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Abstract 

 

High-order Hu moment invariant functions have always been required to solve 

a variety of problems. Up to this point, there was no generalized approach to 

extend the first six Hu moment invariants to higher orders. Therefore, this 

paper presents a generalized algorithm to determine rotationally invariant Hu 

moment invariants of any desired order, which are invariant to scaling, 

translation and rotation. Rotation has been stated to be a vital transformation 

that causes the non-linear transformation of an image, unlike scaling and 

translation, which are linear transformations of an image. Invariance to linear 

transforms can be achieved with the raw moments. However, non-linear 

transformations such as rotation require a unique combination of the raw 

moments to nullify the effects of the rotation transform. The algorithm proposed 

in this paper enables us to identify this specific combination of moments of 

specific order to achieve rotational invariance. The correctness of the proposed 

algorithm has been verified with appropriate proofs. The performance of a 

sample of new moment invariant functions generated from the proposed 

algorithm has been appraised specifically for rotational invariance with sample 

image data.  

 
Keywords:Invariant,Moment, Rotation, Scaling, Skew, Transform, Translation. 

1      Introduction 

Images contain large amounts of information, and much of the information that is 

presented in today’s world is in the form of  images. The processing and 

understanding of an image consists of several stages that include image 

acquisition, image enhancement, image restoration, image representation, image 

compression and object recognition. Object recognition, the end goal of image 

understanding, is often achieved through a sequence of operations on the image 
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that range from low- to high-level image processing. The image processing 

operations group regions into objects and the image is described in terms of the 

object properties (location, shape, size) and the relations between the objects. 

Object recognition continues to pose a challenge to researchers, although several 

methods for object recognition have been proposed [1-4]. The difficulty of object 

recognition often stems from the method’s inability to cope with variability due to 

lighting, scale, or rotation of the images. 

The work presented here builds on work that focused on representing an image 

with moment invariant functions. In particular, it extends Hu moment invariants 

[5] to higher-order invariants to ensure invariance to image rotation. From this 

point on, the paper is organized as follows. Section 2 explains the origin and the 

formulation of Hu moments. The invariant nature of the formulations to the 

scaling, translation and rotation transforms is discussed. Section 3 reviews a large 

number of applications of the original Hu moment invariants (limited to third-

order invariants) [5]. This order limitation is the motivation of the presented work. 

Section 4 proceeds to remove this limitation and extends Hu’s original invariants 

to higher orders. Section 5 presents the actual algorithm for generating new 

moment invariant functions that are invariant to scaling, translation and rotation. 

Section 6 presents a sample of the new rotationally invariant moment invariant 

functions identified from the proposed algorithm in Section 5. Section 7 addresses 

the problem of polynomial dependency among the geometric moments and 

presents a solution to prevent it. Finally, Section 8 provides experimental results 

obtained from using the newly identified moment invariant functions in Section 6. 

The rotational invariance of these moment invariants is demonstrated and 

compared for different invariants.  

2 History of invariants 

Moment invariants have a long history that dates back to the theory of algebraic 

invariants studied by the German mathematician David Hilbert [6]. In an image, 

assume that ( , ) 0f x y ≥ represents the image at the pixel ( , )x y . The 

moment pqM of order r  of ( )yxf , is defined as 

( , ) ( , )pq pqM P x y f x y dxdy= ∫∫                                            (1) 

where 0≥p , 0≥q , and pqP is a polynomial basis function. The polynomial basis 

function could be an orthogonal function or a non–orthogonal function. Non–

orthogonal moment functions are also called geometric moment functions, and a 

number of polynomial basis functions could be selected. The Hu moment 

invariants were generated with non-orthogonal polynomial basis functions as 

shown in equation (2). The raw moment functions were further normalized into 

central moments (3) that were invariant to translation. 
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 ( , )
p q

pq

x y

m x y f x y dxdy= ∫ ∫     (2) 

 ( ') ( ') ( , )
p q

pq

x y

n x x y y f x y dxdy= − −∫ ∫   (3) 

Hu [5] defined seven moment invariants of second and third order, shown in 

equation (4).  
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(4) 

Each of the Hu moment invariants of the equations in equation (4) is invariant to 

rotation, scaling and translation. In addition, 7I  is also invariant to skew. When 

represented in polar form, the geometric invariants, called rotational moments, 

ensure that an increase in the invariant order does not decrease the magnitude of 

the invariant. Boyce and Hossack [7] had derived rotational moments of arbitrary 

order that are shown to be invariant to rotation, scaling and intensity.  

3 Work related to Hu's moment invariants 

The robustness of the Hu moment invariant functions over the boundaries of 

images has been recently studied in [8], where it was shown that object 

recognition and discrimination could be achieved with better accuracy using Hu 

moments when they are applied over the boundary of a region in the image. The 

experiments shown in [8] involved identifying different shapes of keys that had 

minor differences in their shapes. An effective algorithm for the detection and 

description of image shape features based on 7I  used in combination with a 

connected component analysis has been proposed in [9].  

 

Hu moment invariants were used to reduce the translation, deflection and scale 

variations of welding images caused by welding deformations in [10]. All the 

seven moment invariants of the welding pool image were used to construct a 

similarity measure that was subsequently used to classify the images, achieving an 
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accuracy of 99%. An effective measure of shape circularity based on Hu moments 

is developed in [11], and all the seven Hu moment invariants were used in a 

biometric application for palm print identification in [12]. Hu moments were used 

in another biometric application, iris recognition [13], resulting in a False 

Acceptance Rate of 0.0% and a False Rejection Rate of 2.5%.  

 

Hu moment invariants have also been used to determine defects in wood with 

86% accuracy [14] and to process Synthetic Aperture Radar (SAR) images [15], 

where the existing seven Hu moment invariants in combination with the Support 

Vector Machine (SVM) over the SAR images achieved 96.18% accurate 

identification of target objects. Work performed on 3D shape retrieval, as reported 

in [16], also emphasizes the use of Hu moment invariants for the compact 

representation of multi-view descriptors. Texture analysis over a spermatozoa data 

set was performed by researchers in [17]. They found that the Hu moment 

invariants had poor performance as global descriptors. However there existed only 

seven Hu moment invariants for the researchers to use. This paper proposes a 

generalized algorithm to determine new Hu moment invariants which could be 

used in such research in future. Table 1 summarizes the applications of the Hu 

moments discussed above. Column 2 lists the drawbacks reported in these 

applications, while column 3 suggests the expected improvements afforded by the 

use of higher-order Hu invariants.  
 

Table 1: Improvements in research that could be accomplished through the 

proposed work 

 

Reference Important drawbacks 
 Impact of proposed 

algorithm 

HaiFeng 

Zhang et. al. 

[8] 

Hu moments I1 - I7 were 

found to be computationally 

complex; therefore, only the 

boundary of shapes were 

evaluated. However, this 

approach reduces 

discrimination caused by 

loss of information. 

 The larger number of 

moment invariants 

identified by the proposed 

algorithm provides a 

choice that can reduce the 

number of invariants to be 

computed and thus reduce 

computational 

complexity. 

Xiuxin Chen 

et. al. [9] 

The authors were successful 

in discriminating the 

objects. However, the 

experimental results in this 

work have a large deviation 

in the measures for the first 

three Hu moment invariants 

of a given object. 

 Higher-order moment 

invariants as achieved in 

this paper could be used to 

minimize the impact of 

scaling and achieve a 

more accurate 

identification of objects. 
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GaoFeiet. al. 

[10] 

Jin Soo NOH 

et. al. [12] 

As found in many other 

works, all the seven Hu 

moment invariants have 

been used in the experiment. 

No selection of invariants 

has been made, resulting in 

a computational complexity 

that is large. 

 As more moment 

invariant functions 

become available, a 

careful choice from the 

infinitely large source 

could achieve better 

performance with less 

computation. 

JovisaZunic et. 

al. [11] 

ReinhardKlette 

et. al. [18] 

The shape circularity 

measure for real-time 

applications could not be 

effectively computed due to 

the discrete nature of images 

[11]. A descriptor based on 

the asymmetries in the 

distribution of roughness 

(ADR) as in [18] used only 

moment invariants of 

second order.  

 Higher-order moment 

invariants work better 

over circularly symmetric 

objects and in asymmetric 

scenarios. Hence, as new 

higher-order moment 

invariants are produced, 

the shape analysis as 

accomplished in this work 

could be significantly 

improved.  

Hongbo Mu et. 

al. [14] 

The authors have directly 

used the improved shape 

descriptors given in [19]. 

 The work of [19] could be 

generalized over the new 

moment invariant 

functions identified by the 

proposed method to 

achieve a higher degree of 

accuracy with less 

computational 

complexity. 

Oscar Garcia-

Olalla  et. al. 

[17] 

Texture analysis was 

conducted with several 

descriptors which include 

Hu moment invariants. The 

invariants proved to be less 

accurate. 

 The accuracy of the 

representation heavily 

depends on the precision 

of the moments used. 

Therefore, the results can 

be further improved with 

the higher-order moment 

invariants proposed in this 

research. 

Fu Yan et. al.  

[15] 

More training for the SVM 

is required, as is apparent in 

the experiment. The seven 

Hu moments have all been 

computed instead of 

selecting the few necessary, 

increasing the 

 A careful selection of 

moment invariants could 

be made from the 

proposed algorithm that 

would reduce both the 

computational complexity 

and the training for the 
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computational complexity. SVM. 

 

4 An analysis of the existing extensions to the Hu 
 moment  invariants 

Work done in [20] explains that the Hu invariants were limited to third-order and 

that the Hu invariants 
2I and 

3I  shown in equation (4) are dependent on the 

polynomial used in the integral. This dependency between the invariants reduces 

their contribution to pattern recognition. A missing invariant I8 of order three 

defined in equation (5) was also found [20]. However, as shown in [21], it is 

essential to find a method to generate Hu-like moment invariants of higher orders. 

   
2 2

8 11 30 12 03 21 20 02 30 12 03 21[( ) ( ) ] ( )( )( )I n n n n n n n n n n n= + − + − − − −  (5) 

The need for higher-order moments also follows from the rotational symmetry of 

the objects of interest. An object that is symmetric to rotation requires invariants 

involving higher-order moments to achieve clearly distinct invariant measures. 

The symmetry also causes moments of different orders to have identical values. 

Complex invariants constructed with higher-order moments up to order five were 

used to distinctly identify rotationally symmetric objects [20]. As stated in [20], 

we find that the lower-order complex moments are less sensitive to noise than the 

higher-order moments. Therefore, complex moment invariants were usually 

limited to lower-order moments. The number of folds of symmetry (N) was used 

as an important factor in deciding the threshold. Although complex moments are 

sensitive to noise at higher orders, the geometric moments of higher orders are 

still capable of identifying objects with rotational symmetry. Moreover, there has 

been no specific limitation of the order of moments involved in the computation 

of invariants. However, it is difficult to know the exact highest order of the 

moment required for any object with rotational symmetry of order N . Authors in 

[20] had proposed a graph-based algorithm to determine skew moment invariant 

functions. However, this paper presents a generalized algorithm to determine 

higher-order rotational moment invariant functions.  

 

The effect of the rotation and scaling of images on Hu moment invariants has 

been studied in [22]. The discrete nature of the image affects the invariance of the 

Hu moment invariants. A compromise between the spatial resolution of the image 

and computational speed can help achieve better invariance of the existing seven 

Hu moment invariants. The algorithm proposed in this paper expands the number 

of new moment invariants, thereby overcoming the impact of the rotation of 

discrete images. An integrated formulation of United Moment and Aspect 

Moment into Zernike Moment Invariant [23] accomplishes an intra-class and 

inter-class analysis of the character images. Issues with the use of geometric 
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scaling of Hu moments were reported, leading to a combination of the different 

moment formulations for the effective analysis of character images. Unlike 

geometric moment invariants such as Hu moments, we find a number of 

contributions towards the betterment of orthogonal moment invariants such as 

Zernike moments [24-25]. Thus, based on the above observations, it can be 

observed that the Hu moment invariants often had to be combined with other 

formulations to improve their performance. This is mainly due to the lack of 

higher-order Hu moment invariant functions. The generalized algorithm presented 

in this paper will resolve this problem to determine higher-order, rotational Hu-

like moment invariant functions. 

5 An algorithm to determine rotational Hu moment 
 invariants of higher order 

The algorithm to obtain higher-order Hu moment invariants proposed in this paper 

consists of the following: 

 

Input: order of the moment invariant p q+ ; degree of the invariant function r  

Output: moment invariant of order p q+  

 

Step 1: Generate all possible product combinations of raw moments 

1 1 2 2, ,...,p q p q prqrm m m  such that both 1 2 ... rp p p+ + + and 1 2 ... rq q q+ + + are 

always even. 
 

Step 2: Create the sum-of-products expression 

1 1 1 1 1 2 2 1

2 2 1 1 2 2 2 2

1 1 2 2

...

... ...

...

p q p q prqr

p q p q prqr

n np q np q nprqr

I k m m m

k m m m

k m m m

=

+ +

+

 

Step 3: Identify the values of the constants 1 2, ...
n

k k k  such that the function I is 

invariant to the transformation θθ sincos yxu −= and θθ cossin yxv += for an 

image function ( )yxf , with a single co-ordinate.  

 

The rationale behind the definition of the steps in the above algorithm can be 

understood from the following proofs. 

 

Pythagorean Identity: 2 2sin cos 1θ θ+ =  

 

Image rotation involves pixel relocation as a function of Sine and Cosine. The 

above Pythagorean identity has been used to enable the moment invariant function 

to be invariant to rotation. In Step 1 of the algorithm above, the moment products 
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are chosen such that 
1

r

i

i

p
=

∑  and 
1

r

i

i

q
=

∑ are even. This enables the exponents of the 

Sine and Cosine functions in the moments pqm to always be a multiple of two, so the 

Pythagorean identity can be satisfied and the impact of rotation can be removed.  

 

Lemma: If a moment invariant function is invariant to rotation of an image 

function f(x,y) at a single co-ordinate, then it is also invariant for an image 

function f’(x,y) at many co-ordinates. 

PROOF: Upon rotation by an angle θ , the pixel ( )yx,  of an image is in the 

position ( )vu,  determined by  

cos sin

sin cos

u x y

v x y

θ θ

θ θ

= −

= +
                                                   (6) 

Rotation is very different from other image transformations. For example, scaling 

or translation causes all the pixels to change their location by a linear constant, 

whereas rotation causes pixels that are farther from the center of the rotation to 

move exponentially larger distances than those that are nearer to the center.  

Thus, when the image is rotated by angle θ  with respect to the origin (0,0), the 

moment 
pqm of equation (2) becomes 

 (( cos sin ), ( sin cos ))p q

pqm x y f x y x y dxdyθ θ θ θ= − +∫∫   (7) 

That is, it transforms ( )yxf ,  into ( )θθθθ cossin,sincos yxyxf +− . 

 

However, the effect of rotation can be viewed in a different perspective by leaving 

the image in its original position and allow the axes to rotate in the opposite 

direction, causing the same impact on the pixels of the image. Figure 1 illustrates 

this process: Figure 1(a) shows two pixels at locations (0,0) and (3,3), 

respectively. Upon a counter-clockwise rotation with (0,) as the center and 
o60=θ , these pixels are relocated to (0, 0) and (-1,4) as shown in Figure 1(b). 

Rotating the axes clock-wise by o60=θ leaves the two pixels in their original 

relative positions, as shown in Figure 1(c) and Figure 1(d). 

 

Thus, the rotation transform can be applied on the co-ordinates instead of the pixel 

values.  
 

Hence Eq. (7) can be rewritten as  

 ( cos sin ) ( sin cos ) ( , )p q

pqm x y x y f x y dxdyθ θ θ θ= − +∫∫     (8) 

where the moment function is now a function of variables  
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yx, and θ . Using 

cos sin

sin cos

u x y

v x y

θ θ

θ θ

= −

= +
 (9) 

 
Fig. 1. Impact of rotation transform over the pixels in an image. (a) Original 

location of two points on an image. (b) Rotation of the image about the centre. (c) 

Original location of two points on an image as in Fig. 1(a). (d) Rotation of the 

frame to achieve the effect of rotation in Fig. 1(b) 

 

Eq. (8) becomes, 

( , )p q

pq
m u v f x y dxdy= ∫∫                                              (10) 

which, upon a change of variables according to Eq. (9), whose Jacobian is 
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( , ) 1

u u

x y
J x y

v v

x y

∂ ∂

∂ ∂
= =

∂ ∂

∂ ∂

               (11) 

becomes 

( , )p q

pqm u v f x y dudv= ∫∫ .                                         (12) 

 

For a two-dimensional function image ( )yxf , , the absolute value of the Jacobian 

measures the amount of stretching or deformation undergone by the image due to 

the transformation. Therefore, according to Eq. (11) above, rotation is a 

transformation that does not cause loss or damage to the image data. Moreover, 

because , it follows that the rotation transform is invertible.  

 

As shown in Eq. (12), the integral function is not affected by the change of 

variables induced by rotation. Therefore, every individual pixel is independently 

affected by rotation uniformly. Hence, if a moment invariant function is invariant 

to the rotation of an image function ( )yxf , at a single coordinate, then it is also 

invariant to the rotation of an image ( )yxf , composed of several pixels. Hence, it 

is proved. 

 

This lemma is used in Steps 2 and 3 of the algorithm. In Step 2 of the algorithm, a 

sum-of-products expression is formed to enable the moments to nullify the 

presence of the Sine and Cosine functions introduced due to rotation. However, in 

this step, each moment product 1 1 2 2...np q np q nprqrm m m is associated with a constant nk . 

The invariant function I in Step 2 must now be solved to determine the values of 

1 2, ...
n

k k k The lemma proves that it is enough to solve the function I for an image 

( )yxf ,  at a single co-ordinate subject to rotation by an angle θ. The advantage of 

this approach is that, because we consider an image ( )yxf , at a single pixel, the 

integration function in Eq. (1) disappears and the function I in the algorithm 

becomes a polynomial to be solved.  

 

The following example verifies the use of the algorithm to determine an existing 

Hu moment invariant as follows.  

 

Input: Order ( ) 2=+ qp , Degree=1 

Step 1: 20 11 02, ,m m m  

Step 2: 1 20 2 11 3 02I k m k m k m= + +  

Step 3: Applying the rotation transform over the moments for I we have, 
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2

2

1

3

2( cos sin ) ( , )

( cos sin )( sin cos ) ( , )

( sin cos ) ( , )

x y

x y

x y

x y f x y

x y x y f x y

x y

I

f

k

k

yk x

θ θ

θ θ θ θ

θ θ

− +

− +

+

= ∑ ∑

∑ ∑

∑ ∑

 

For 1 2 31, 0, 1k k k= = =  we have 

( )2 2( ) ,
x y

xI y f x y+=∑∑ .  

Hence 

20 02I m m= + . 

The raw moments 20 02,m m  can be replaced by central moments 20 02,n n . Hence, we 

have 

20 02I n n= +                                                  (13) 

We can similarly derive the remaining Hu moment invariants.  

6      New Moment Invariant Functions 

In this section, we derive a sample of three new rotation invariants as an extension 

to the existing Hu moment invariant functions. The new invariants were identified 

in accordance with the algorithm proposed in this paper. 

Let ( , )

r

r p q

pq

x y

n x y f x y
 

=  
 
∑ ∑ be the central moment function of order 

( )qp + and degree r . Then, for a given order ( )p q+  and order r , the following 

are the sample moment invariant functions. 

Sample Invariant aI  

Input: Order ( ) 2=+ qp , Degree (r)=2 

Step 1: 20 20 20 02 11 11 02 02, , ,m m m m m m m m  

Step 2: 1 20 20 2 20 02 3 11 11 4 02 02a
I k m m k m m k m m k m m= + + +  

Step 3: Applying the rotation transform over the moments for aI , we have 
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2

1

2

2

3

2

2

2

2

2

4

( cos sin ) ( , )

( cos sin ) ( , ) ( sin cos ) ( , )

( cos sin )( sin cos ) ( , )

( sin cos ) ( , )

x y

x y x y

x y

x y

a x y f x y

x y f x y x y f x y

x y x y f x y

x y

I k

k

k

f x yk

θ θ

θ θ θ θ

θ θ θ θ

θ θ

 
= + 

 

   
+   

   

 
+ 



−

− +

− +


 

 

+ 

∑ ∑

∑ ∑ ∑ ∑

∑ ∑

∑ ∑

 

 

For 1 2 3 41, 0, 2, 1k k k k= = = =  we have 

2 2 2 2( ) ( ( , ))
x y

a x y f x yI = +∑∑   

Hence, 

20 20 11 11 02 022
a

I m m m m m m= + +  

Step 4: Replacing the raw moments 20 11 02, ,m m m  with central 

moments 20 11 02, ,n n n , we have 

2 2 2

20 11 022aI n n n= + +                                          (14) 

Sample Invariant bI  

Input: Order ( ) 3=+ qp , Degree (r)=2 

Step 1: 30 30 30 12 03 21 03 03, , ,m m m m m m m m  

Step 2: 1 30 30 2 03 03 3 30 12 4 03 21b
I k m m k m m k m m k m m= + + +  

Step 3: Applying the rotation transform over the moments for bI , we have 



 

 

 

 

 

 

13 Generalized Rotational Moment Invariants 

3 3

3

2

3

2

2 2

1 2

3

4

( cos sin ) ( , ) ( sin cos ) ( , )

( cos sin ) ( , )

( cos sin )( sin cos ) ( , )

( sin cos ) ( , )

( cos sin ) (

.

i

.

s

x y x y

x y

x y

x y

x

bI k k

k

x y f x y x y f x y

x y f x y

x y x y f x y

x y f x y

x y x

k

θ θ θ θ

θ θ

θ θ θ θ

θ θ

θ θ

   
= +   

   

 
 
 

 
+ 



− +

−

− +


 
 


+


−

∑ ∑ ∑ ∑

∑ ∑

∑ ∑

∑ ∑

∑ n cos ) ( , )
y

y f x yθ θ


+



 

∑

 

For 1 2 3 41, 1, 3, 3k k k k= = = =  we have 

2 2 3 2( ) ( ( , ))
x y

b x y f x yI = +∑∑   

Hence 

2 2

30 30 12 03 21 033 3bI m m m m m m= + + +  

Step 4: Replacing the raw moments 30 12 21 03, , ,m m m m  with central 

moments 30 12 21 03, , ,n n n n , we have 

2 2

30 30 12 03 21 033 3bI n n n n n n= + + +                                    (15)
 

Sample Invariant c
I  

Input: Order ( ) 4=+ qp , Degree (r)=1 

Step 1: 40 22 04, ,m m m  

Step 2: 1 40 2 22 3 04cI k m k m k m= + +  

Step 3: Applying the rotation transform over the moments for cI , we have 

4

2

3

2

1

4

2

( cos sin ) ( , )

( cos sin ) ( sin cos ) ( , )

( sin cos ) ( , )

x y

x y

x

c

y

x y f x y

x y x y f x y

I k

k

f xk x y y

θ θ

θ θ θ θ

θ θ

 
= + 

 
−

− +
 

+ 
 




+


 


∑ ∑

∑ ∑

∑ ∑

 

For 1 2 31, 2, 1k k k= = =  we have 
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( )2 2 2( ) ,b

x y

xI y f x y+=∑∑   

Hence 

40 22 042cI m m m= + +  

Step 4: Replacing the raw moments 40 22 04, ,m m m  with central 

moments 40 22 04, ,n n n , we have 

40 22 042cI n n n= + +                                             (16) 

Sample Invariant d
I  

In accordance with the algorithm proposed in the paper and the steps shown for 

the generation of moment invariants , ,
a b c

I I I the following invariant d
I was also 

generated. The steps for the generation of this invariant has been eliminated as 

they are similar to the steps used to generate , ,
a b c

I I I . This invariant d
I is of Order 

(p+q) = 4, 2 and Degree (r) = 2. 

 
2 2 2 2 2

22 60 06 51 20 02 15 02 20 42 02( ) / 7 ( 3 ) ( 3 ) 5dI n n n n n n n n n n n= + + + + + + (17) 

7 Selection of Moment Invariant Functions 

A common drawback of the geometric moment invariant functions is that there is 

no generalized invariant function identification method that has been addressed in 

this research. However, geometric moment invariants in general suffer from 

dependency between the functions. This problem also occurs in our proposed 

algorithm, such that we might generate moment invariant functions that are 

dependent upon the polynomials used in the integral. The following example 

explains such a dependency. 

 

Consider the Hu moment invariants 
1I , 2I  from Eq. 4 and the proposed invariant 

cI  from Eq. 16. We find polynomial dependency between them, as follows. 

1 20 02

2 2

2 20 02 11

2 2

20 02 20 02

2

1 2

( ) 4

2

2

c

c

I n n

I n n n

I n n n n

I I
I

= +

= − +

= + +

+
=

. 

The independence of the moment invariant functions is a necessary criterion to 

ensure that we do not measure the same invariant functions, which would 

contribute no additional information. Apart from the brute-force technique, no 
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technique exists to identifying polynomial dependencies between groups of 

functions. A polynomial dependency between moment invariant functions is said 

to exist when an invariant can be determined from one or more of the other 

invariant functions. Although we may not be able to determine the existence of a 

polynomial dependency, we could determine a group of moment invariant 

functions that would be selectively formed to avoid the dependency. 

 

One important characteristic of moment functions can be used to prevent moment 

invariant functions that may suffer from polynomial dependencies. For any two 

moment functions pqn and rs
n , we find that pq rsn n≠  for p r≠  and/ or q s≠ . This 

can be proven using the Johann Faulhaber’s formula in Eq. (18), as follows. 

 

( 1) 1

1 0

1
1 2 3 ... ( 1)

1

n n
p p p p p i p p i

i i

x i

x n C B n
p

+ + −

= =

= + + + + = −
+

∑ ∑    (18) 

Consider any two moment functions pqn and psn . For an image f with centroid 

(0,0) and all pixels of constant amplitude ρ, the moments would be evaluated as in 

Eq. (19). From the equations, we observe that the moments pq psn n≠  for q≠s. This 

is a simple proof that lets us understand that pq rsn n≠  for p r≠  and/ or q s≠ . 

1 1

1 1 1 0

1 1

1 1 1 0

( ) ( 1)
1

( ) ( 1)
1

n m n m
p q p i q q i

pq i i

x y x i

n m n m
p s p i s s i

ps i i

x y x i

n x y x C B m
q

n x y x C B m
q

ρ
ρ

ρ
ρ

+ + −

= = = =

+ + −

= = = =

= = −
+

= = −
+

∑ ∑ ∑ ∑

∑ ∑ ∑ ∑
      (19) 

Consider the invariants 
1I  from Eq. 4 and the proposed invariants a

I from Eq. 14 

and cI from Eq. 16 which are all rotationally invariant.  

1 20 02

2 2

20 02 20 02

2

1

2 2 2

20 02 11

2

2

c

c

a

I n n

I n n n n

I I

I n n n

= +

= + +

=

= + +

        

  

a
I is another invariant similar to cI  in structure, but a

I  is independent of
1I . This 

is feasible because the invariants are not formed from the exact same moment 

functions. One important characteristic of this solution to eliminating polynomial 

dependency is that we will obtain false negatives that could eliminate certain 

independent invariants. The three sample invariants aI , bI , c
I and d

I proposed in 

this paper are clearly independent of each other. Similarly a set of seven new fully 

independent rotational moment invariants have been presented in Appendix A. 
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these invariants were generated from the algorithm proposed in Section 6 of this 

paper. 

 

8 Experimental Analysis 

The invariants identified in Section 6 of this paper were tested for two different 

scenarios, as follows. Firstly, the invariants were tested over circularly symmetric 

geometric shapes, and the performance of the invariants was appraised. Secondly, 

the proposed invariants were used to perform object matching in the real world. 

The two cases of the experiments are as follows. 

 

Case 1: An analysis on polygon images 

This experiment was designed to experimentally understand the rotationally 

invariant nature of the identified invariants and to determine the discriminatory 

ability of the identified invariants. To accomplish these objectives, we used 

monochrome bitmap images of polygons. Such polygon images are said to contain 

very little information because the only feature that differentiates the polygons is 

the number of sides.  

 

The polygons chosen for the experiment were a triangle (P3), square (P4), 

pentagon (P5), hexagon (P6), heptagon (P7), octagon (P8), nonagon (P9) and 

circle (Pc), as shown in Figure 2. These polygons had an approximate radius of 60 

pixels. Each of the shapes was rotated at twelve different angles of 0, 30, 45, 60, 

90, 120, 150, 180, 200, 270, 300 and 330 degrees, and the moment invariant Ia as 

derived in Section 6 above was evaluated. The measures are presented in Table 2. 

The table presents the percentage standard deviation in the measure of the 

invariant for every shape rotated at the twelve different angles. The percentage 

standard deviation is less than 1% in all the shapes, which gives experimental 

proof of the invariance of 
a

I to rotation. Hence, our first objective as proposed 

above could be verified.  

 

Further, an ANOVA test was performed between every two consecutive shapes. 

This is necessary because every consecutive shape, such as triangle and square or 

square and pentagon, differs from the previous shape by an increase of one side, 

which is a minimal difference in feature that causes the shapes to look different. 

The ANOVA test results are presented in Table 3.   For every pair of shapes in 

Table 3, we find that the SS (Sum of Squares) Variation within the group (WG) is 

always less than that between the groups (BG). The same characteristic is 

reflected in the MS (Mean Square) Variation measures. The test statistic (F) has 

been found to be larger than the critical value (F-Crit) for all pairs of shapes, as 

observed in the table. This is a very important measure that explains us that the Ia 
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measure is clearly different for each pair of adjacent shapes. From this result, we 

are able to conclude that the invariant aI  has clear discriminatory ability between 

circularly symmetric geometric shapes. The images were also used to test bI and 

cI , where the invariants performed better due to higher order and degree. 

 

 

Fig. 2. Polygons used to test the invariant nature of the newly 

identified invariants 

 

Table 2: Measure of
aI for the polygons in fig. 2 for different angles of rotation 

Angle P3 P4 P5 P6 P7 P8 P9 Pc 

 

13( 10 )×

 

13( 10 )×

 

14( 10 )×

 

14( 10 )×

 

14( 10 )×

 

14( 10 )×

 

14( 10 )×

 

14( 10 )×

 

0 4.25 9.62 1.33 1.65 1.89 2.09 2.15 2.53 

30 4.2 9.63 1.33 1.66 1.9 2.1 2.16 2.55 

45 4.24 9.57 1.33 1.67 1.89 2.08 2.15 2.54 

60 4.19 9.69 1.32 1.65 1.88 2.06 2.14 2.53 

90 4.21 9.56 1.33 1.68 1.89 2.08 2.15 2.54 

120 4.2 9.62 1.33 1.65 1.89 2.08 2.16 2.55 

150 4.25 9.62 1.33 1.65 1.89 2.09 2.15 2.53 

180 4.2 9.63 1.33 1.65 1.9 2.1 2.16 2.55 

200 4.24 9.57 1.33 1.66 1.89 2.08 2.15 2.54 

270 4.19 9.69 1.32 1.67 1.88 2.06 2.14 2.53 

300 4.21 9.56 1.33 1.66 1.89 2.08 2.15 2.54 

% 
StdDev 

0.57% 0.47% 0.30% 0.54% 0.37% 0.57% 0.29% 0.34% 
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Table 3: ANOVA test of
aI measure for every pair of adjacent polygons 

Polygon 

Pair 

Source of 

Variation SS df MS F Probability 

F 

crit 

P3-P4 

BG 1.75E+28 1 1.75E+28 132554.2 4.42E-43 4.3 

WG 2.9E+24 22 1.32E+23 

Total 1.75E+28 23       

P4-P5 

BG 8.05E+27 1 8.05E+27 43562.98 9.12E-38 4.3 

WG 4.07E+24 22 1.85E+23  

Total 8.06E+27 23        

P5-P6 

BG 6.29E+27 1 6.29E+27 1055.935 4.35E-20 4.3 

WG 1.31E+26 22 5.96E+24  

Total 6.42E+27 23        

P6-P7 

BG 3.39E+27 1 3.39E+27 553.1598 4.39E-17 4.3 

WG 1.35E+26 22 6.13E+24  

Total 3.53E+27 23        

P7-P8 

BG 2.22E+27 1 2.22E+27 2278.748 1.03E-23 4.3 

WG 2.14E+25 22 9.73E+23  

Total 2.24E+27 23        

P8-P9 

BG 3.09E+26 1 3.09E+26 336.3224 8.09E-15 4.3 

WG 2.02E+25 22 9.2E+23  

Total 3.3E+26 23        

P9-Pc 

BG 9.01E+27 1 9.01E+27 15648.62 7.03E-33 4.3 

WG 1.27E+25 22 5.76E+23 

Total 9.03E+27 23       

 

Case 2: An Analysis on alphabet blocks 

 

This experiment was designed to experimentally understand the performance of 

the invariants identified in this paper for real-world scenarios. In this experiment, 

we created a sample database of 15 alphabet blocks. A sample alphabet block “B” 

is shown in Figure 3. The alphabets were chosen such that there was little 

difference in their features. For example the alphabets “M” and “W” are 

approximately the same character that has been flipped vertically. Similarly, the 

alphabets “O” and “Q” have only a small feature to differentiate them. The 15 

alphabet images were pre-processed in MATLAB to refine them by eliminating 

random noise that occurred during the acquisition. The invariants bI and cI were 

measured for these character blocks and stored in the database.  
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Pictures of randomly scrabbled alphabet blocks as shown in Figure 4 were 

captured to subject them to alphabet recognition using the database of 15 

alphabets that we had created. Image pre-processing was also applied on these 

scrabble images to eliminate noise. The alphabet recognition was performed over 

the boundaries to achieve invariance to color and illumination. Therefore, we used 

Canny’s edge detector to determine the boundaries of the alphabets. Figure 5 

shows the edge-detected version of Figure 4. An advantage of the Canny’s edge 

detector was that the boundaries that were found were connected the most 

frequently, as shown in Figure 5. This helped us to further perform region-

growing image segmentation to segment the alphabets from the scrabble. The 

segmented alphabets were subjected to the measure of invariants bI and cI .  

 

Five different trials of the experiment in which the scrabble was changed 

randomly were conducted. The obtained values of bI  and cI over the five trials 

were plotted as shown in Figure 6. As evident in the graph, there was a sufficient 

degree of clustering in the measures over the five trials. There was no error in 

classification except for those that had close boundaries in the moment measures. 

As shown in Figure 6, there was difficulty in classifying the letters B and Z due to 

their moment measures having close boundaries. There was deviation in the 

measures of other alphabets, as observed in Q, W, M and others. However, such 

clusters were significantly separated from each other and were therefore easily 

recognized. 

 

 
 

Fig. 3. Sample alphabet recorded in the database 

  

  

Fig. 4. Sample arrangement of 

alphabets  used in the experiment 

Fig. 5. Processed and edge detected 

form of Fig. 4 
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Fig. 6.Plot of the measure of invariants 

bI  and 
cI  for alphabet scrabbles in five 

different trials. 

 

The experiments in Case 1 and Case 2 prove that the proposed invariants aI , 

bI and cI  that were identified according to the algorithm proposed in Section 5 

are invariant to rotation. The practical applicability of such invariants is apparent 

from the experiment in Case 2. However, we also find some discrepancy in the 

values of the moment invariants. This discrepancy shall be attributed to the 

discrete nature and the resolution of the images. Zhihu Huang and Jinsong Leng 

[22] presented a study on the effect of the rotation and scaling of images on Hu 

moment invariants. They concluded that rotation could cause discrepancies in the 

values of the Hu moment invariants. However, we observe that the discrepancy in 

the values is still minor and does not affect object recognition. 

9 Conclusion 

In this study, we have provided a generalized algorithm to extend the Hu moment 

invariant functions to any desired order and degree. As explained in this paper, 

there had been no specific algorithm to generalize the development of Hu moment 

invariants, unlike other orthogonal moment invariants [24-25]. Hence, our work 

has addressed this problem. This work has thus contributed to expanding the 

choice of Hu moment invariant functions and provided researchers with a 
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customized choice of moment invariants that could be suitable to solve a specific 

problem. The recognition and clear discrimination of circularly symmetric objects 

has been a challenge that was accomplished with suitable experiments in Section 

8. The problem of the reduced ability of moment invariants was resolved in 

Section 7, providing a solution for researchers to choose independent moment 

invariant functions. The increased number of moment invariant functions of 

higher orders proposed in this paper could be used to achieve more accurate 

results for such problems. The correctness of the proposed algorithm was verified 

with mathematical proofs. A sample of the invariants generated from the proposed 

algorithm was also verified with sample images in two different experimental 

scenarios.  
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