
Int. J. Advance Soft Compu. Appl, Vol. 5, No. 3, December 2013 

ISSN 2074-8523; Copyright © SCRG Publication, 2013 

 

A Weakly Hard Real-Time Scheduling  

Analysis Framework Using Genetic Algorithm 

 

Habibah Ismail
1
 and Dayang N. A. Jawawi

2
 

 

Software Engineering Department, Faculty of Computing, 

Universiti Teknologi Malaysia (UTM), 81310 Skudai, Johor, Malaysia 

e-mail: 
1
habibahisma@gmail.com, 

2
dayang@utm.my 

 
Abstract 

 

In relation to real-time systems, hard real-time and soft real-time 

systems are based on “miss restriction” and “miss tolerance”, 

respectively. However, a weakly hard real-time system integrates 

both these requirements. The problem with these systems is the 

limitation of the scheduling analysis method which only uses the 

traditional scheduling approach. Besides that, the current 

framework has problems with the complexity and predictability of 

the systems. This paper proposes a scheduling analysis framework 

based on, namely: the suitability of scheduling algorithms, the 

weakly hard real-time modelling and genetic algorithm approach for 

predicting the weakly hard real-time tasks. Initially, the best fitting 

specification of a weakly hard real-time system was integrated into 

the proposed framework and tested in the Modeling and Analysis of 

Real-Time Embedded systems (MARTE) profile. Sequence diagram 

complexity factor metrics were used to measure the behavioural 

complexity of the UML Profile for Schedulability, Performance and 

Time (SPT) and MARTE profiles. Further, the genetic algorithm 

approach was applied on the framework to measure the 

predictability of the soft real-time tasks. The results of the 

framework showed that the number of deadlines missed among the 

tasks was optimized by applying the framework on a case study. In 

conclusion, the proposed scheduling analysis framework provides a 

less complex design through the UML design modelling, as well as 

increasing the predictability of the systems.  

 

Keywords: Weakly hard real-time systems, scheduling analysis framework, 

UML modeling language, scheduling analysis, genetic algorithm approach. 

mailto:habibahisma@gmail.com1


  

 

 

25                                                                 A Weakly Hard Real-Time Scheduling                                           

1      Introduction 

Traditional real-time systems are classified into two categories, namely: hard real-

time systems and soft real-time systems [1]. The new generation for a real-time 

system is the weakly hard real-time system. A hard real-time system is very 

restrictive because all the tasks must meet the deadlines or, in other words, no 

deadlines are allowed to be missed. Meanwhile, a soft real-time system is too 

relaxed as no guarantee can be given to the deadline, as to whether it is met or 

missed. As hard real-time and soft real-time systems are based on “miss 

restriction” and “miss tolerance” respectively, the weakly hard real-time system 

can integrate both of these requirements in which the distribution of its met and 

missed deadlines during a window of time is precisely bounded. For weakly hard 

real-time tasks, the missed or lost deadline happens occasionally and can be 

considered. However, it is still necessary and crucial to finish the tasks within a 

given deadline otherwise the tasks can result in failure. In a weakly hard real-time 

system, the number of deadlines that may be missed can be specified. Accordingly, 

this makes a weakly hard real-time system stronger than a soft real-time system. 

A suitable framework for the schedulability analysis of real-time tasks can 

determine whether a specific task set derived from a software model can satisfy 

certain timing constraints and hence can be successfully scheduled. That 

framework enables scheduling analysis to predict the behaviour of critical tasks 

by meeting the deadline and, at the same time, predict the bounded way in which 

the missing of some deadlines is acceptable in comparison to less critical tasks [2]. 

A more realistic framework is required for the scheduling analysis of weakly hard 

real-time tasks because the constraints of missing deadlines do not exist in hard 

real-time task analysis frameworks and hence are not stated precisely in soft real-

time task analysis frameworks [3]. Additionally, by using soft computing 

techniques such as genetic algorithm method in the prediction of the weakly hard 

real-time systems, the slight deadline missed can be predicted. This can be 

achieved using a fitness function from the precise soft real-time tasks 

specifications.  

Modelling timing constraints and scheduling behaviour through the adaptation 

of modelling language is recognised as an alternative way by which to predict the 

timing behaviour and performance of set concurrent tasks in order to react to the 

changing environment [4]. This is due to the increasing complexity of 

contemporary ubiquitous real-time systems which require an adequate modelling 

language. The new extension for the Unified Modeling Language (UML) profile, 

called Modelling and Analysis of Real-Time Embedded (MARTE) system, has 

been standardised by the Object Management Group (OMG) to be the future 

standard for UML modelling of real-time and embedded systems, although a 

number of other modelling standards exist already [5]. This new profile is 

intended to replace the existing UML Profile for Schedulability, Performance and 

Time (SPT) since MARTE provides some new key features such as support for 



 

 

 

 

 

 

 

Habibah Ismail et al.                                                                                                    26 

non-functional property modeling. Further, it adds rich time and resource models 

to the UML.  

This paper aims to contribute towards improved real-time scheduling by 

providing a scheduling analysis framework designed to predict the weakly hard 

real-time tasks. In order to cope with the increasing complexity in real-time 

systems, a modelling language is used. Further, the genetic algorithm approach is 

used for task scheduling in order to increase the predictability of weakly hard 

tasks in terms of the number of deadlines missed. 

 

2      Related Works 

For complex systems, besides using the scheduling algorithms only to schedule 

tasks and determine whether a task is schedulable or not, the algorithms can be 

used together with UML since this is a commonly accepted modelling language 

for complex systems [4]. The modelling profile must be able to cope with the 

complexity of the system, including the structure and behavioural aspects. As a 

result, it is essential to evaluate which model can cope with the complex structure 

and behaviour as well as with its non-functional requirements. 

 The behaviour of the system is known as being a set of external and internal 

sequences of events, actions and transitions [6]. It also can be said that the 

behaviour of a system is the response to the external events and the execution of 

actions that are taken at any time [7]. Hence, it is important to measure the 

behavioural complexity of design in weakly hard real-time systems in order to 

reduce the system’s complexity. 

 Meeting all the deadlines is impossible; thus, [2] provided a conceptual 

framework for specifying real-time systems that can tolerate occasional losses of 

deadlines in which the distribution of the met and lost deadlines is precisely 

bounded. However, the existing framework is not yet sufficient to design 

predictable and correct weakly hard real-time systems; it requires some 

improvement.   

 Recently, scheduling algorithms with genetic algorithm (GA) are reported as in 

studies by [8][9][10]. Mitra and Ramanathan proposed a GA for the scheduling of 

non-pre-emptive tasks with precedence and deadline constraints [11]. Also, 

Monnier et al. presented a GA implementation to solve a real-time non-pre-

emptive task scheduling problem [12]. These algorithms have been shown to have 

good results in real-time systems. The motivation is to integrate the GA into our 

framework because this algorithm can be used as an alternative solution to 

schedule. In addition, it can predict soft real-time tasks in which any slight 

violation of a deadline could be admitted.  

 



  

 

 

27                                                                 A Weakly Hard Real-Time Scheduling                                           

3      The Proposed Scheduling Analysis Framework 

This paper aims to make a contribution to the development of a framework for 

scheduling weakly hard real-time systems. Several works have appeared 

presenting different scheduling analysis frameworks. Among them are 

[2][3][13][14]. We have applied the scheduling analysis framework of [3] to 

express our framework since the approach/way used is easy to understand and 

appears to be the most suitable framework and the closest to our work. Moreover, 

their framework introduced steps as a guideline to express the framework. By 

using these steps, we can define the flow of the framework from the first step until 

the last step.  

 The proposed framework differs from the original, as portrayed in Fig. 1, to 

make it more understandable. We present a scheduling analysis framework that is 

flexible, less complex and increases the predictability as depicted in Fig. 1. The 

match steps in the framework are described in more detail as follows: 

 

i. A task can be modelled using UML by illustrating the UML-SPT and 

MARTE sequence diagrams using the Rhapsody design modeling tool. 

 

ii. The scheduling discipline is based on guaranteeing the satisfaction of the 

weakly hard constraints. Thus, offline schedulability checks or tests are 

required and scheduled under a fixed priority discipline. 

 

iii. The worst case response time, denoted by Ri, of a task invocation is the Ri 

≤ Di, which is a solution to the fixed point equation: 

 

                                      












)( ihpj

Cj
Ti

Ri
CiRi



                                     (1)                                       

 

 where hp(τi) denotes the set of tasks having higher priority than task τi. Ci 

and Cj are the ith and jth task’s worst case computation time. Ti is a 

constant, called the period of the task. If Ri ≥ Di, the weakly hard real-time 

tasks are scheduled according to the weakly hard analysis. 

 

iv. The values of the hyperperiod are obtained by using the least common 

multiple tool.  The equation for the calculation of the hyperperiod hi is: 

 

                                                   hi = lcm{Tj | ∈ hep(ґi)}                                        (2) 

  

where lcm is the least common multiple of the periods of the tasks and 

hep(ґi) is the set of tasks of a priority higher than or equal to task ґi. 

 



 

 

 

 

 

 

 

Habibah Ismail et al.                                                                                                    28 

v. The worst case interference of a task, τi with weakly hard constraints, λi 

and then the µ-pattern, denoted by µi(k), is given by:     

           
               µi(k) =   1 if Ri(k) ≤ Di                                                             (3)                                                 

                                      0 otherwise             k ≥ 1      

  

vi. Whenever a task finishes (or at the deadline if the task has not been 

finished by the deadline) the µ-pattern is updated accordingly. 

 

vii. When weakly hard tasks are scheduled, the basic weakly hard real-time 

modelling under UML modelling language (MARTE profile with some 

modification of their stereotypes and tags) is used in order to support the 

weakly hard timing requirements. 

 

viii. When a task is finished with the scheduling analysis, the genetic algorithm 

is defined. A chromosome represents the relation of tasks and processors. 

The length of a chromosome L can be calculated as follows: 

 

 L = 
1

i

N

i

n


  (4) 

ix. Group tasks with the same processor number and then calculate the 

deadline missing time and stop. 

 

x. Compute the fitness function of individual (task), if deadline missed. The 

used fitness function, F(s) has the following expression: 

 

 F(s) = 1- success ratio / Di (5) 

 



  

 

 

29                                                                 A Weakly Hard Real-Time Scheduling                                           

 
Fig. 1: Proposed scheduling analysis framework 

4      An Autonomous Mobile Robot (AMR) Case Study 

We chose the AMR case study introduced by [15] because it consists of hard tasks 

and soft tasks. Thus, it is unnecessary for the system to meet the entire task and 

message deadlines as long as the misses (or deadlines) are spaced distantly/evenly 

or, in other words, are composed of weakly hard tasks. The AMR system we used 

has more than one processor called a multiprocessor and processes the tasks on 

different processors.  

 We first present a task set as an example by which to illustrate the distribution 

of met and missed deadlines under fixed priority scheduling. There are seven 

tasks derived from the AMR system, and all the tasks are listed in Table 2. The 

AMR system used in the case study is a differential drive wheeled mobile robot, 

capable of traversing in a structured environment. The goal of the robot software 

is to control the movement of the robot while avoiding obstacles in its 

environment. 

 The structure of this section is as follows and is related with our proposed 

scheduling framework:  Sub-section 4.1 presents the UML design modelling and 

discusses Step (i). It consists of sub Sub-section 4.1.1 which discusses the 

behavioural complexity of UML-SPT and MARTE sequence diagram. The 

scheduling analysis is placed in Sub-section 4.2 and explains Steps (ii) to (vi) in 

detail.  In Sub-section 4.3, there is a discussion about Step (vii). Following that, 



 

 

 

 

 

 

 

Habibah Ismail et al.                                                                                                    30 

Sub-section 4.4 presents the genetic algorithm approach and then, Step (viii) until 

(x) is discussed.  

4.1      UML design modelling 

We started the mobile robot case study in relation to the development of real-time 

software systems using UML-SPT and MARTE profiles. Fig. 2 illustrates the 

UML-SPT and MARTE sequence diagram in schedulability analysis modelling. 

The UML-SPT sequence diagram in performance analysis modelling is illustrated 

in Fig. 3. Both of the sequence diagrams were created using the Rhapsody 

modeling tool. 

Generally, a sequence diagram is commonly used to show the behavioural 

aspects of the system since, in UML, the behavioural aspects of the system are 

best described by using the sequence diagram [16]. A sequence diagram can be 

also easily understood. A sequence diagram consists of some basic elements 

including frames, regions, objects’ roles, lifelines, arrows (for showing the 

message type i.e., synchronous or asynchronous), messages and calls (for showing 

operations).  Upon review and study of both profiles, it can be seen that there 

are similarities in the structural aspects because there is no difference in the class 

diagram used. Therefore, we have made a comparison regarding the behavioural 

aspect in view of the behavioural complexity of the sequence diagram for both 

profiles. The steps needed to calculate the behavioural complexity and the 

relevant equations are discussed in the following sub-sections. 

 



  

 

 

31                                                                 A Weakly Hard Real-Time Scheduling                                           

Fig. 2: UML-SPT and MARTE sequence diagram in schedulability analysis 

modelling using Rhapsody tool 

 

 

 
Fig. 3: UML-SPT sequence diagram in performance analysis modelling  

 

 

4.1.1 Behavioural complexity of UML-SPT and MARTE sequence diagram 

 

The behavioural complexity of the UML-SPT and MARTE sequence diagrams is 

measured by using the Sequence Diagram Complexity Factors (SDCF) metric, as 

introduced in [17]. In this sub-section, the sequence diagrams are compared based 

on the results produced by the metric. The same methods and attributes were used 



 

 

 

 

 

 

 

Habibah Ismail et al.                                                                                                    32 

in the UML-SPT and MARTE profiles while the mobile robot system was being 

designed.  

The basic elements that compose a sequence diagram are objects and the 

messages between them. This metric signifies the complexity of a sequence 

diagram due to the objects used in them: 

 

SOWadj = ∑ (No. of objects * object type factor) 

 

This metric indicates the complexity of a sequence diagram due to the 

messages used in them:  

 

(SMW)un = ∑ (No. of messages * message type factor)  

 

Considering the equation of SMW unadjusted (SMWun), the sequence method 

utilisation factor (SMUF) as the total number of objects from which a method is 

getting initiated, is defined. Thus, SMUF = ∑ (No. of objects of the same 

sequence diagram) is used. Therefore, the adjusted value of SMW is: 

 

SMWadj = SMWun + SMUF 

 

The overall complexity of a sequence diagram (C(SQ)) will be the combined 

value of Sequence Object Weight (SOW) and Sequence Message Weight (SMW). 

Therefore, the complexity of a sequence diagram is: 

 

C(SQ)un = SOWadj + SMWadj 

 

 

Table 1: Results of behavioural complexity of designed sequence diagrams 

                   UML-Profile 

Variable 

UML-SPT MARTE 

SOWadj 60 30 

SMWun 84 42 

SMUF 20 10 

SMWadj 104 52 

C(SQ) 

AutonomousMobileRobot 

164 82 

 

The results for each parameter are presented in Table 1. It is noted that the 

SOW adjusted for MARTE is less than for the UML-SPT, as well as for the 

unadjusted SMW. The result for the total number of objects or Sequence Method 

Utilization Factor (SMUF) (this equation is for the adjusted SMW) still shows 

MARTE as being less than UML-SPT. The result for the adjusted SMW is 



  

 

 

33                                                                 A Weakly Hard Real-Time Scheduling                                           

obtained by adding the unadjusted SMW with SMUF and the result shows 

MARTE is less than UML-SPT. Finally, we secure the result for the complexity 

of a sequence diagram denoted by C(SQ) wherein MARTE is shown to be less 

complex than UML-SPT. Hence, from the overall results, we can conclude that 

the behavioural complexity of MARTE is less than that of UML-SPT. In addition, 

it can be seen that MARTE can reduce the behavioural complexity as the values 

of complexity obtained were small. 

As clearly shown in Table 1, the design of a weakly hard real-time system by 

using the UML-SPT sequence diagram design is much more complex as 

compared to the MARTE sequence diagram. MARTE provides an incredible 

reduction of the behavioural design complexity in the sequence diagram. Based on 

the SDCF metric measurement, MARTE decreases the complexity of the 

sequence diagram compared with the UML-SPT model. As the results in Table 1 

show, the behavioural complexity of the mobile robot sequence diagram in 

MARTE was almost half that in UML-SPT. One reason for this is that the UML-

SPT needed two sequence diagrams in order to model schedulability and 

performance data analysis, while only one sequence diagram was sufficient in 

MARTE modelling. In addition, we conclude that the complexity of a diagram 

does not depend on the design tools used, but rather on how many tasks there are 

in the diagram for each profile.  

We can conclude that the MARTE sequence diagram is the best profile in 

order to reduce the complexity of system behaviour compared to the UML-SPT 

based on the results of behavioural complexity of designed sequence diagrams as 

depicted in Table 1. Thus, the MARTE profile appears to be the most suitable 

profile in terms of less complex design. 

 

4.2      Scheduling analysis (Fixed priority scheduling) 

Meeting timing or deadline constraints is one of the most important concerns in 

real-time systems. In the parameters presented in the Table 2, Ti is a constant, 

called the period of the task, and Di refers to the deadline of the task that must be 

completed. Every task is periodic and we assumed that Di = Ti. Ci represents the 

worst case execution time of each cycle of the tasks, and the weakly hard temporal 

constraints, λ and Ri, represent the worst case response time of the tasks assuming 

fixed priority scheduling. The higher order period or the hyperperiod, hi, consists 

of the number of invocations of a task in the hyperperiod at level i, ai = .  

From Table 2, even though Cruise and manrobotintf tasks missed their 

deadlines in the worst case scenario, by using hyperperiod analysis, we can 

specify the number of deadlines missed for both tasks. The Cruise task was 

invoked α6 = 4 times within the hyperperiod at level 6 while the manrobotintf task 

was invoked α7 = 8 at level 7. Therefore, in the worst case scenario, for the Cruise 



 

 

 

 

 

 

 

Habibah Ismail et al.                                                                                                    34 

task, only two invocations out of four would miss the deadline. Thus, the weakly 

hard constraint for the Cruise task is defined as 
2

4

 
 
 

 constraint. Meanwhile, for 

the manrobotintf task, only one invocation out of three would miss the deadline, 

which means the weakly hard constraint for the manrobotintf task is defined as 

1

3

 
 
 

 constraint.  

The main objective of weakly hard constraints is to guarantee that the tasks 

meet their timing constraints, even though some deadlines may be missed during 

execution time. Meanwhile, µ-patterns are used to determine how the deadline can 

be missed in terms of the consecutiveness or non-consecutiveness of such missed 

and met deadlines.  

 

Table 2: Task parameters of the task set 

 

From the results, it is clear that using the weakly hard constraints specification 

allowed us to model tasks like this one by specifying the bounds on the number of 

deadlines a task may miss, as well as on the pattern of how these deadlines can be 

missed by finding the hyperperiod for each task. Therefore, we can establish how 

many times each task is invoked within the hyperperiod and from the invocations, 

we can obtain the number of deadlines missed and met for each task.  

Most importantly, the tasks were still guaranteed to be finished within a given 

deadline. There were, however, two tasks that missed their deadline in the worst 

case scenario because the task satisfied its temporal constraints. Indeed, missing 

some of the deadlines is acceptable in weakly hard real-time systems. 

  

 

Task Ti 

 

Di 

 

Ci 

 

Ri hi ai λ µ-

pattern 
MobileRobot 50 50 1 1 50 1 (1,1) {1} 

motorctrl_left 50 50 20 21 50 1 (1,1) {1} 

motorctrl_right 50 50 20 41 50 1 (1,1) {1} 

Subsumption 80 80 1 42 400 5 (5,5) {11111} 

Avoid 100 100 17 100 400 4 (5,5) {11111} 

Cruise 100 100 1 160 400 4 (2,4) {1100} 

manrobotintf 150 150 16 236 1200 8 (1,3) {100} 



  

 

 

35                                                                 A Weakly Hard Real-Time Scheduling                                           

4.3   Modification of MARTE modeling  

 

The modification of MARTE profile is necessary in order to overcome the 

problem with the profile. This problem resulted in its timing constraint being 

restricted to hard and soft real-time systems. Thus, in order for the profile to 

support weakly hard real-time requirements, the modifications are necessary. We 

modified the UML-MARTE metamodel by adding the weakly hard requirements 

into the <<saEnd2EndFlow>> stereotype. Accordingly, we added weakly hard 

specifications, namely µ-pattern and weakly hard temporal constraints as tags of 

that stereotype [18].  

 The modification results are applied in the AMR case study. To show how this 

is done, the AMR case study is depicted based on the chosen scenario. All the 

tasks in the AMR case study were as shown in Table 2 in Sub-section 4.2. The 

scenarios were then described to analyse how the tasks were defined in reaction to 

the external or internal events and how they executed the actions in response.  

 We used a common tool for UML modeling that is supported by MARTE, 

namely Rhapsody software modelling tool. Based on these scenarios, the 

schedulability analysis of the weakly hard tasks is measured. Fig. 4 presents the 

AMR sequence diagram used to show the timing requirements for the Cruise task 

in the MARTE profile. 

 

 

Fig. 4: MARTE sequence diagram of AMR case study  



 

 

 

 

 

 

 

Habibah Ismail et al.                                                                                                    36 

4.4   Scheduling analysis (Genetic algorithm approach)  
 

Traditionally, the performance of a scheduling algorithm is measured by the 

utilization of a processor and the worst case response time of tasks. As the rate of 

real-time applications grows, the necessity of scheduling an algorithm for weakly 

hard real-time systems is increasing. In this sub-section, we have focused on the 

scheduling for weakly hard tasks using genetic algorithm. Genetic algorithm is a 

learning way that is based on biologic evolution. This algorithm is a technique for 

finding approximate solutions for optimization. The step we used during genetic 

algorithm is that of a chromosome structure, having requirements for number of 

processors, number of tasks and fitness functions. 

 Based on the tasks generated by AMR as well as those depicted in Table 2 in 

Sub-section 4.2, the following guidelines are produced to use genetic algorithm to 

predict the scheduling of tasks of real-time systems. The tasks must be divided 

into two categories of timing requirements as described below: 

 

 Hard real-time tasks related to the motor control of the robot and robot 

activity, namely: MobileRobot, Avoid, motorctrl_left, motorctrl_right and 

Subsumption. 

 Soft real-time tasks that are related to the robot activity and display task, 

namely Cruise and manrobotintf. 

 

 As stated, missed deadlines are not allowed for hard tasks or those five tasks 

and the tasks must be completed within their deadlines. Among the seven tasks, 

five tasks are known as hard tasks and two tasks are known as soft tasks. Thus, 

missing deadlines for soft tasks is acceptable for the AMR system. It is natural to 

represent a schedule of tasks in a chromosome wherein each task has a deadline 

time. After the encoding of chromosomes has occurred the fitness value of each 

task is then calculated. A typical schedule as a chromosome vector for a set of 

seven tasks, to be executed on a multiprocessor system with 2 processors, is 

shown in Table 3.  

 Each task Ti is characterized as follows: Ri is response time, Ci is worst case 

computation time and Di is deadline. The scheduler determines the scheduled start 

time and finish time of each task. The scheduler works in parallel with the 

processors. If st(Ti) is the scheduled start time and ft(Ti) is the scheduled finish 

time of task Ti, then the task Ti, is said to meet its deadline if (Ri ≤ st(Ti) ≤ Di – Ci) 

and (Ri + Ci  ≤ ft(Ti) ≤ Di). That is, the tasks are scheduled to start after they arrive 

and finish execution before their deadlines. A set of such tasks can be said to be 

guaranteed. 



  

 

 

37                                                                 A Weakly Hard Real-Time Scheduling                                           

 Clearly, Table 3 represents the structure of a chromosome by creating the 

scheduling set on each processor. A chromosome contains a value of computation 

time and the respective deadlines. In this table, seven tasks are assigned to two 

processors, with total scheduling time of 150. The length of chromosome is equal 

to the number of tasks, since all of the tasks must be executed. Hence, the length 

of chromosome L is 7. The scheduling task set on processor 1 P1 is generated by 

abstracting tasks with the value of computation time, and Ci and P2 are also 

generated in the same way. The tasks were arranged in the increasing order of 

their deadlines and randomly assigned to processors considering fixed priority 

scheduling based on the priority of the tasks. Tasks  T1, T2, T3, T4 and T5 are 

assigned to processor 1, while tasks T6 and T7 are assigned to processor 2 

respectively and scheduled for execution successfully. However, tasks T6 and T7 

cannot be executed on processor 2 respectively and it is considered as a missing 

deadline.  

 Task T7 cannot be scheduled until T6 has been completed. Further, T6 is 

predecessor of T7, and this T7 is the successor of T6, under the relation of 

dependency on a multiprocessor system. 

  

Table 3: The structure of chromosome 

 T1 T2 T3 T4 T5 T6 T7 

Ci 1 20 20 1 17 1 16 

Di 50 50 50 80 100 100 150 

 P1 P1 P1 P1 P1 P2 P2 

Ti = Task set; Pi = Processor; 

  

Here, we consider some general schedules of task Ti, on the processor system 

for a multiprocessor. In the worst case scenario, the T6 and T7 tasks cannot be 

scheduled, thus resulting in a need for a genetic algorithm to find the number of 

missed deadlines for the tasks using the fitness function, sometimes called the 

objective or evaluation function. For the other tasks in which it can be scheduled, 

the fitness function value is equal to zero. The fitness function is essentially the 

objective function for the problem. A fitness function quantifies the scheduling 

chances for a given deadline set (chromosome). In Equation (5), F(s) is a fitness 

function, while the success ratio = number of scheduled tasks divided total 

number of tasks, and Di refers to the deadline. 

 

F(6) = 1 – 0.71 / 100 

                                                          = 0.003  

 



 

 

 

 

 

 

 

Habibah Ismail et al.                                                                                                    38 

F(7) = 1 – 0.71 / 150 

                                                          = 0.002  

 

The results show that even though the T6 and T7 tasks missed their deadlines, 

the system is weakly hard. As a result, it is schedulable because the probability of 

the deadline being missed is less than 1. Thus, we could still consider the system 

schedulable since we were willing to admit ρ < 1 (ρ being a parameter) of 

deadline misses. Also, the genetic algorithm can be used to schedule tasks so as to 

meet deadlines. 

 In order to generate an optimal schedule for the autonomous mobile robot, we 

can change the priority of tasks depending on its category, in which the hard real-

time tasks should take the highest priority among all tasks. Because a slightly 

missing deadline in soft real-time tasks can be allowed depending on the actual 

robot behaviour, we found that the robot can work without any problem arising 

from missed deadlines for soft real-time tasks. 

  

5      Conclusion 

In conclusion, this paper has proposed scheduling analysis framework that can 

address the two main problems. The first problem was that of complexity. In order 

to reduce the complexity of the system, we used two well-known UML, namely 

the UML-SPT and UML-MARTE profiles, together with scheduling analysis. The 

system complexity was reduced by using weakly hard real-time specifications 

together with the UML-SPT and UML-MARTE profiles. In order to know which 

profile was less complex, we evaluated the behavioural complexity of both 

profiles using SDCF metrics and the results showed that the UML-MARTE 

profile was less complex compared with the UML-SPT profile. 

The second problem was related to predictability. This was investigated by 

using the genetic algorithm approach. This approach brings significant benefits in 

which any deadline violation can be measured and the number of deadlines 

missed can be guaranteed; hence, it can increase the predictability of the tasks.  

In this systematic way, designers can provide less complex and more 

predictable weakly hard real-time systems based on the modelling approach, 

scheduling approach and scheduling algorithm respectively. This is because the 

proposed scheduling analysis framework has the ability to reduce the complexity 

of real-time systems by using the UML and scheduling approach and also has the 

ability to increase the predictability of the tasks based on the genetic algorithm 

approach. For future work, we aim to evaluate the proposed scheduling analysis 

framework by comparison with the existing framework.   

 



  

 

 

39                                                                 A Weakly Hard Real-Time Scheduling                                           

ACKNOWLEDGEMENTS 
  

The authors would like to profoundly thank the Research Grant University (RUG), 

the Fundamental Research Grant Scheme (FRGS) from MOHE, ScienceFund and 

Ministry of Science, Technology and Innovation Malaysia (MOSTI) Vote No. 

4S064, as well as the Universiti Teknologi Malaysia (UTM) for their financial 

support and, not forgotten, the Software Engineering Research Group (SERG) and 

EReTSEL lab members for their help. 

 

References 

[1] K.G. Shin and P. Ramanathan. 1994. Real-time computing: A new discipline 

of computer science and engineering, Proceedings of the IEEE, vol. 82(1).  

[2] G. Bernat. 1998. Specification and analysis of weakly hard real-time systems, 

PhD Thesis, Department de les Ciències Matemàtiques i Informàtica, 

Universitat de les Illes Balears, January 1998, Spain. 

[3] G. Bernat and A. Burns. 2001. Weakly hard real-time systems, IEEE 

Transactions on Computers, vol. 50(4), pp. 308-321, April 2001. 

[4] K. E. A. Jensen. 2009. Schedulability analysis of embedded applications 

modelled using MARTE, Master's Thesis. Technical University of Denmark, 

Kongens Lyngby, Denmark. 

[5] OMG MARTE Specification. 2007. A UML Profile for MARTE: Beta 1, 

OMG Adopted Specification ptc/07-08-04, August.  

[6] D. Harel and E. Gery. 1997. Executable object modeling with statecharts, 

Computer, vol. 30(7), pp. 31-42. 

[7] Rational Software Corporation. 2003. C++ Reference. Rational Rose Real-

Time. Version: 2003.06.00, Part no: 800-026109-000, Technical report of 

Rational Software Corporation, ftp://ftp.software.ibm.com/software/ 

rational/docs/v2003/unix_solutions/pdf/RoseRT/rosert_cpp_ref_guide.pdf. 

[8] M. Yoo and M. Gen. 2005. Multimedia tasks scheduling using genetic 

algorithm, Asia Pacific Management Review, vol. 10(6), pp. 373-380. 

[9] J. Oh and C. Wu. 2004. Genetic-algorithm-based real-time task scheduling 

with multiple goals, Journal of Systems and Software, vol. 71(3), pp. 245-

258. 

[10] G. Sebestyen, K. Pusztai and Z. Puklus. 2004. Genetic algorithm for real-

time scheduling in distributed control systems, International Conference on 

Intelligent Engineering (INES’04), pp. 117-120. 

[11] H. Mitra and P. Ramanathan. 1993. A genetic approach for scheduling non-

pre-emptive tasks with precedence and deadline constraints, Proceedings of 

the 26
th

 Hawaii International Conference on Systems Sciences, pp. 556-564. 

[12] Y. Monnier, J. Beauvais, and A. M. Deplanche. 1998. A genetic algorithm 

for scheduling tasks in a real-time distributed system, Proceedings of 24
th

 

Euromicro Conference, pp. 708-714. 



 

 

 

 

 

 

 

Habibah Ismail et al.                                                                                                    40 

[13] A. Burns and G. Bernat. 2001. Jorvik: A framework for effective 

scheduling, Real-Time Systems Research Group, Department of Computer 

Science, University of York, UK. 

[14] A. Burns, G. Bernat and I. Broster. 2003. A probabilistic framework for 

schedulability analysis, Lecture Notes in Computer Science, vol. 2855. 

[15] D. N. A. Jawawi, S. Deris and R. Mamat. 2006. Enhancement of PECOS 

embedded real-time component model for autonomous mobile robot 

application, IEEE International Conference on Computer Systems and 

Applications, pp. 882-889.  

[16] G. Booch, J. Rumbaugh and I. Jacobson. 2005. Unified Modeling Language 

User Guide, the (Addison-Wesley Object Technology Series). Addison-

Wesley Professional.  

[17] A. Kanjilal, S. Sengupta and S. Bhattacharya. 2009. Analysis of complexity 

of requirements: A metrics based approach, In Proceedings of the 2
nd

 India 

Software Engineering Conference (ISEC’09), pp. 131-132. 

[18] Habibah Ismail and Dayang N. A. Jawawi. 2011. The adoption of UML-

MARTE profiles for weakly hard real-time requirements, 5
th

 Malaysian 

Conference in Software Engineering (MySEC’11), December 13-14. 

[19] S. Agrawal, R. Shankar and Ranvijay. 2011. A three phase scheduling for 

system energy minimization of weakly hard real-time systems, Global 

Journal of Computer Science and Technology, vol. 11(10), version 1.0. 


