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Abstract 

This paper presents a new distributed test suite generation for t-way 
testing, called TS_OP, using Map and Reduce software framework 
based on tuple space technology environment. TS_OP takes a one-
parameter-at-a-time strategy and is capable of supporting high 
interaction strength (i.e. t>5). Internally, TS_OP coordinates and 
distributes the test case generation workload amongst participating 
workstations. An encouraging result is obtained from experimentation 
on the optimality of test suite size generated and on the speedup gain in 
multiple machine environments. Benchmarking studies in term of size 
of generated test suite against existing parameter based strategies (i.e. 
IPOG, MIPOG, IPOG-D, IPOG-F and IPOG-F2) indicate that TS_OP 
gives competitive results. 
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1      Introduction 

Nowadays, most of available t-way (where t indicates the interaction strength) testing 

strategies for software interaction testing were implemented on a standalone machine 

and cannot be extend to work on multiple machine environments. However, the 

computational power and memory space of a standalone workstation appear to be 

insufficient when dealing with large input parameter and high interaction strength. In 

this case, the test generation time can potentially take days to complete due to high 

volume of data and intense computational works. 

Moreover, for large and complex real software system, the sampling search space 

as well as the interaction between parameter values of higher order t-way is likely to 

be huge. The resultant number of test case in test suite also increases exponentially as 

the value of interaction strength, t increases. Therefore, considering a higher order t-

way test suite generation for large input parameter potentially require high 

computational power and large memory space.  

In order to address the aforementioned issues, a new distributed t-way test suite 

generation strategy is been developed, called TS_OP, capable of distributing the 

computing work among network of participating workstations. Here, high level APIs 

for the Map and Reduce mechanism on Tuple Space middleware (i.e. GigaSpaces) 

are employed to distribute the computing work using the tuple space as a transport 

layer. While running in multiple machines environments, the memory resources from 

network of workstations are combined so as to garner the computational power from 

the connected workstations to perform the required computations. 

This paper presents a distributed t-way test suite generation using Tuple Space 

technology. The remainder of the paper is organized as follows. Section 2 gives some 

insight on recently published related works on test suite generation strategies. Section 

3 describes the design and implementation approach for a distributed TS-OP on 

single machine environment and multi machine environment. Section 4 discusses the 

experimental result of the developed strategy in term of speedup gain and comparison 

with other existing strategies. Finally, section 5 draws our conclusions and point out 

the ideas for future extension of this work. 

2      Related Work 

In line with the scope of this paper, we review the existing literature based on the 

pure computational approach. For pure computational algorithm approach, the t-way 

test suite generation strategy can be divided into two main categories known as “one-

test-at-a-time” strategy and “one-parameter-at-a-time” strategy. As for “one-

parameter-at-time” strategy, the main example is IPOG[1] which support t-way 
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testing. In this strategy, a t-way test suite for the first t parameters is generated, and 

then extends each test case in the test suite to cover for the first t+1 parameters in 

horizontal extension phase. All the test cases in the test suite are extended with a new 

parameter value that covers maximum uncovered interaction elements. IPOG utilized 

the greedy search technique to calculate maximum interaction element combinations 

coverage. After all test cases are extended and there are still uncovered interaction 

elements then the vertical extension is required. In vertical extension, a new test case 

is added into the test suite to cover for the uncovered interaction element 

combination. After the entire interaction elements are covered, the vertical extension 

is completed. The partially built test suite is extended by adding a new parameter 

until all parameter in the system are covered. 

A number of variants have also been developed to improve the IPOG’s 

performance within ACTS tool [2-4]. These variants including: IPOG-D [5], IPOG-

F[6], IPOG-F2[6], MIPOG, G_MIPOG and MC-MIPOG. IPOG-D is a deterministic 

strategy that combines the IPOG strategy with a recursive D construction to minimize 

the search space during generation of the test suites. Although IPOG-D can generate 

the test suite faster than IPOG, their test size usually bigger than IPOG. Both IPOG-F 

and IPOG-F2 are non-deterministic strategies with faster test generation time 

compared to IPOG. In general the size of test suite generated by both strategies is 

competitive as compared to IPOG. Although both strategies can support uniform and 

mixed input parameter setting, the test size optimality seem do not extend to the 

mixed input parameter value and IPOG seems to do better with these situation. 

Unlike IPOG-F, IPOG-F2 is implemented with a heuristic search for horizontal 

growth algorithm thus permits faster test generation time as compared to IPOG-F.  

MIPOG strategy is a deterministic strategy (i.e. each runs will produce a same test 

suite size. Unlike IPOG, in horizontal extension, the MIPOG strategy optimizes the 

extended test case by selecting a value that covers the maximum number of 

uncovered interaction element combinations. Also, MIP*OG optimizes the don’t care 

value by means of searching of uncovered interaction element that can be combined 

with this test case during horizontal extension. In vertical extension, MIPOG creates a 

new test case by searching for a combination of interaction elements that covered the 

most uncovered t-way combinations. This step, while improving the test suite size, 

also increases the overall test generation time of MIPOG. Both G_MIPOG and MC-

MIPOG are built based on sequential MIPOG strategy with parallel processing of the 

test suite generation work. G_MIPOG is implemented on a grid network while MC-

MIPOG is run on a multicore system. Both strategies support higher order of t for test 

suite generation and can produce a smaller test suite as compare to others variant of 

IPOG.  
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Another category is “one-test-at-a-time” strategy, the typical example is 

Automatic Efficient Test Generator (AETG) which builds a test suite using greedy 

search technique to generate a complete test case iteratively until all the interaction 

element combinations are covered. AETG produce a non-deterministic test suite 

solution due to their random selection of next parameter order. On the other hand, it 

does produce a quite competitive and optimal number of test cases due to selection of 

the best test case from selection of 50 candidate test cases in one test case generation 

iteration.  

Others example of strategy that lie in the same group as AETG are TCG[7], Dens, 

ITCH[8], TVG[9], PICT[10] and Jenny[11]. In TCG, a fixed rule of test case 

selection is used, thus produce a deterministic solution. In Dens, Bryce et al develop a 

higher strength test suite generation using greedy algorithm to select the parameter 

value based on their density value. Due to random insertion of first value into the test 

case, the test case generated was no longer deterministic. ITCH is an IBM’s 

Intelligent Test Case Handler that uses a combinatorial approach based on exhaustive 

search to generate the test case and required a substantial time to complete. As for 

TVG and Jenny, both support t-way testing but there are only limited information 

regarding both strategy implementations in written literature. Both tools can be 

downloaded and provide an executable source code for free at their respective 

websites. 

Finally, in their work, Younis et al[12] demonstrates that MC-MIPOG performs 

better than other t-ways testing tool that based on “one-test-at-a-time” strategy, both 

in terms of test generations time and the sizes of the generated test suites. For these 

reason we have adopted the “one-parameter-at-time” strategy as our basis of design 

approach with distributed test suite generation across a multiple machines 

environments and MC-MIPOG itself as our benchmark. 

 

3      Distributed TS_OP Design 

In this section, the design of distributed t-way test suite generation strategy based on 

“one-parameter-at-a-time” strategy called TS-OP strategy is explained. The strategy 

is implemented using Map and Reduce mechanism on network of workstations using 

Tuple Space technology middleware known as GigaSpaces XAP 8.0.[13] In this 

strategy, a master process is called TS_OP Feeder Processing Unit (PU) and the 

worker process is called TS_OP Processor PU.  

Firstly, an application model of t-way test suite generation is designed and 

implemented comprising of TS_OP Feeder PU and TS_OP Processor PU as shown in 

Fig. 1. The Feeder PU is responsible to feed all data into each partition space using 
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the Input Data Loader services and controls test suite generation as well as delegates 

the final TS using Test Data Feeder services. The TS_OP Processor PU is used to 

generate the test case and calculate the interaction coverage of generated test case by 

using IECProcessor services. All the services are loosely connected to all the data in 

space (i.e. t, vi, ParmSet and ieSet). All the PUs are wired together using a Spring 

configuration file, pu.xml.  

 

 
 

Fig. 1: A model of one TS_OP Feeder PU and one TS_OP Processor PU. 

Using above single machine model, a distributed TS_OP strategy is designed and 

implemented. The first step in distributed TS_OP strategy is to identify the number of 

worker process or TS_OP Processor PU. In TS_OP strategy, the number of worker 

process or TS_OP Processor PU depends on the highest number of parameter value 

among given input parameter.  
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Next step is to identify the distributed data and the common data at each partition 

space. The distributed data in TS_OP strategy on each partition space is a one 

uniquely assigned input parameter value, vi. This unique value vi is used to generate 

the corresponding ieSet for that partition space. Hence, the interaction elements exist 

in each partition are ensured to be different from others partition space resulting from 

the assigned parameter value. The common data in all partition spaces are the 

interaction strength, t and the input parameter, ParmSet. All data is constructed as 

Plain Old Java Object (POJO) data and stored in all the partition space. 

The third step in distributing the TS_OP strategy is to identify all tasks running on 

both TS_OP Feeder PU and TS_OP Processor PU. All task services running on the 

TS_OP Feeder PU are considered as a master task whereas all tasks running on 

TS_OP Processor PU are considered as a distributed task. All master tasks that are 

running on the TS_OP Feeder PU are preload of the interaction strength, t, the input 

parameter; ParmSet and the unique value, vi to all partition space, generation of the t-

way test suite for the first t parameter, control of test generation and remotely 

execution of all distributed task on TS_OP Processor PU, selection and storage of 

selected test case in final test suite, TS, deletion of the interaction element covered by 

selected test case in all partition space, removal of redundant test case after a vertical 

extension and display and storage of the final test suite into a log file. 

The distributed task services are the tasks that have been remotely executed by 

TS_OP Feeder PU and interact only with distributed data at their respective partition 

spaces. The synchronous mode of space based remoting service, called Map and 

Reduce mechanism, is utilized by TS_OP Feeder PU to simultaneously invoke the 

distributed task service on all TS_OP Processor PU. A distributed processing is 

achieved while running in this mode. Five tasks are running on TS_OP Processor as 

distributed tasks:- 

(i) Generation of the interaction element data using assigned unique value, vi. 

(ii) Generation of the extended test case by inserting the assigned unique value, vi to 

that test case. 

(iii) Generation of the extended test case with don’t care by merging with possible 

interaction element combinations 

(iv) Generation of the complete test case by merging between possible interaction 

element combinations 

(v) Calculation of the maximum interaction coverage value for the test case 

generated, selection of test case with highest value of maximum interaction 

coverage and return selected test case with maximum interaction coverage to 

TS_OP Feeder PU via a Reducer. 

Finally, the distributed TS_OP strategy is deployed into network of workstations 

with distributed data. The TS_OP strategy is implemented on partitioned topology 
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using the GigaSpaces Service Grid. For a single machine environment, the TS_OP 

Feeder PU and all TS_OP Processor PU with their collocated partition space run on 

different GSC within a same machine. While for multiple machine environments, 

TS_OP Feeder PU and each TS_OP Processor PU with their respective partition 

spaces are distributed across several different physical machines in different GSC. 

Here, the multiple machine environments are capable to harness the combined 

memory resources and computing power of connected workstations.  

As for multiple machine environments as shown in Figure 2, the TS_OP Feeder 

PU has two collocated services, Input Data Loader services and Test Data Feeder 

services in GSC 4 on machine 4. The complete algorithm for the services running in 

TS_OP Feeder PU is shown in Fig. 3. As for all three TS_OP Processors PUs, their 

collocated partition spaces are running on machine 1, 2 and 3 respectively. Summing 

up, the complete algorithm for the IECProcessor service running in TS_OP Processor 

PU is shown in Fig. 4. 

 

Fig. 2: Grid Service Manager managing 4 Grid Service Containers for multiple 

machine environments with 1 TS_OP Feeder PU and 3 TS_OP Processor PU. 
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Fig. 3: TS_OP Feeder PU Algorithm.         Fig. 4: TS_OP Processor PU Algorithm 

 

4      Evaluation 
 

To evaluate the performances of the developed strategy, a number of 

experimentations were undertaken. Here, our evaluation has two main aims. Firstly, 

we want to investigate the scalability performance of distributed strategy in term of 

speedup and test size ratio between single machine and multiple machine 

environments. Secondly, a comparison in term of the generated test suite size of the 

developed distributed strategy against existing parameter based strategies.  

 

4.1      Scalability analysis on speedup 

To measure the speedup gain of developed distributed strategy, network of 5 identical 

and homogeneous workstations with the same operating system (Window XP), 

processing power (HP PC Pentium Core 2 2.13GHz) and main memory capacity 

Algorithm  TS_OP Processors PU 

begin 

1. initialize as one PU with dedicated partition space; 

2. read t, ParmSet from their dedicated partition space;  

3. read assigned value, vi on their partition space; 

4. for  parameter Pi, i =3,4,…,n do 

            { horizontal extension for parameter Pi=v } 

 5.      if receive command generateIE and Pi from TS_OP  

               Feeder through space based remoting; 

6.          generate t-way ie between Pi and{P1…Pt} using  

       assigned parameter value and stored into in ieSet   

  TS_OP Processors partition;   

 7.         let ieSet be the set of all pair combinations of values 

 between Pi and each  of P1,  P2,…,Pi-1; 

  8.      if receive command construct test case and τ from 

               TS_OP Feeder through space based remoting; 

      9.          if (τ  not contains don’t care) 

    10.              insert assigned value (v) into τ; 

    11.              calculate the maxIE;  

    12.              send τ’ and maxIE to TS_OP Feeder via reducer; 

    13.      else  merge τ with possible interaction element 

                        combination in ieSet into τo ; 

    14.               calculate the maxIE;  

    15.              send τo and maxIE to TS_OP Feeder via reducer; 

                    { vertical extension for parameter Pi } 

    16.      if receive command calculate IEC Max from TS_OP  

                   Feeder through space based remoting; 

    17.          while (ieSet is not empty) do  

    18.                merge possible interaction element  

                         combination in ieSet into tsm ; 

    19.                calculate the maxIE;  

    20.            send tsm and maxIE to TS_OP Feeder via reducer; 

end  

 

Algorithm TS_OP Feeder PU( t, ParmSet) 

begin 

     1. initialize test suite TS to be an empty set; 

     2. denote the parameters in ParmSet, as P1, …, and Pn; 

     3. send ParmSet and t to GigaSpaces; 

     4. assign unique values, vi to each TS_OP Processors;  

        { for the first t parameters } 

     5. add into TS a exhaustive test case for first t parameters; 

     6. for  parameter Pi, i =t+1, …,n do 

     begin 

           { horizontal extension for parameter Pi } 

7.         send command generateIE to all TS_OP Processor 

            using space based remoting and stored in ieSet;      

 8.            for each test τ = (v1, v2, …, vi-1) in test suite TS do 

 9.                  send command construct test case and τ  to all 

                      TS_OP processor using space based remoting;  

10.                 wait for all TS_OP Processor send τ’ with maxIE; 

11.                  reducer choose the τ’ with highest maxIE; 

12.                  add selected test case  τ’ to TS;  

13.                  delete all covered interaction element in ieSet ; 

              { vertical extension for parameter Pi } 

14.             while (ieSet is not empty) do  

      15.                 send command calculateIECMax to all TS_OP 

                            Processor to merge possible interaction element 

                            combination into tsm; 

16.                  reducer choose the tsm with highest maxIE; 

17.                  add selected test case  tsm to TS’;  

     18.                  delete all covered interaction element in ieSet ; 

     19.            remove redundant tsm in TS’ 

     20.  add temporary TS’ to TS 

           end 

     21.  return TS; 

     end 
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(4GB of RAM) interconnected using a 2950 Cisco switch. The network of 

workstation is implemented on a star topology with the GigaSpaces middleware 

running on each workstation. The input parameter setting is uniform input parameter 

of fixed parameter, p=10 with parameter value, v=5, 5
10

 and interaction strength of 

t=4.All of these experiments were carried out on single and multiple machine 

environments ranging from 2 to 5 machine. All results of the test size and test 

generation time between each machine environment are recorded in Table 1. Here, 

test size ratio is used to identify the variation in test suite size for each machine 

environment. The test size ratio is deduced by dividing the test size on their current 

machine setting with the test size on maximum deployable machines. 

 
Table 1: The test size ratio and speedup for v=5 and p=10 with interaction strength 

t=4 on five different machines. 

 

Number 

of 

Machines  

TS_OP 

 
Test Size Time(s) 

Test Size 

Ratio 
Speedup 

1 1781 9607.28 1.002 1.000 

2 1787 2626.16 1.006 3.658 

3 1783 2405.70 1.003 3.994 

4 1777 2208.22 1.000 4.351 

5 1777 2108.17 1.000 4.557 

 

Test generation time is used to gauge the speedup gained in different machine 

environment. Here, the speedup is deduced from ratio of test generation time of 

single machine per test generation time of multi machines. These results recorded are 

best representative for the minimum number of test size from 10 simulations run for 

each setting.  

From Table 1, it is evident that variations in the test size for uniform input 

parameter value while running on different number of machine are small as indicated 

by the test size ratio.The differences in term of test size is due to non-deterministic 
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nature of the strategy resulting in different test sizes for each simulation run. There 

are 3 reasons that lead to this behavior. Firstly, the randomization is used to break ties 

in test case selection among randomly returned test cases from TS_OP Processors 

with same interaction coverage value in a reducer. Secondly, the randomization is 

also used to break ties in greedy selection among iteratively generated test case with 

same interaction coverage value in TS_OP Processor during horizontal or vertical 

extension. Thirdly, the randomization nature of interaction elements data sequence 

polled from space for test case generation. The random sequence of interaction 

elements is used to merge all possible interaction elements between each other to 

produce a new test case in TS_OP Processor during vertical extension.Overall, the 

distribution of interaction element data and test suite generation work among TS_OP 

Processor partition space in multiple machine environments do not degrade the 

optimality of the test suite solution.  

Using data from the Table 1, the speedup versus number of machine is plotted as 

shown in Figure 5. The increment of speedup value between 2 to 5 machines is only 

small as compare to the increment of speedup value between 1 and 2 machines 

environment. This happened due to high CPU and cache memory usage while 

running in single machine environment. Most of the main memory is used to store the 

interaction element in shared memory space during test case generation. As we 

distributed the computing work to others machine, the main memory utilization per 

each machine become less. Thus permit faster computation in all available CPUs and 

resulted in faster time for the test case generation multiple machines. 
 

 
 

Fig. 5: The speedup for v=5 and p=10 with t=4 on five different machines. 
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4.2      Comparison with parameter based strategy 

To benchmark the performance of TS_OP against other existing strategies, the 

TS_OP is compare with parameter based strategy such as MIPOG, IPOG, IPOG-D, 

IPOG-F and IPOG-F2. The main goal is to show that TS_OP t-way “one-parameter-

at-time” strategy is sufficiently competitive as compared to other parameter based 

strategy in term of the generated test suite size. Furthermore, to prove that 

distribution of interaction elements data and the computing work among connected 

workstation does not compromised the optimality of test size generated in relation to 

other existing work. Here, a common configuration system, the TCAS module, an 

aircraft collision avoidance system developed by the Federal Aviation Administration 

is adopted as a case study similar to other related works [14]. All the test size results 

for TCAS value are obtained from [12] for MIPOG, IPOG, IPOG-D, IPOG-F and 

IPOG-F2. The best solution is bold font with less shaded area and the second best 

solutions in term of most optimum test suite size as shown in the darker shaded area 

with italic font. The experiment result for TCAS input parameter value is shown in 

Table 2. As seen in Table 2, for t=2 all strategies except IPOG-D produce a minimum 

test size of 100. As for TS_OP strategy, a minimum test suite size is produced for two 

inputs setting with interaction strength, t=2 and 5. As for other input setting of t=3, 4 

and 6; the MIPOG strategy outperforms others strategies in term of most optimum 

test size. 

Table 2: The comparison of TS_OP with other strategy for TCAS value with varying 

interaction strength from t=2 to 6. 
 

 TS_OP MIPOG IPOG IPOG-D IPOG-F IPOG-F2 

t Test 

Size 

Test  

Size 

Test 

Size 

Test  

Size 

Test  

Size 

Test  

Size 

2 100 100 100 130 100 100 

3 408 400 400 487 402 427 

4 1355 1265 1361 2522 1352 1644 

5 4166 4196 4219 5306 4290 5018 

6 11105 10851 10919 14480 11234 13310 

 

Despite producing non-deterministic test suite even with the same input 

parameters, TS_OP can still produce competitive test size as compared to others 

strategies. By running TS_OP many times and taking a minimum test size,TS_OP 

strategy is able to produce the most optimum test size as shown in Table 2 for 

interaction strength , t=2 and 5. 
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5      Conclusion 

This paper highlights a distributed strategy called TS_OP based on “one-parameter-

at-a-time” for t-way test suite generation on single and multiple machine 

environments using tuple space technology. All results demonstrate that the 

distribution of interaction element data and computing work among participating 

workstation does not compromise the optimality of test suite solution (i.e. minimally 

affect the test suite size). A small difference in term of test suite size in the TS_OP 

strategy resulted from the non-deterministic nature of the strategy (i.e. the 

randomization nature of test case selection among test case by the reducer and the 

randomization in greedy selection of test case with same interaction coverage during 

both horizontal and vertical extension by TS_OP Processor). 

The scalability analysis indicates that distribution of computing work for test suite 

generation across multi machine environments always give speedup as compared to 

single machine environment. This points out the applicability of tuple space 

technology as distributed shared memory platform for our application. Although the 

speedup does not increase linearly as compared to the number of the machine, a 

reasonable speedup is still obtained on multi machine environments. Comparative 

study between the TS_OP strategy with other strategies such as MIPOG, IPOG, 

IPOG-D, IPOG-F and IPOG-F2 indicates that the test suite size produced by TS_OP 

strategy is satisfactorily competitive in term of generating minimum test suite size. 

Further works will be carried out on implementation of the strategy on cluster 

machine with high RAM to provide low latency whilst generating the test suite. Other 

than cluster machine, the strategy can also be deploy in cloud computing 

environment.   
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