Programming for forecasting of water 

demand in Tehran. Jia and Hao [23] proposed a hybrid method based on extreme 

learning machine model with adaptive metrics of inputs for water demand 

forecasting. These papers showed that hybrid models outperform single methods. 

The basic idea of the above hybrid methods is to overcome the drawbacks of the 

single models and to generate a synergetic effect in forecasting.  

Motivated by hybrid methodologies, this study attempts to apply the 

“decomposition-and-ensemble’ principle based on empirical mode decomposition 

(EMD) to construct a hybrid water demand forecasting methodology. The EMD 

as a time-frequency resolution approach offers a new way which the stationary 

and nonlinear behaviour of time series can be decomposed into a series of 

valuable independent time resolutions. The main aim of decomposition is to 

simplify the difficult forecasting task by dividing it into some relatively simple 

but meaningful components for easy forecasting subtasks, while the goal of 

ensemble is to formulate a consensus forecasting result for the original data. 

Therefore, the decomposition can be helpful to transform non-linear and non-

stationary time series to stationary time series and can be useful to improve the 

prediction capacity. Recent works have demonstrated the application of EMD 

methodology with other model outperformed individual forecasting model in 

many cases [24-27]. However, the applications of EMD in water demand are 

limited where only Ani & Samsudin [28] proposed a hybrid forecasting model 

based on EMD-ANN to forecast water demand. The literature review reveals that 

the EMD-LSSVM technique has not been used for forecasting water demand. 

Therefore, this study will provide important contributions to the literature of water 

demand forecasting. 

 

In this paper, a hybrid water demand forecasting method based on EMD and 

LSSVM is proposed to further improve the forecasting accuracy. Hence, EMD is 

applied to decompose water demand series. Different LSSVM models are then 

constructed with each sub-series and the final forecasted value can be obtained 

through the conjunction of these models. In order to evaluate the performance of 

the proposed approach, the monthly water demand series from the city of Batu 

Pahat in Johor, Malaysia was chosen as the example to compare its prediction 

performance with some common individual methods such as ANN, LSSVM and 

EMD-ANN hybrid models.  
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2      Methodology 

 

Owing to the inherent of non-linear and non-stationary of water demand series, 

the “decomposition-and-ensemble’ principle based on empirical mode 

decomposition (EMD) is introduced. In terms of this strategy, a hybrid method 

integrating EMD and LSSVM is proposed to enhance the quality of water demand 

forecast. In this methodology, the original water demand series is decomposed 

into a number of components depicting relatively simple but meaningful local 

time scales by using EMD technique. Then, the LSSVM algorithm which is a 

useful methodology and also a new kind of intelligent machine is applied to 

forecast future numerical values using the data of IMFs available in different 

frequencies.  Finally, the forecasted values of the proposed model can be obtained 

by summing the forecasted value of all components respectively. This paper will 

demonstrate the effectiveness of the hybrid model for forecasting water demand. 

Before starting to use the hybrid method, it is necessary to describe the theory of 

the proposed approach. First, the decomposition techniques of EMD and the 

principle of LSSVM algorithm are presented. Then the EMD and LSSVM are 

combined into a developed approach. 

 

2.1     Artificial Neural Network  

Artificial neural networks (ANN) are computational models that have been 

extensively studied and widely ranges of applications included their great ability 

in modelling and forecasting in nonlinear time series since the early 1990s. Most 

popular neural network paradigm in water demand is multilayer perception 

(MLP). MLP usually consists of three layers: the first layer is the input layer 

where the data are introduced to the network, the second layer is the hidden layer 

where data are processed and the last layer is the output layer where the results of 

given input are produced. Fig. 1 illustrates the architecture of the proposed ANN 

for water demand forecasting. The general relationship between the input 

),...,,( 21 pttt yyy −−−  and output )( ty  in an ANN model can be expressed as: 
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weights, p is the number of input nodes, q the number of hidden nodes and f( ) and 

g( ) is the transfer function of the hidden layer and the output layer.  
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Fig. 1 Three-layered feed-forward ANN model 

 

In order to find the optimal weight jiw ,  and jw , learning or training processes 

must be employed to minimize the error. The objective function to minimize the 

error is the sum of the squares of the differences between the desirable output ty  

and the predicted output tŷ , which given by 
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In this study, the training of the network is performed by the Levenberg-

Marquardt (LM) algorithm. The LM algorithm is a modification of the classic 

Newton algorithm, it is often the fastest convergence in terms of iteration number 

and capable of finding better optima compared to other algorithms methods [29-

31]. This optimisation technique is more powerful than the conventional gradient 

descent technique and has been recommended by several authors [2, 32-34].  

 

2.2 Least Square Vector Machines Model  

LSSVM is a new version of SVM which applied the linear system instead of 

solving a quadratic programming problem [12]. The basic principle of LSSVM is 

as follows: Suppose ),( tt YX  for t = 1 to n is a given set of data where  

),...,,( 21 ptttt yyyX −−−=  is the input vector with p multiple variables and ty  is 

the corresponding output data at time t. By a nonlinear function ϕ , the data are 

mapped from the original feature space to a higher dimensional feature space. 

Thus, to approximate it in a linear way is as follows: 
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LSSVM introduces a least square version to SVM regression by formulating the 

regression problem as  
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where ie  is the error variable at time t and γ is a regulation constant. In order to 

solve the optimization problem, the Lagrange function is formulated as follow 
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where tα is the Lagrange multipliers. By using partially differentiating ),,( αewL  

in (4) with the variable iebw ,, and iα  which is shown as follows 
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An alternative formulation of (5) can be transformed into the following linear 

solution: 
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where )(),(),( ltlt XXXXK ϕϕ= is the kernel function. By solving the upper 

linear system, the final solution of LSSVM model for non-linear function can be 

written as: 

bXXKy
n

t ttt +=∑ =1
),(α  (6) 

where iα ,b are the solution to the linear system. There are several types of kernel 

function ),( tXXK such as sigmoid, polynomial and radial basis function (RBF). 

The most popular kernel function is RBF and is expressed as 

)2/exp(),( 2σtt XXXXK −−= with a width σ and the polynomial kernel 

d
tt aXXaXXK )(),( 21 += with an order d and constants 1a  and 2a . 

 

2.3 Empirical Mode Decomposition 

EMD recently pioneered by Huang et al. [35], is a signal analysis method which 

can deal with non-linear and non-stationary data. The main idea of EMD method 

is to decompose the original data into a sum of intrinsic mode function (IMF) 

components with individual intrinsic time scale properties. IMFs have to satisfy 

the following two conditions (a) in the entire data set, the number of extreme 

values (maxima plus minima) and the number of zero-crossings must either be 

equal or differ by at most one; and (b) at any point, the mean value of the 

envelope, constructed by the local maxima and minima, is zero at any point. The 

detailed decomposition process of EMD is presented by Huang et al. [35]. The 

algorithm of EMD is described as follows: 

(i)  Identify all the local extremes including maxima and minima values in time 

series data )(ty . 

(ii)  Obtain the upper envelope )(tyU  and the lower envelope )(tyL . 

(iii)  Calculate the mean value 2/))()(()(1 tytytM UL += . 

(iv)  Evaluate the difference between the original time series )(ty  and the mean 

time series ).(1 tM  The first IMF )(1 th  is defined as )()()( 11 tMtyth −= .  

(v)  Check whether )(1 th satisfies the two conditions of an IMF property. If they 

are not satisfied, we repeat steps (i) – (iii) of the decomposition procedure to 

eventually find the first IMF.  

(vi) After we obtained the first IMF, a repetition of the above steps are necessary 

to find the second IMF, until we reach the final time series )(te  that satisfies 

one of the termination criteria suggesting to stop the decomposition 

procedure. 
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By using the above algorithm, the original time series )(ty can be reconstructed 

by summing up all of the IMF components and one residual component as Eq. (7), 

following expresses. 

∑
=

+=
m

i

mi tethty

1

)()()(   (7) 

where m is the number of IMs, )(thi represents IMFs and )(tem is the final 

residual, which is a constant or a trend.  The EMD techniques provide a multi-

scale analysis of the signal as a sum of orthogonal signals corresponding to 

different time scales and also be-taken as a filter of high pass, band pass or low 

pass. 

 

2.4 The Architecture of Hybrid Intelligent Forecasting Model 

Fig.2 describes the process of EMD-LSSVM forecasting method. As it can be 

seen from Fig.2, the EMD-LSSVM forecasting can be described by the following 

steps: 

(i)  Decompose the time series )(ty , t =1, 2, … , n  is into m-IMFs )(1 th , 

),...,(2 th )(thm and one residual )(tem  by EMD.  

(ii)  Use the LSSVM model to model each of m-IMFs and the residue )(tem . 

The LSSVM models are then applied to forecast the future one-day values 

of these IMFs and the residual. The partial autocorrelation function (PACF) 

is used as an input data; pre-processing tool for LSSVM model. 

(iii) Sum up of all the prediction results of IMF components and one residual 

component.  

Original  Time Series

EMD

IMF1 IMF2 IMFm Residual. . .

PACF1 PACF2 PACFm PACFResidual. . .

LSSVM1 LSSVM2 LSSVMm LSSVM Residual. . .

∑

Forecasting Results

Step 1
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Fig. 2 The proposed EMD-LSSVM forecasting model for water demand data 
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The same EMD-based methodology steps are also fed into ANN in order to build 

the hybrid linear water demand forecasting model, namely, the EMD-ANN 

models. 

 

3      Experimental Analysis 

Time series data of monthly water demand data from Batu Pahat city in Johor, 

Malaysia obtained from Syarikat Air Johor (SAJ) was used in this study. The 

sample data covering the period dated from January 1995 to December 2011 with 

a total of 204 observations are used as shown in Fig. 3. The data dated from 

January 1995 to December 2010 (192 observations) are used as training dataset 

and the remaining data from January 2011 to December 2011 (12 observations) 

are chosen as testing dataset evaluate performance of prediction.  
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Fig. 3 The monthly water demand series from Batu Pahat city from Jan. 1995 to 

Dec. 2011 

For comparison of the forecasting performance of the proposed model, three 

widely used performance indexes, root mean square error (RMSE), mean absolute 

error (MAE) and coefficient of correlation (R) are applied. RMSE, MAE and R 

are defined in following equations:  
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where ty is the actual data, tŷ  is the forecasted value of period t, y and 'y are the 

means of ty and tŷ , respectively. Obviously the smaller the values of RMSE and 

MAE, and R closer to 1 indicate high efficiency of the model. R has been widely 

used for model evaluation, though they are oversensitive to high extreme values 
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(outliers) and insensitive to additive and proportional differences between model 

predictions and measured data [36-38].  

 

3      EMD-Based Methodology to the Data 

In the EMD-based methodology, the first step is to apply EMD algorithm to 

decompose the original water demand data series into several IMF components 

and one residual. The EMD algorithm is implemented via R software package 

using EMD library. Fig. 4 shows the decomposition results for the water demand 

series is decomposed into seven IMFs and one residual, which exhibits a stable 

and regular variation.  Clearly, all IMF components are listed in order from the 

highest frequency to the lowest frequency, and the last one is the residual.   
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Fig. 4 The IMFs and one residual for water demand series via EMD 

 

After the time series are decomposed, each component of IMFs and the residual 

are then used to build the LSSVM and ANN forecasting models. One of the most 

important steps in the model development process of LSSVM and ANN model is 

the determination of significant input variables. In the modelling of the single 

LSSVM and ANN models like the EMD-LSSVM and EMD-ANN models, the 

PACF graph which is simply the plot of PACF against the lag length is used to 

determine the input variables as studied by Hu et al. [39]. The PACF of original 

data, IMFs and one residual component are shown in Fig. 5. Through observing 

Fig. 5 with the output variable ty , it is obvious that the input variables for LSSVM 

and ANN modelling are as shown in Table 1. 
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Fig. 5 PACF of original data, IMFs and one residual  
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Table 1: Input variables for LSSVM and ANN modelling based on PACF. 

Data Input Variables  

Original 
21, −− tt yy
 

IMF1 
321 ,, −−− ttt yyy
 

IMF2 141311864321 ,,,,,,,, −−−−−−−−− ttttttttt yyyyyyyyy  
IMF3 

65321 ,,,, −−−−− ttttt yyyyy
 

IMF4 
4321 ,,, −−−− tttt yyyy

 
Residual 

1−ty
 

 

In this study, in each LSSVM model, the most popular function kernel, Gaussian 

RBF is chosen and the kernel parameter 2σ  and γ  were determined beforehand. 

Currently, many approaches have been applied in parameter optimization of 

LSSVM such as grid search, cross validation, genetic algorithm, particle swarm 

optimization, etc.  In order to obtain the optimal model parameters γ  and 2σ of 

the LSSVM, the most used method, cross-validation grid search method were 

employed. To overcome parameter sensitiveness, 10-fold cross validation on the 

training set was performed to predict the prediction error. The best fit model 

structure for each model is determined according to the criteria of the performance 

evaluation. The LSSVMlab software package toolbox developed by Suykens et al. 

[14] for MATLAB platform is used to build the LSSVM models.  

For ANN model, the training and testing data were normalized within the range of 

[-1, 1]. The hidden nodes use the hyperbolic tangent sigmoid transfer function and 

the output layer uses the linear function because the prediction performance is the 

best when these transfer functions are used.  There is no greed standard on how to 

determine the optimal number of hidden nodes in the hidden layer. Berry and 

Linoff [40] claimed that the number of hidden nodes should never be more than 

2I, where I is the number of inputs. Hect-Nielsen [41] claimed that the number of 

hidden neuron is equal 2I +1. In the present study, the number of hidden nodes 

was progressively increased from 1 to 2I +1.  

A program code including the wavelet toolbox was written in MATLAB language 

for the development of the ANN model. The optimal complexity of the ANN 

model, that is the number of input and hidden nodes, was determined by a trial-

and-error approach.  

In order to verify the forecasting capability of the proposed EMD-based model 

with two popular single forecasting approaches, including single LSSVM and 

ANN models are employed for comparison to forecast water demand. Table 2 

summarizes the prediction performance of difference prediction models on the 

water demand data mentioned above. It is obvious that the proposed EMD-

LSSVM model yields better results than EMD-ANN model with the lowest 
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RMSE and MAE, and the highest R.  When comparing single forecasting models, 

the ANN model mostly ranks the last, while LSSVM model produce better results 

in all cases. It is worth noting that RMSE, MAE and R results of the three hybrid 

ensemble learning models (i.e. EMD-LSSVM and EMD-ANN) are significantly 

better than those of the two single models (i.e. ANN and LSSVM). It shows that 

the decomposition strategy does effectively improve prediction performance. 

 

The actual water demand data and forecasted values for the ANN, LSSVM, EMD-

ANN and EMD-LSSVM models are illustrated in Fig. 6. From Fig. 6, it can be 

seen that the proposed hybrid ensemble learning models provide good forecasting 

results. The forecasted values of the proposed model are very close to the actual 

values than those obtained from other models.  

 
 

Table 2: Performance of the four forecasting methods 

Statistics ANN LSSVM EMD-ANN EMD-LSSVM 

MAE 2.1625 1.8116 1.8688 1.6485 

RMSE 2.5610 2.1012 2.7130 2.0021 

R 0.3533 0.4391 0.5439 0.6819 
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Fig. 6 Forecasts of water demand from Batu Pahat city in Johor of Malaysia. 

 

4      Conclusion 

The development of accurate forecasting methods is an important topic of 

continuing interest and research. However, it is widely known that water demand 

series often is highly non-stationary and non-linearity. Therefore, it may have 

poor prediction performance from applying traditional statistical models. This 

study attempts to apply a hybrid forecasting method which is an integration of 

empirical model decomposition EMD and LSSVM model to predict water 

demand series from Batu Pahat city in Johor Malaysia. This methodology first 

decomposes the original water demand series into several intrinsic model function 

(IMFs) components and one residual component by EMD method. This can 

reduce the non-stationary of the water demand series and enhance the prediction 
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accuracy. Then, the IMFs components and the residual components are forecasted 

respectively using LSSVM model whose input variables are selected by using 

partial autocorrelation function (PACF). The final forecasted result for water 

demand series is produced by aggregating all the forecasted results. Empirical 

results show that the proposed EMD-LSSVM model outperforms the EMD-ANN 

as well as the LSSVM and ANN models without time series decomposition. The 

performance of the EMD-LSSVM and EMD-ANN are generally better than the 

single methods. This indicates that the “decomposition and ensemble” strategy 

can effectively improve the prediction performance of water demand series. Thus, 

it can be concluded that the proposed EMD-LSSVM model may be an effective 

tool as a very promising methodology for complex problems such as water 

demand series forecasting with highly non-stationary and non-linearity.  
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