
Int. J. Advance Soft Compu. Appl, Vol. 5, No. 3, December 2013

ISSN 2074-8523; Copyright © SCRG Publication, 2013

Designing a Test Set for Structural Testing

in Automatic Programming Assessment

Rohaida Romli
1
, Shahida Sulaiman

2
, and Kamal Zuhairi Zamli

3

1
School of Computing

College of Arts and Sciences

Universiti Utara Malaysia, 06010 UUM Sintok, Kedah, Malaysia.

e-mail: aida@uum.edu.my

2
Faculty of Computing,

Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor, Malaysia.

e-mail: shahidasulaiman@utm.my

3
Faculty of Computer Systems and Software Engineering,

Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300 Gambang, Kuantan,

Pahang, Malaysia.

e-mail: kamalz@ump.edu.my

Abstract

 An automatic programming assessment (APA) method aims to
support marking and grading of students’ programming exercises.
APA requires a test data generation to perform a dynamic testing on
students’ programs. In software testing field, diverse automated
methods for test data generation are proposed. Unfortunately, APA
seldom adopts these methods. Merely limited studies have attempted
to integrate APA and test data generation to include more useful
features and to provide a precise and thorough quality of program
testing coverage. Thus, we propose a test data generation approach
to cover both the functional and structural testing of a program for
APA by focusing the structural testing in this paper. We design a test
set based on the integration of positive and negative testing criteria
that enhanced path coverage criterion to select the desired test data.
It supports lecturers of programming courses to furnish an adequate
set of test data to assess students’ programming solutions in term of
structural testing without necessarily having the expertise in a
particular knowledge of test cases. The findings from the experiment
depict that the test set improves the criteria of reliability and validity
for test data adequacy in programming assessments.

 Keywords: Automatic Programming Assessment (APA), test data generation,
structural testing, path coverage, positive testing, negative testing

Rohaida Romli et al. 42

1 Introduction

Automatic Programming Assessment (APA) is commonly known as an alternative

method to automatically mark and grade students’ programming solutions. It aims

to overcome the manual assessment, which is time-consuming and requires much

effort and attention that are prone to error in any levels of assessment [1]. Besides,

APA offers important benefits in terms of immediate feedback, objectivity and

consistency of the evaluation as well as a substantial saving of time in the

evaluation of the assignments [2] without the need to reduce exercises [3]. Due to

huge class sizes in Computer Science or IT programme which might have

hundreds of students in a single course [4], the practice of programming exercises

assessment leads to extensive workload to lecturers or instructors particularly if it

has to be carried out manually. This typical approach of assessment may lead to

unintended biases and different standard of marking schemes. Furthermore, the

feedback provided to students through marking is generally limited, and often late

and outdated particularly to the topic dealt in the assignment [5].

To date, a number of automatic tools available for APA such as Assyst [6],

BOSS [7], GAME [8], TRAKLA2 [9], PASS [10], ELP [11], CourseMaster [12],

WeBWork [13], SAC [14], Oto [15], ICAS [16], PETCHA [17], eGrader [18],

and Bottlenose [19]. Such tools provide advantages not only to lecturers, but may

also play an important role in students’ learning outcomes [20]. Typically,

dynamic correctness assessment of students’ programs involves the process of

program quality testing through the execution of program with a range of test data

and monitoring it conformance through the comparison between the outputs

produced and the expected ones [21]. Thus, there is a need to prepare an

appropriate set of test data that conformance to program specifications and to

detect an occurrence of errors or unexpected mistakes in students’ programs.

In software testing research area, various of studies propose automated

methods for test data generation [22][23][24][25][26][27][28][29][30]. Despite

the potentials of the proposed methods in providing the most efficient way to

generate test data for large-scale projects, researches in APA seldom adopt these

methods. To date, very limited studies have attempted to incorporate both

automation of test data generation and programming assessment [9][31][32][33].

We intend to enhance the previous studies as the methods proposed are merely

applied as a simple technique to generate test data, or they derive test data based

on only the functional or structural aspect of a program separately. Other than that,

the studies such as proposed by Guo et al. [34] and Cheng et al. [35] seem to

apply the external tools (legacy systems) to generate test data for functional or

structural testing. However, the accessibility of such tools might be a problematic.

Some other works utilize the JUnit framework to design test cases

[5][36][37][38][14][15][39] or use specific technique (in manual way) [40][41].

However, JUnit requires high technical skill to code particular run tests that

requires rubric in mind. Hence, this limiting its use for advanced users. Therefore,

43 Designing a Test Set for Structural Testing

it motivates us to propose a test data generation approach for the dynamic

functional and structural testing of a program for APA so-called FaSTDG

(Functional-Structural Test Data Generation) approach. However, this paper will

only highlight on the part of structural testing. Section 4 will review the related

work particularly on this testing part that justifies the issues and challenges, which

reveals among the possible gaps to be explored.

This paper consists of six sections. Section 2 details up the design of test set

for test data selection based on an improved path coverage criterion. In the

following section, it demonstrates how the test set allocates an adequate set of test

data based on a sample of programming exercise. Section 4 reveals the analysis

and findings from the conducted controlled experiment to evaluate the

completeness coverage of structural testing as a part of FaSTDG approach.

Section 5 reviews the related work with regard to test data generation for

structural testing in APA. Finally, Section 6 concludes the paper.

2 Path Coverage Criterion to Design a Test Set

This study adapts path coverage testing criterion as the criteria are used to

examine the correctness of structural testing of students’ program. In terms of the

adequacy criterion used in corresponding to path coverage testing, this study

employs control-flow test adequacy criterion to guide in finding the desired paths.

Instead of considering all finite paths from start to end (positive testing or test

adequacy criteria-reliability), this study also incorporates negative testing criteria

(or test adequacy criteria-validity) that is based on error-based adequacy criteria

which requires test data to check programs on certain error-prone points [42]. In

order to obtain feasible paths, this study adapts the technique of boundary-interior

path testing. The notion of criteria of test data selection for this study is available

from our previous work [43]. As this study incorporates positive and negative

testing criteria, inclusion to valid (true) and invalid (false) path conditions, the

study also embeds an illegal path condition in designing test cases.

For structural test data generation, the process of deriving test data depends on

two main control structures with regard to the flow of control [44][45], which are

selection control structure, loop control structure, and combination of the both.

2.1 Selection control structure

Focusing Java programming, selection control structures concern if, if…else and

switch…case decision-making statements [46]. All the statements may involve

consecutive (sequential) or nested structure. This study considers the both

structures. The detail of test cases designed for each decision-making structure is

as follows:

Rohaida Romli et al. 44

2.1.1 Selection-Consecutive (Sequential)

For this type of decision-making structure, the means of deriving test cases relies

on the following properties:

(i) The number of selection control structures a program has,

(ii) The number of options or decisions each selection control structure has, and

(iii) The category of input conditions (valid, invalid, illegal) that a lecturer prefers

to consider.

For all cases, by default, the derived test cases involve valid input conditions.

Invalid and illegal input conditions may be included based on a lecturer’s

preference. For example (Case 1), if a tested program has two selection control

structures (Selection1 and Selection2), and then Selection1 and Selection2 has two

and three options respectively. Considering that, a lecturer prefers to include all

input conditions, Table 1 shows the generated test cases with their respective

input conditions.

Based on Table 1, the total number of generated test cases is nine. For

Selection1, in a total it contains four test cases (TC1, TC2, TC3, and TC4). The

reason is Selection1 has two options (representing valid input conditions) with

another two cases (representing invalid and illegal input conditions). In addition,

Selection2 comprises of five test cases as it has three options representing valid

input conditions a long with another two test cases, which represent invalid and

illegal input conditions. The pairs of (TC3, TC8) and/or (TC4, TC9) will be

excluded if a lecturer do not prefer to include invalid and/or valid condition (s).

Table 1: Generated test cases based on the example of Case 1 for Selection-

Consecutive (sequential)

Test Case Input Conditions

TC1 Valid-Option1-Selection1

TC2 Valid-Option2-Selection1

TC3 Invalid-Selection1

TC4 Illegal-Selection1

TC5 Valid-Option1-Selection2

TC6 Valid-Option2-Selection2

TC7 Valid-Option3-Selection2

TC8 Invalid-Selection2

TC9 Illegal-Selection2

2.1.2 Selection-Nested

The parameters considered in deriving test cases for this type of decision-making

structure is identical to as explained in 2.1.1. However, this type of decision-

making structure will consider a combination of input conditions among the

selection control structures that a tested program has. A tree structure can

visualize this decision-making structure that focuses only valid input conditions

45 Designing a Test Set for Structural Testing

among all the selections (Selection1, Selection2, …, SelectionN). The number of

parent nodes in the tree represents the number of selections that the tested

program has. The number of children for each parent node denotes the number of

options for the respective selection. If the selection has another inner selection,

then the first child node of the outer selection becomes a parent node for the inner

selection.

For example, if a decision-making structure of if…else statement is given as

shown in Fig. 1, the respective test cases generated is shown in Table 2.

Fig. 1: Example of decision-making statement for Selection-Nested

Table 2: Generated test cases for Selection-Nested based on Fig. 1 (considering all

input conditions)

Test Case Input Conditions

TC1
Valid-Option1-Selection1, Valid-Option1-Selection2, Valid-

Option1-Selection3

TC2
Valid-Option1-Selection1, Valid-Option1-Selection2, Valid-

Option2-Selection3

TC3 Valid-Option1-Selection1, Valid-Option2-Selection2

TC4 Valid-Option2-Selection1

TC5 Valid-Option3-Selection1

TC6 Invalid- Selection1, Invalid-Selection2, Invalid-Selection3

TC7 Illegal- Selection1, Illegal-Selection2, Illegal-Selection3

Based on Table 2, the number of generated test cases for valid input

conditions is five (TC1 to TC5) as the number of the trees’ leaves are five.

However, for invalid and illegal input conditions, this study only includes one test

case to represent each input condition (TC5 and TC7). The main reason is to

if (booleanExpression-Option1)  Selection1

if (booleanExpression-Option1)  Selection2

if (booleanExpression-Option1)  Selection3

.

.

else  Option2  Selection3

.

.

else  Option2  Selection2

.

.

else if (booleanExpression-Option2)  Selection1

.

.

else  Option3  Selection1

.

.

Rohaida Romli et al. 46

reduce the total number of test cases generated. Besides, there have already been

included the test cases to exercise valid input conditions hence, no use to include

the test cases that has a combination of valid and invalid input conditions.

2.2 Loop Control Structure

In Java programming, there are three types of loop statements: while loops, for

loops and do-while loops [46]. For all the loops, instead of controlling the loop

based on a specific number of repetitions (counter value), another common

technique is to designate a special value to control repetitions (sentinel value).

The for loop commonly gets involved with counter value.

This study categorizes the types of loops based on the repetitions are

controlled by either counter or sentinel value. The terms use to represent both

types are CounterLoop and SentinelLoop. The detail test cases design for both

types of loops are as follows:

2.2.1 CounterLoop-Consecutive (sequential)

The design of test cases for this kind of loop structure depends on the number of

loops that a program has, and input conditions that a lecturer wishes to consider.

In order to ensure a finite number of paths tested for the loop, this study employs

the modified boundary-interior approach. Commonly, the approach tests a loop to

be entered but not iterated [47]. However, this study allows a lecturer to specify

the number of iterations used to test the loop. This concept applies to both valid

and invalid input conditions of the loop.

For example (Case 2), if a tested program has three loops (Loop1, Loop2, and

Loop3), and a lecturer prefers to include all input conditions (valid, invalid and

illegal) in the design of test cases, Table 3 shows the generated test cases with

their respective input conditions.

Table 3: Generated test cases for Counter Loop–Consecutive (sequential) based

on the example of Case2

Test Case Input Conditions

TC1 Valid-Loop1

TC2 Invalid-Loop1

TC3 Illegal-Loop1

TC4 Valid-Loop2

TC5 Invalid-Loop2

TC6 Illegal-Loop2

TC7 Valid-Loop3

TC8 Invalid-Loop3

TC9 Illegal-Loop3

Based on the table, the total number of generated test cases is nine. For all

loops, each of them has three test cases representing valid, invalid and illegal

47 Designing a Test Set for Structural Testing

input conditions of the loop. If a lecturer intends to exclude invalid and/or illegal

input condition(s), the combinations of (TC2, TC5, TC8) and/or (TC3, TC6, TC9)

will not in the list of generated test cases.

2.2.2 CounterLoop-Nested

The design of test cases for CounterLoop–Nested is similar to CounterLoop–

Consecutive (sequential), except the way to generate test cases making a

consideration of combining input conditions among the loops contained in a

program. The combination technique ignores any duplicate combinations among

input conditions of the considered loops. These input conditions can be any two

combination of valid-invalid-illegal, valid-invalid or valid-illegal input conditions.

The remaining input conditions of certain loops will only be combined with input

conditions of other loops that have not been combined yet.

This technique is proposed to mainly reduce the number of test cases

generated. In addition, it is able to cover an adequate combination of input

conditions by assuming that as long as if one input condition for the respective

loop has already been covered in the combination, there is no use to consider it

again in the next combination. The reason is that once a testing executes both

valid input conditions of the inner and outer loops, hence there is no use to re-

execute the testing on the same valid input condition of the inner loop but with the

other input conditions of its outer loop. For example, a combination of invalid-

valid or illegal-valid input condition, as by the fact always produces invalid or

illegal results. Therefore, it is more significant to create testing on the

combination of invalid-invalid, invalid-illegal and illegal-illegal input conditions

to produce the possibility of invalid and illegal results. In addition, structural

testing of this study mainly emphasizes the adequacy of path coverage criterion,

hence the exhaustive combination (n
k
) of input conditions is not too crucial.

Fig. 2 illustrates the combination technique. Assuming that a program has

three loops (Loop1, Loop2, Loop3) and each of them considers valid, invalid and

illegal input conditions (Case 3). Table 4 depicts the test cases generated for the

program. Based on the table, they are ten test cases generated as the tested

program has three loops. For this type of loop, as the loops are arranged in a

nested structure, hence the number of test data involved in each test case is as

equation (1).

 where, i =

 n – number of loops (1)

Rohaida Romli et al. 48

Input condition of

Loop1

Input condition of

Loop2

Input condition of

Loop3

Valid Valid Valid

Invalid Invalid Invalid

Illegal Illegal Illegal

Fig. 2: Combination technique among input conditions of three loops

Table 4: Generated test cases based on an example in Fig. 2 for Counter Loop–

Nested (Case 3)

Test Case Input Conditions

TC1 Valid-Loop1, Valid-Loop2, Valid-Loop3

TC2 Valid-Loop1, Valid-Loop2, Invalid-Loop3

TC3 Valid-Loop1, Valid-Loop2, Illegal-Loop3

TC4 Valid-Loop1, Invalid-Loop2, Invalid-Loop3

TC5 Valid-Loop1, Invalid-Loop2, Illegal-Loop3

TC6 Valid-Loop1, Illegal-Loop2, Illegal-Loop3

TC7 Invalid-Loop1, Invalid-Loop2, Invalid-Loop3

TC8 Invalid-Loop1, Invalid-Loop2, Illegal-Loop3

TC9 Invalid-Loop1, Illegal-Loop2, Illegal-Loop3

TC10 Illegal-Loop1, Illegal-Loop2, Illegal-Loop3

2.2.3 SentinelLoop-Consecutive (sequential)

The design of test cases The way to derive test cases for SentinelLoop–

Consecutive (sequential) structure is identical to the CounterLoop–Consecutive

(sequential). Its minor dissimilarity is merely in terms of the means of configuring

the loop parameters (sentinel values). For CounterLoop the configuration involves

counter loop values to determine how many times a certain loop iterates. In order

to ensure a finite number of paths are tested for the sentinel loop, this study also

employs the boundary-interior approach. For this type of structure, test cases are

designed to test the loop to be entered but not iterated. This differs as compared to

CounterLoop in which a lecturer can decide to test a certain number of repetitions

for each single loop.

The means of deriving test cases are exactly the same as CounterLoop–

Consecutive (sequential). In terms of the number of test data involved in each test

case, as the loop does not involve the repetition concept, the test data follow

exactly the number of input variables or parameters that the tested program has.

2.2.4 SentinelLoop-Nested

This kind of loop structure applies the combination of concepts CounterLoop-

Nested and SentinelLoop-Consecutive (sequential).

49 Designing a Test Set for Structural Testing

2.3 Combination of Selection and Loop Control Structures

Similar to the other two structures as previously discussed (sub-sections 2.1 and

2.2), this part also considers both consecutive and nested design structures. The

detail design of test cases of both types are as below:

2.3.1 CounterLoop and Selection (consecutive/sequential)

The test cases design for this design structure is a combination of Selection–

Consecutive (sequential) and CounterLoop–Consecutive (sequential).

2.3.2 CounterLoop and Selection (nested)

There are two possibilities of arranging this type of program structure: Counter

loop occurs as an outer part of selection control structure (CounterLoop 

Selection), or selection control structure is an outer structure of counter loop

(Selection  Counter-Loop). The way to derive test cases for both types of

arrangements is rather different as both counter loops and selection control

structures are collectively different with each other in terms of flow of control.

The following describes the test cases designed of both arrangement types:

A. Counter-Loop  Selection

Each of the selection control structures defined has a possibility to occur in any

counter loops consisted in the tested program. However, every counter loop will

be arranged at their level of nested sequentially based on given naming

conventions.

For example (Case 4), assuming that a tested program P1 has two counter

loops and one selection control structure with two options and it is part of the

second loop. The respective naming conventions for the loops are Counter-Loop1,

and Counter-Loop2. Selection1 and Selection2 consisted in Counter-Loop2. The

limitation here is, it is not applicable if one or more counter loops defined in the

tested program is arranged consecutively. Suppose its code structure will be

viewed as in Fig. 3. If all the three input conditions are taken into consideration in

deriving test cases, Table 5 tabulates the corresponding test cases.

The way to derive test cases does not rely on a combination of Selection-

Nested and CounterLoop-Nested. As shown in Table 5, Valid-Loop1 represents

test case for valid input condition of Loop1. It is optional either to consider an

input condition of Loop2 as valid, invalid or illegal. A lecturer can decide to

choose one of them as long as the control flow enters Loop1. However, the test

cases from TC4 until TC8 will test on paths that enter Loop2. Thus, these test

cases definitely are valid input condition of Loop1. The same concept applies to

TC2 and TC3 as well as TC8 and TC9. However, for TC8 and TC9 it is possibly

to select any type of input condition (valid, invalid or illegal) of Loop1. By

applying this concept, it is probably able to deduce the total number of generated

test cases. In addition, it does cover the minimal coverage paths.

Rohaida Romli et al. 50

Fig. 3: Example of code structure for Counter-Loop  Selection (Case 4)

Table 5: Generated test cases based on an example of Case 4 for Counter-Loop 

Selection

Test Case Input Conditions

TC1 Valid-Loop1

TC2 Invalid-Loop1

TC3 Illegal-Loop1

TC4 Valid-Loop2, Valid-Option1-Selection1

TC5 Valid-Loop2, Valid-Option2-Selection1

TC6 Valid-Loop2, InvalidOption-Selection1

TC7 Valid-Loop2, IllegalOption-Selection1

TC8 Invalid-Loop2

TC9 Illegal-Loop2

B. Selection  Counter-Loop

The means of deriving test cases and the sequence among the control structures

involved are rather different in certain aspects compared to CounterLoop 

Selection. Each counter loop has a possibility to occur in any selection control

structures. However, among the selection control structures, this study only takes

into consideration if they are arranged in a consecutive way. Even in a

programming practice, there have been a number of possibilities of design

structures that involve selection control structure and counter loop, but the main

focus here is to ensure the nested structure only applies between the selection

control structure and counter loop. In addition, in a case of the elementary

programming course, commonly programming assignments that involve this

control structures do not happen to have too complicated design structure to

support the applicable topic in a course syllabus.

For each selection control structure, any counter loops that occur in it, they

will be arranged at the level of nested sequentially based on given naming

conventions. Such arrangement is identical to CounterLoop  Selection. For

example (Case 5), assume that a tested program P2 has two selection control

structures (Selection1 and Selection2) and counter loops (Counter-Loop1 and

Counter-Loop1 {

 //body of Counter-Loop1

 Counter-Loop2 {

 //body Counter-Loop2

 Option1-Selection1

 { //body Option2-Selection2 }

 Option2-Selection1

 { //body Option2-Selection2 }

 }

}

51 Designing a Test Set for Structural Testing

Counter-Loop2) respectively. It is given that Selection1 has a single option and

Selection2 otherwise has two options. Suppose its code structure is shown in Fig.

4. In this case, it is not applicable if for a certain selection control structure there

exist two or more counter loops that are arranged consecutively.

If all the three input conditions are taken into consideration in deriving test

cases, Table 6 shows their corresponding test cases. The way of deriving test

cases is quite similar to CounterLoop  Selection. However, as an outer structure

starts with the selection control structure, the test will evaluate the outer prior the

inner (counter loop) structures. As shown in Table 6, TC1 until TC3 exercise

valid input condition of Selection1 and valid, invalid or illegal input condition of

Loop1. Then, TC4 and TC5 follow the test to exercise the invalid and illegal input

conditions of Selection1 respectively. The same thing goes to Selection2 and

Loop2 in which their respective test cases are TC6 until TC11. As Selection2 has

two options, a test case that exercises valid input condition of the second option

should occur (TC9).

Fig. 4: Example of code structure for program P2

Table 6: Generated test cases based on an example of Case 5 for Selection 

Counter-Loop

Test Case Input Conditions

TC1 Valid-Option1-Selection1, Valid-Loop1

TC2 Valid-Option1-Selection1, Invalid-Loop1

TC3 Valid-Option1-Selection1, Illegal-Loop1

TC4 Invalid-Option-Selection1

TC5 Illegal-Option-Selection1

TC6 Valid-Option1-Selection2, Valid-Loop2

TC7 Valid-Option1-Selection1, Invalid-Loop2

TC8 Valid-Option1-Selection1, Illegal-Loop2

TC9 Valid-Option2-Selection2

TC10 Invalid-Option-Selection2

TC11 Illegal- Option-Selection2

Option1-Selection1 {

 //body of Option1-Selection1

 Counter-Loop1

 {//body of Counter-Loop1 }

}

Option1-Selection2 {

 //body of Option1-Selection2

 Counter-Loop2

 {//body of Counter-Loop2 }

}

Option2-Selection2 {

 //body of Option2-Selection2

}

Rohaida Romli et al. 52

2.3.3 SentinelLoop and Selection (consecutive)

The way of deriving test cases for this design structure is exactly the same as

CounterLoop and Selection (consecutive).

2.3.4 SentinelLoop and Selection (nested)

This type of design structure, the means of deriving test cases is the same as

CounterLoop and Selection (nested). However, in terms of the numbers of test

data involved in each test case for all design structures, they will be different.

Sub-section (B) has described about the numbers of test data for both types of

loops either they are arranged consecutively or in a nested way.

3 An Example of Derived Test Set

In order to understand how the design of test set maps to APA, the following

example illustrates the concept. Fig. 5 depicts the sample of programming

exercise and its functional specifications, and Fig. 6 is its respective flow-graph

representation. Table 7 shows the derived test set, which includes test cases that

cover valid, invalid and illegal path conditions.

Fig. 5: Sample of programming exercise and its functional specifications

Based on Fig. 6, the program produces two linearly independent paths which

are; Path1  b, a1, a2, e and Path2 b, a1, a3, e. For this study, these paths

cover the valid path conditions and they are compulsory to be exercised because

they are commonly a part of program specifications in APA. The same applies to

the path that does not fulfil either Path1 or Path2 that is the path of b, a1, e, which

cover invalid path conditions. Both valid and invalid path conditions fall into

positive testing criterion.

Based on Table 7, the test cases of TC1, TC2 and TC3 represent positive

testing criteria (or test data adequacy-reliability) and the test case of TC4 covers

Question:
Write a program that reads an age of a person, which is an integer, and print the status of
the age that is based on the following:
 age status
 0 ≤ age ≥ 21 “Youth is a wonderful thing. Enjoy”
 age > 21 “Age is a state of mind. Enjoy”

Functional specification:
Input – an age, which is an integer value
Output – status of the age, which is a String
Functional Process:
-If the age is an integer and it fulfils one of the listed condition (0 ≤ age ≥ 21 or age >
21), the program shall return the corresponding status of the age as the program output.
-If the age value is less than zero or a character, the program return a null value.
-If the age value is a String, the program return an exception error message.

53 Designing a Test Set for Structural Testing

negative testing criteria (or test data adequacy-validity). Specifically, TC1 and

TC2 cover the valid path conditions and TC3 cover the invalid path condition. As

the parameter of age is an integer data type, a String value is used to cover the

illegal path condition. This condition results the program under testing returns an

exception error, which determines it is the point where an error occurs due to the

input-mismatch exception. Considering the flow graph in Fig. 6, the illegal path

condition can take part as long as the test datum to represent the parameter of age

is a non-integer data type. Although a number of test cases can cover such path

conditions, this study merely selects one value of test datum to represent a single

type of exception error. It is mainly to reduce the overall number of test cases

generated especially in the case of the number of input variable/parameter

increased significantly. It is adequate in APA since it covers the negative testing

criteria.

Fig.6: Flow graph that represents the fragment of code shown in Fig. 5

Table 7: Schema of test set for the fragment of code in Fig. 6

Test

Case

(TC)

Input
Test Case Description

Path

Covered

Path Condition

age

TC 1 18 Exercise the branch of

age>0 && age<21

b, a1, a2, e Valid branch of age>0 &&

age<21

TC 2 45 Exercise the branch of

age>21

b, a1, a3, e Valid branch of age>21

TC 3 -4 null b, a1, e Invalid branches of age>0 &&

age<21and invalid age>21

TC 4 “abc” Error and the program

terminate

None Illegal path

Begin

End

b

a1

a3 a2

Display “Youth is a wonderful
thing. Enjoy.”

e

age>0 && age<21 age>=21

Display “Age is a state of
mind.” Enjoy.”

Set parameter (age)

Rohaida Romli et al. 54

4 Results and Discussion

In order to measure the completeness coverage of the test data adequacy of

FaSTDG approach (focuses the structural testing) in terms of the criteria of

reliability and validity test data adequacy, we conducted a controlled experiment

that employs the one-group pretest-posttest design. It is an experimental design in

which a single group is measured or observed before and after being exposed to a

treatment [48]. Fig. 7 depicts the design of the experiment.

Fig. 7: Design of the Controlled Experiment (adapted from [48])

Based on Fig. 7, the symbol X represents exposure of the group to the

treatment of interest (independent variable), while O refers to the measurement of

dependent variable. The pre-test experiment intends to measure the degree of the

completeness coverage of the criteria of test data adequacy (reliability and

validity) for Current Method in preparing a set of test data to perform the dynamic

structural testing in programming assessment. The Current Method refers to the

means of preparing test data based on the individual user’s knowledge in a certain

test case design.

This experiment used three samples of programming exercises as assignments

in the scenario setting that each subject should follow. The exercises cover the

three main control structures in Java programming, which are sequential, selection

and repetition (loop). They are the most important concepts of programming that

every student of elementary of programming course should master. In addition,

they are commonly included as the main objective to be achieved in the course

syllabus. The subjects of the controlled experiment were lecturers who have been

teaching the course of Introduction to Programming (STIA1013) at UUM. There

were all, a total of twelve (12) subjects. They at least have been teaching the

programming course for one semester.

We used a set of pre-test and post-test questions that consisted of the same

content. Each set of the question consisted of two sections: Section A: Testing of

dynamic correctness – reliability and validity of test data adequacy and Section B:

Testing of dynamic correctness – test case coverage. It included a combination of

close-ended and open-ended items or questions. All items in Section A are close-

ended. Whereas, all items in Section B are open-ended. We included both the

criteria of positive and negative testing [49] as items in Section A. The criterion of

 O X O
 (Pre-test) (Treatment) (Post-test)

The criteria of reliability FaSTDG Approach The criteria of reliability
and validity to measure the (FaSt-generator) and validity to measure the
completeness coverage of completeness coverage of
test data adequacy of test data adequacy of
structural test data generation structural test data in
in programming assessment programming assessment
(Current Method)

55 Designing a Test Set for Structural Testing

positive testing (or test data adequacy-reliable) involves two statements. They are

“the program does what it is supposed to” and “the program does what it is not

supposed to do”. However, negative testing criterion (or test data adequacy-valid)

concerns the statement of “the program does not do anything that is not supposed

to do”. Section A used three scales; C (provides total evaluation of metric), P

(provides partial evaluation of metric), and I (provides inconclusive evaluation of

metric). This study adopts the scales from Boehm et al. [50] as Section A attempts

to cover the completeness of the two criteria as items in the question.

Section B consisted of open-ended items, which are related to the derived test

cases for the three samples of programming exercises used in the experiment. For

each of the exercises, the test cases should be recorded in a listing format

consisting of their input values (test data), the outputs produced and brief

descriptions of each test case. The reason of using open-ended items is that every

lecturer may have different levels of knowledge in the test case design to derive a

set of test data used to assess students’ programming solutions in terms of the

structural testing.

The following sub-sections discuss the results of the experiment:

4.1 Testing of dynamic correctness – reliability and validity test

data adequacy

As stated in the pre-test question, the evaluation of metric refers to the coverage

of the criteria of test data adequacy employed either it is complete, partial or

inconclusive evaluation of metric. In this experiment, the term “partial” means

that in deriving test data, the lecturers cover more than 10% of the criteria covered

by FaSTDG approach. While “inconclusive” denotes that the lecturers cover the

criteria of FaSTDG approach less than 10%. The term “total” refers to covering

the same criteria as FaSTDG approach.

Both Fig. 8 and Fig. 9 tabulated the results in terms of the test data adequacy

covered in the practice of programming assessment for structural testing. Fig. 8

emphasised the positive testing criteria (the criteria of reliable test data adequacy).

It shows that for both the criteria of “the program does what it is supposed to do”

and “the program does what it is not supposed to do”, about 58% and 75% of the

subjects respectively provided the partial evaluation of the metric. These outdo the

results in terms of providing the metric totally or inconclusively. In case of

structural testing, they were about 42% of the subjects who totally covered the

evaluation metric. Only 17% of the respondents provided inconclusive evaluation

of the metric for the criteria of “the program does what it is not supposed to do”.

In terms of the negative testing criterion (the criteria of “the program does not do

anything that is not supposed to do”), it seemed to show the similar trend as the

positive testing criterion (see Fig. 8). The highest rating is still the category of

providing the metric partially, in which it has a total of 67%. Similar to the criteria

of “the program does what it is supposed to do” and “the program does what it is

not supposed to do”, the criteria of “the program does not do anything that is not

Rohaida Romli et al. 56

supposed to do” had one subject who totally provided the evaluation metric in

deriving test data. Thus, in overall it can be concluded that FaSTDG approach

provides an adequate set of test data to cover the structural testing of

programming assessments.

Fig. 8: Number of subjects who derived test data for structural testing based on

positive testing criterion

Fig. 9: Number of subjects who derived test data for structural testing based on

negative testing criterion

4.2 Testing of dynamic correctness – test case coverage

This sub-section reveals in detail the result in terms of the coverage of test cases

for each of the programming exercises used as samples in the conducted

experiment. The results were reported in line charts that were based on the

frequency of test cases covered for the respective samples of programming

exercises and the criteria of test data adequacy (reliable or valid) considered.

Fig.10 illustrates the results to compare the coverage of test cases derived from

the current methods used in the practice of programming assessment, with the one

57 Designing a Test Set for Structural Testing

that were derived from FaSTDG approach. The data of this experiment were

recorded based on the respective test data adequacy covered in deriving test data.

Fig. 10: The results to compare the coverage of test cases derived from the current

methods used in the practice of programming assessment, with the one that were

derived from FaSTDG approach

From the figure, the results show that structural testing with the criteria of

positive testing (or test data adequacy-reliable), eleven (11) of the subjects derived

the test data similar or less than one to four in the number of test cases derived as

compared to FaSTDG approach. However, only one subject appears to have the

derived test data more than that of by FaSTDG approach (differ from 6 to 7 in the

number of test cases derived). As question Q2 involved a selection control

structure with five options, the subject seemed to consider the values of –α (just

less) and +α (just greater) at two boundaries of the range values. It is similar to the

concept of original boundary value analysis (BVA). Such conditions may increase

the overall number of test cases generated. In this study, these test cases have been

included to cover functional testing. In addition, almost all the test cases that

cover negative testing criterion returned the same type of exception error.

Therefore, this study employs the path coverage criteria so that it is adequate to

cover the branches that their input conditions are valid (true) and invalid (false) to

suit the APA context.

In terms of negative testing criterion or test data adequacy-valid, all the results

are just the same or differ one (greater or less) in the number of test cases derived

by FaSTDG approach. Thus, these results do not show a significant difference in

Rohaida Romli et al. 58

term of the current methods used in the practice of programming assessment as

compared to FaSTDG approach. In overall, it concludes that FaSTDG approach

provides an adequate set of test data (considering the criteria of reliable and valid

test data adequacy) to perform the structural testing of a program for APA.

Question Q1 did not involve in structural testing as the exercise just covers a

sequential control structure (particularly for functional testing).

In conclusion, it is proved that FaSTDG approach derives and generates an

adequate set of test data to be used to perform the structural testing of a program

for APA.

5 Related Work

Structural testing is the most common form of assessment to determine the

coverage of the program logic and it must be executed as least once such as

statement coverage, path coverage, branch (or decision) coverage, condition

coverage and decision/condition coverage [51]. For this technique, the test data

are driven by examining the logic (or implementation) of a program, without

concerning its requirements [52]. Structural testing becomes a better choice to

provide more thorough testing in programming assessment to compliment

functional testing. The same as functional testing, this testing also falls into

dynamic testing category.

The test data to perform correctness assessment of structural testing can be

automatically generated or manually provided. The number of studies that focuses

this aspect of assessment is relatively small compared to functional testing.

Among the related studies that provided fixed test data manually are

[53][54][55][36][11][37][56]. Some of these studies utilize JUnit to guide the

testing. Thus far, it appeared that only a study by Cheng et al.[35] uses an external

tool that utilizes JUnit to generate the desired test data automatically.

To date, in term of structural testing, limited studies have attempted to

automate the process of generating test data that exclude the use of particular

lecturers’ knowledge in test cases design. A study by Ihantola [32] was among the

earliest study to bring formally justified test data generation and education closer

to each other. The study utilizes symbolic execution in Java PathFinder (JPF) in

deriving the test data. The results of the study were also reasonable and well

applied in other contexts than automatic assessment of programming exercises.

While, a study by Tilmann et al. [33] has yet appeared to be the latest work. This

study focuses more on an interactive-gaming-based teaching and learning for

introductory to advanced programming or software engineering courses. However,

integrating test data generation and APA becomes a part of the proposed work.

Thus, it deduces that most of the existing studies generate test data manually.

However, the efforts to prepare test data automatically is still questionable in

some ways, particularly with regard to conforming to a certain level of errors

point coverage (or negative testing criteria).

59 Designing a Test Set for Structural Testing

6 Conclusion and Future Work

This paper has presented the means of designing test set guided by the improved

path coverage criterion particularly to perform structural testing of a program in

APA. In order to furnish an adequate set of test data to conform to specifications

of a solution model as well as to include certain extend of error-prone points

coverage, we embed positive and negative testing criteria into the test set.

The design of test set provides a guideline to lecturers’ of programming

courses to generate test set with appropriate test data to perform structural testing.

It also includes the necessary criteria employed in practise. Thus, the lecturers do

not need to have any specific expertise in the knowledge of test case design. The

example included in this study shows that the derived test set and test data do

fulfill the criteria of an ideal test criterion that is both reliable and valid [57]. Also,

based on the results collected from the conducted experiment as discussed earlier,

it can be deduced that the criteria of positive and negative testing (test data

adequacy- reliable and valid) are adequate as they cover what have been applied is

the practice of programming assessments.

In recent years, it has appeared that applying meta-heuristic search techniques

particularly for automatic test data generation was of burgeoning interest to many

researchers. On particular interest, McMinn [58] analyzed the details of the results

of the survey in such techniques. Also, in our previous work [59], we reported the

statistics and trends of the studies in automated test data generation within the

year of 1976 and 2010. The result shows that meta-heuristic algorithms have

become the popular approaches applied since early 2000 as there have been

increasing demands on finding the most optimum test data so as to perform

software testing efficiently (cost reduction). From the survey, it also depicts that

genetic algorithm was among the accepted meta-heuristic search techniques-

applied. In addition, the result also reveals that application of meta-heuristic

search techniques seems to be the most popular adapted technique for structural

test data generation. Meta-heuristic techniques are the high-level frameworks that

utilize heuristics in order to find solutions to combinatorial problems at a

reasonable computational cost [58]. Among the most popular meta-heuristic

techniques that have been employed in test data generations are gradient descent,

Simulated Annealing (SA), Ant Colony Optimization (ACO), Tabu Search and

evolutionary algorithms such as Genetic Algorithm (GA).

As the future work, in order to realize the approach so that it can be

generalized and to be applicable in the context of software testing research area

(particularly for a large scale of testing), an application of any meta-heuristic

algorithm or a hybrid among of them possibly becomes a better solution. The

main reason definitely due to the most optimum set of test data is one of the way

to ensure the testing process can be undertaken efficiently as one of the main

issues and challenges in the area of automated test data generation is the exposure

to the NP-hard or non-deterministic polynomial hard problem (the time

Rohaida Romli et al. 60

complexity of O(n
n
)). Other latest meta-heuristic algorithms such as Harmony

Search, and/or Fire-fly could become a promising alternative as well.

ACKNOWLEDGEMENTS

The authors would like to acknowledge the MOSTI eScience Fund

(R.J130000.7928.4S065) of UTM for partly supporting this research.

References

[1] D. Jackson. 1996. A Software System for Grading Student Computer

Programs, Computers and Education, Vol. 27, No. 3-4, (1996), pp. 171-180.

[2] J. L. F. Aleman. 2011. Automated Assessment in Programming Tools Course,

IEEE Transactions on Education, Vol. 54, No. 4, (2011), pp. 576-581.

[3] P. Ihantola, T. Ahoniemi, and V. Karavirta. 2010. Review of Recent Systems

for Automatic Assessment of Programming Assignments, In Proceedings of

the 10
th

 Koli Calling International Conference on Computing Education

Research (Koli Calling ’10), pp. 86-93.

[4] S. C. Shaffer. 2005. Ludwig: An Online Programming Tutoring and

Assessment System, ACM SIGCSE Bulletin, Vol. 37, No. 2, (2005), pp. 56-

60.

[5] G. Tremblay and E. Labonte. 2003. Semi-Automatic Marking of Java

Programs using JUnit”, In Proceeding of International Conference on

Education and Information Systems: Technologies and Applications

(EISTA ’03), pp. 42-47.

[6] D. Jackson and M. Usher. 1997. Grading Student Programs using ASSYST,

In Proceedings of the 28
th

 SIGCSE Technical Symposium on Computer

Science Education, pp. 335–339.

[7] M. Luck and M. S. Joy. 1999. Secure On-line Submission System, Journal

of Software – Practise and Experience, Vol. 29, No. 8, pp. 721-740.

[8] M. Blumenstein, S. Green, A. Nguyen and V. Muthukkumarasamy. 2004.

GAME: A Generic Automated Marking Environment for Programming

Assessment, In Proceedings of the International Conference on Information

Technology: Coding and Computing (ITCC’04), Vol. 2, pp. 212-216.

[9] L. Malmi, V. Karavirta, A. Korhonen, J. Nikander, O. Seppala and P. Silvasti.

2004. Visual Algorithm Simulation Exercise System with Automatic

Assessment: TRAKLA2, Informatics in Education, Vol, 3, No. 2, pp. 267-

288.

[10] M. Choy, U. Nazir, C. K. Poon and Y. T. Yu. 2005. Experiences in Using an

Automated System for Improving Students’ of Computer Programming,

Lecture Notes in Computer Science Learning. Springer Berlin/ Heidelberg,

pp. 267 – 272.

[11] N. Truong, P. Bancroft and P. Roe. 2005. Learning to Program Through the

Web, ACM SIGCSE Bulletin, Vol. 37, No. 3, pp. 9-13.

[12] C. A. Higgins, G. Gray, P. Symeonidis, and A. Tsintsifas. 2006. Automated

61 Designing a Test Set for Structural Testing

Assessment and Experiences of Teaching Programming, Journal of

Educational Resources in Computing, Vol. 5, No. 3, Article 5.

[13] J. Baldwin, E. Crupi and T. Estrellado. 2006. WeBWork for Programming

Fundamentals, In Proceedings of the 11th Annual SIGCSE Conference on

Innovation and Technology in Computer Science Education, Bologna, Italy,

pp. 361-361.

[14] B. Auffarth, M. Lopez-Sanchez, J. C. Miralles, A. and Puig. 2008. System for

Automated Assistance in Correction of Programming Exercises (SAC), In

Proceedings of the fifth CIDUI - V International Congress of University

Teaching and Innovation.

[15] G. Tremblay and E. Labonte. 2003. Semi-Automatic Marking of Java Programs

using JUnit, In Proceeding of International Conference on Education and

Information Systems: Technologies and Applications (EISTA ’03), Orlando,

Florida, pp. 42-47
[16] A. Nunome, H. Hirata, M. Fukuzawa and K. Shibayama. 2010. Development

of an E-learning Back-end System for Code Assessment in Elementary

Programming Practice, In Proceeding of the 38
th

 Annual Fall Conference on

SIGUCCS, Norfolk, VA, USA, pp. 181-186.

[17] R. Queiros and J. S. Leal. 2012. PETCHA- A Programming Exercises

Teaching Assistant, In Proceeding of the 17
th

 ACM Annual Conference on

Innovation and Technology in Computer Science Education (ITiCSE’12),

Haifa, Israel, pp. 192-197.

[18] F. A. Shamsi and A. Elnagar. 2012. An Intelligent Assessment Tool for

Students’ Java Submissions in Introductory Programming Courses, Journal

of Intelligent Learning Systems and Applications, Vol. 4, No. 1, pp. 59-69.

[19] M. Sherman, S. Bassil, D. Lipman, N. Tuck and F. Martin. 2013. Impact of

Auto-Grading on an Introductory Computing Course, Journal of Computing

Sciences in Colleges, Vol. 28, No. 6, pp. 69-75.

[20] L. Malmi, R. Saikkonen and A. Korhonen. 2002. Experiences in Automatic

Assessment on Mass Courses and Issues for Designing Virtual Courses, In

Proceedings of The 7
th

 Annual Conference on Innovation and Technology in

Computer Science Education (ITiCSE’ 02), Aarhus Denmark, pp. 55-59.

[21] H. D. Chu, J. E. Dobson and I. C. Liu. C. 1997. FAST: A Framework for

Automating Statistical-based Testing, Software Quality Journal, Vol. 6, No.

1, pp. 13-36.

[22] L. A. Clarke. 1976. A System To Generate Test Data and Symbolically

Execute Programs, IEEE Transaction on Software Engineering., SE-2(3), pp.

215-222.

[23] N. Gupta, A. P. Mathur and M. L. Soffa. 1998. Automated Test Data

Generation Using an Iterative Relaxation Method, ACM SIGSOFT Software

Engineering Notes, Vol. 23, No. 6, pp. 231-245.

[24] R. P. Pargas, M. J. Harrold and R. R. Peck. 1999. Test-Data Generation Using

Genetic Algorithms, Journal of Software Testing, Verification and Reliability,

Vol. 9, No. 4, pp. 263-282.

Rohaida Romli et al. 62

[25] J. Offutt, S. Liu, A. Abdurazik and P. Ammann. 2003. Generating Test Data

from State-Based Specifications, Software Testing, Verification And

Reliability, Vol. 13, pp. 25–53.

[26] K. Z. Zamli, N. A. M. Isa, M. F. J. Klaib and S. N. Azizan. 2007. Tool for

Automated Test Data Generation (and Execution) Based on Combinatorial

Approach, International Journal of Software Engineering and Its

Applications, Vol. 1, No. 1, pp. 19-36.

[27] M. Alshraideh, L. Bottaci and B. A. Mahafzah. 2010. Using program data-

state scarcity to guide Automatic Test Data Generation, Software Quality

Journal, Vol. 18, No.1, pp. 109-144.

[28] Y. Zhang, D, Gong and Y. Luo. 2011. Evolutionary Generation of Test Data

for Path Coverage with Faults Detection, In Proceeding of the 2011 Seventh

International Conference on Natural Computation (ICNC), Vol. 4, pp. 2086-

2090.

[29] P. McMinn, M. Harman, K. Lakhotia, Y. Hassoun and J. Wegener. 2012.

Input Domain Reduction through Irrelevant Variable Removal and Its Effect

on Local, Global, and Hybrid Search-Based Structural Test Data Generation,

IEEE Transactions on Software Engineering, Vol. 38, No. 2, pp. 453-477.

[30] T. Benouhiba and W. Zidoune. 2012. Targeted adequacy criteria for search-

based test data generation, In Proceeding of 2012 International Conference on

Information Technology and e-Services (ICITeS’12), Sousse, Tunisia, pp. 1-

6.

[31] Z. Shukur, Z., R. Romli and A. B. Hamdan. 2005. Skema Penjanaan Data dan

Pemberat Ujian Berasaskan Kaedah Analisis Nilai Sempadan (A Schema of

Generating Test Data and Test Weight Based on Boundary Value Analysis

Technique), Technology Journal, Issue 42(D), June 2005, pp. 23-40.
[32] P. Ihantola. 2006. Automatic Test Data Generation for Programming

Exercises with Symbolic Execution and Java PathFinder, Master Thesis of

Helsinki University of Technology, Finland.

[33] N. Tillmann, J. D. Halleux, T. Xie, S. Gulwani and J. Bishop. 2013. Teaching

and Learning Programming and Software Engineering via Interactive

Gaming, In Proceedings of the 2013 International Conference on Software

Engineering (ICSE’13), San Francisco,CA, USA, pp. 1117-1126.

[34] M. Guo, T. Chai and K. Qian. 2010. Design of Online Runtime and Testing

Environment for Instant Java Programming Assessment, In Proceeding of 7
th

International Conference on Information Technology: New Generation (ITNG

2010), Las Vegas, NV, pp. 1102-1106.

[35] Z. Cheng, R. Monahan and A. Mooney. 2011. nExaminer: A Semi-automated

Computer Programming Assignment Assessment Framework for Moodle, In

Proceedings of International Conference on Engaging Pedagogy 2011

(ICEP11) NCI, Dublin, Ireland, pp. 1-12.

[36] S. H. Edwards. (2003). Improving Student Performance by Evaluating How

Well Student Test Their Own Programs, Journal on Educational Resources in

Computing (JERIC), Vol. 3, No. 3, pp. 1-24.

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6022397&contentType=Conference+Publications&searchField%3DSearch_All%26queryText%3Dtest+data+generation
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6022397&contentType=Conference+Publications&searchField%3DSearch_All%26queryText%3Dtest+data+generation
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6022397&contentType=Conference+Publications&searchField%3DSearch_All%26queryText%3Dtest+data+generation
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6012803
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=5710949&contentType=Journals+%26+Magazines&pageNumber%3D3%26searchField%3DSearch_All%26queryText%3Dtest+data+generation
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=5710949&contentType=Journals+%26+Magazines&pageNumber%3D3%26searchField%3DSearch_All%26queryText%3Dtest+data+generation
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=32
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6216624&contentType=Conference+Publications&pageNumber%3D3%26searchField%3DSearch_All%26queryText%3Dtest+data+generation
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6216624&contentType=Conference+Publications&pageNumber%3D3%26searchField%3DSearch_All%26queryText%3Dtest+data+generation
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6216624&contentType=Conference+Publications&pageNumber%3D3%26searchField%3DSearch_All%26queryText%3Dtest+data+generation
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6216624&contentType=Conference+Publications&pageNumber%3D3%26searchField%3DSearch_All%26queryText%3Dtest+data+generation

63 Designing a Test Set for Structural Testing

[37] G. Fischer and J. W. Gudenberg. 2006 Improving the Quality of Programming

Education by Online Assessment, Proceedings of the 4
th

 International

Symposium on Principles and Practice of programming in Java, Mannheim,

Germany, pp. 208-211.

[38] O. Gotel, C. Scharff and A. Wildenberg. 2007. Extending and Contributing to

an Open Source Web-Based System for the Assessment of Programming

Problems, In Proceedings of the 5
th

 International Symposium on Principles

and Practice of Programming in Java (PPPJ’07), Lisboa, Portugal, pp. 3-12.

[39] F. Jurado, M. Redondo and M. Ortega. 2012. Using Fuzzy Logic Applied to

Software Metrics and Test Cases to Assess Programming Assignments and

Give Advice, Journal of Network and Computer Applications, Vol. 35, No. 2,

pp. 695-712.

[40] E. L. Jones. 2001. Grading Student Programs- A Software Testing Approach,

Journal of Computing Sciences in Colleges, Vol. 16, No. 2, pp. 185-192.

[41] J. Isong. 2001. Developing An Automated Program Checker, Journal of

Computing Sciences in Colleges, Vol. 16, No. 3, pp. 218-224.

[42] K. A. Foster. 1980. Error Sensitive Test Cases Analysis (ESTCA), IEEE

Transactions on Software Engineering, SE-6 (3), pp. 258-1980.

[43] R. Romli, S. Sulaiman and K. Z. Zamli. 2011. Test Data Generation in

Automatic Programming Assessment: The Design of Test Set Schema for

Functional Testing, In Proceeding of 2
nd

 International Conference on

Advancements in Computing Technology (ICACT’11), Jeju Island, South

Korea, pp. 1078-1082.

[44] D. S. Malik and R. P. Burton. 2009. Java Programming: Guided Learning

with Early Objects, Course Technology, Booston USA.

[45] J. Lewis, P. DePasquate and J. Chase. 2008. Java Foundations: Introduction

to Program Design and Data Structures, Pearson Education, Inc, USA.

[46] D. Y. Liang. 2009. Introduction to JAVA Programming, 7
th

 Edition, Pearson

Education Inc., New Jersey.

[47] J. W. Howden. 1975. Methodology for Generation of Program Test Data,

IEEE Transactions on Computers, C-24 (5), pp. 554-560.

[48] J. R. Fraenkel and N. E. Wallen. 2000. How to Design and Evaluate

Research in Education, 4
th

 Edition, McGraw-Hill Companies, Inc, U.S.A.

[49] R. Romli, S. Sulaiman and K. Z. Zamli. 2011. Current Practices of

Programming Assessment at Higher Learning Institutions, Part 1, CCIS 179,

Springer Berlin/Heidelberg, pp. 471-485.

[50] B. W. Boehm, J. R. Brown and M. Lipow. 1976. Quantitative Evaluation of

Software Quality, In Proceedings of the 2
nd

 Iinternational Conference on

Software Engineering (ICSE ’76), U.S.A., pp. 592–605.

[51] R. A. DeMillo and A. J. Offutt. 1991. Constraint-Based Automatic Test Data

Generation, IEEE Transactions on Software Engineering, Vol. 17, No. 9, pp.

900-910.

[52] J. Lewis, P. DePasquate and J. Chase. 2008, Java Foundations: Introduction

to Program Design and Data Structures, Pearson Education, Inc, USA.

Rohaida Romli et al. 64

[50] D. Jackson. 1996. A Software System for Grading Student Computer

Programs, Computers and Education, 27 (3-4), pp. 171-180.

[53] Z. Shukur. 1999. The Automatic Assessment of Z Specification, PhD Thesis.

University of Nottingham, UK.

[54] C. A. Higgins, P. Symeonidis and A. Tsintsifas. 2002. The Marking System

for CourseMaster, In Proceedings of the 7
th

 Annual Conference on

Innovation and Technology in Computer Science Education (ITiCSE ’02),

Aarhus, Denmark, pp. 46-50.

[55] D. J. Malan. 2013. CS50 Sandbox: Secure Execution of Untrusted Code, In

Proceedings of the 44
th

 SIGCSE Technical Symposium on Computer

Science Education (SIGCSE ‘13). Denver, CO, pp. 141-146.

[56] N. Tillmann and J. D. Halleux. 2008. Pex-white Box Test Generation for

.NET, Tests and Proofs, Lecture Notes in Computer Science, Vol. 4966, pp.

134-153.

[57] J. B. Goodenough and S. L. Gerhart. 1975. Towards a Theory of Test Data

Selection, In Proceedings of the International Conference on Reliable

Software, New York, USA, pp. 493-510.

[58] P. McMinn. 2004. Search-based Software Test Data Generation: A Survey,

Software Testing, Verification & Reliability, Vol. 14, No. 2, pp. 105-156.

[59] R. Romli, S. Sulaiman and K. Z. Zamli. 2010. Automatic Programming

Assessment and Test Data Generation: A Review on Its Approaches, In

Proceeding of 2010 International Symposium on Information Technology

(ITSim’10), Kuala Lumpur, M’sia, 2010, pp. 1186-1192.

