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Abstract 

      Given the large domain of inputs and possibly too many possible 
execution paths, the software is often tested using a sampled set of 
test cases. A variety of coverage criteria have been proposed to assess 
the effectiveness of the sampled set of test cases. As far as structural 
testing involving predicate evaluation is concerned, criteria 
exercising aspects of control flow, such as statement, branch and 
path coverage have been the most common. Although useful, these 
criteria are often susceptible to the problem of masking. Addressing 
this issue, this paper explores to adoption of MC/DC as the necessary 
criteria for structural testing. Additionally, this paper also highlights 
the current state-of-the-art and identifies the strengths and 
limitations of existing work. Complementing existing work and in 
line with the current trends, this paper justifies on the development 
of a Harmony Search based test generation strategy for satisfying the 
MC/DC criterion.  
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1      Introduction 

Software testing relates to the process of finding errors (i.e. sometimes involves 

executing the software of interest) and of validating the software/system against its 

specification [1].  Apart from reducing the risk of software failures, software testing 

gives a direct indication of quality (i.e. proving that the program is good or 

otherwise). 
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Given the large domain of inputs and possibly too many possible execution 

paths, the software is often tested using a sampled set of test cases. A variety of 

coverage criteria have been proposed to assess the effectiveness of the sampled set 

of test cases. As far as structural testing involving predicate evaluation is 

concerned, criteria exercising aspects of control flow, such as statement, branch 

and path coverage [2], have been the most common. At a glance, statement, 

decision and path coverage appear sufficiently effective exercising the various 

parts of the software implementation.  Nonetheless, a closer look reveals 

otherwise. Statement, branch, and path coverage are often susceptible to the 

problem of masking. Here, the usage of AND and OR operations to form 

compound predicates as the control flow for statement, branch and paths can 

potentially be problematic. Consider two predicates – (A or B) and (A and B) 

respectively. The predicate (A or B) always evaluates to true when either A is true 

(regardless of B) and vice versa. Similarly, the predicate (A and B) is always false 

when B is false (regardless of A) and vice versa. In this case, A and B are said to 

have masked each other. 

For small inputs, the problem of masking can be straightforwardly addressed 

by considering all exhaustive input combinations. Yet, for large inputs involving 

complex predicates, the number of exhaustive combinations can be prohibitively 

too many. Additionally, as the software is modified and new test cases are often 

added to the test suite, the test cases grow and the cost of regression testing kept 

increasing. To address the test-suite size problem within the context of structural 

testing, many researchers (e.g. [2],[3],[4], [5]) have started to advocate the usage 

of modified condition/decision coverage (MC/DC) criterion as a strategy to 

systematically minimize the number of test cases for testing. 

In a nut shell,  MC/DC is a white box testing criterion ensuring each condition 

within a predicate can independently influence the outcome of the decision - while 

the outcome of all other conditions remains constant [6]. In this manner, MC/DC 

criterion subsumes statements, decisions, and path coverage [2]. As the problem 

of test case generation fulfilling MC/DC criterion is NP complete, no single 

existing approach (see related work) can generate optimal set of test set, that is, 

with the minimum number of test cases for every predicate consideration 

especially involving large and complex expressions [2]. Furthermore, the process 

of finding a set of test cases to achieve MC/DC criterion is typically a labor-

intensive activity requiring much automation support. 

The rest of the paper is organized as follows. Section 2 illustrates an overview 

of Modified Condition/Decision Coverage. Section 3 elaborates the reflection on 

related works. Finally, section 4 provides some discussion and conclusion. 

2      Overview of Modified Condition/Decision Coverage 

As running example, consider the following if statements involving AND and OR 

operations (see Figure 1). For both AND and OR operations in Figure 1, decision 
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coverage is registered at 100% even without the need to change the value of y.  

Specifically, x is masking y and giving misleading coverage.  To illustrate further, 

consider the equivalent if statements for both AND and OR operation as shown in 

Figure 2. Given the same inputs for x and y (i.e. x=15, y =3 and x=5, y=3), there 

are parts of the program which has not been covered (as in shaded regions in 

Figure 2). 

Fig. 1. Masking Problem 
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Fig. 2. Equivalent if statements 

The main concerns here is on how to cover the uncovered path and hence 

eliminate masking problems for both AND and OR operations. Exhaustive 

combinations (often termed as multiple condition coverage (MCC)) are the most 

desirable alternatives. However, considering MCC is practically infeasible 

especially when the combinations are large. Here, the number of conditions grew 

with 2
n
 where n is the number of Boolean variables.  

Condition coverage (CC) and Condition/Decision coverage(C/DC) are also 

possible. CC dictates that every condition in a decision has taken all possible 

outcomes at least once. C/DC requires CC and also dictates the TRUE and 

FALSE decision outcome at least once.  Despite being useful, CC and C/DC does 

not consider independence as the criteria for selecting test cases. 

Summing up in Table 1, it is clear that MC/DC is the most viable alternative 

but with significantly reduced test size as compared to exhaustive combination, 

MCC.  Here, MC/DC dictates that each condition within a predicate can 

independently influence the outcome of the decision. MC/DC is a stricter form of 

decision coverage. For decision coverage, each decision statement must evaluate 

to TRUE on some execution of the program and must evaluate to FALSE on some 

execution of the program. MC/DC, however, requires execution coverage at the 

condition level. 
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Table 1: Types of Structural Coverage Adopted from Hayhurst et al [7] 

Coverage Criteria 
Decision 

Coverage 

Condition 

Coverage 

Condition/ 

Decision 

Coverage 

MC/DC 

Multiple 

Condition 

Coverage 

Every point of entry and 

exit in the program has been 

invoked at least once. 

 

√ √ √ √ √ 

Every decision in the 

program has taken all 

possible outcomes at least 

once. 

 

√  √ √ √ 

Very condition in a decision 

in the program has taken all 

possible outcomes at least 

once. 

 

 √ √ √ √ 

Every condition in a 

decision has been shown to 

independently affect the 

decision’s outcome. 

 

   √ √ 

Every combination of 

condition outcomes within a 

decision has been invoked at 

least. once 

    √ 

An MC/DC test predicates exist in pairs. Each one of the pair differs only by 

the Boolean value of one condition, but gives a different result for the decision 

statement. For AND operation, MC/DC pairs are {{F,T}, {T,T}}, {{T,F}, 

{T,T}}. As the entry {T,T} is redundant, the complete MC/DC compliant test 

predicate is reduced to {F,T}, {T,F} and {T,T}.  In similar manner, for OR 

operation, the MC/DC pairs are compliant test predicates are {{F,F}, {T,F}}, 

{{F,T}, {T,F}}. 

As the entry {T,F} is redundant, the complete MC/DC compliant test predicate 

is reduced to {F,F}, {F,T} and {T,F}.Converting the MC/DC compliant 

predicates into test cases values for AND and OR operation, Figure 3 revisits the 

masking problem in Figure 2. Here, the test cases fulfilling the MC/DC criterion 

are able to cover all the paths.      
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Fig.3. MC/DC Coverage 

 

3      Reflection on Related Work 

There is already a number of related works that deals with test case generation for 

MC/DC coverage.  Jones and Harrold [3] introduce two strategies for generating 

MC/DC compliant test cases. The first strategy is based on the breakdown 

algorithm whilst the second strategy is based on the prioritization algorithm. At 

the start, both strategies generate the exhaustive MC/DC pairs as the basis for 

selection. For the first strategy, the selection of the test candidates is based on 

iterative generation of essential test cases. Here, essential test cases are established 

by summing up contribution of each test case towards MC/DC coverage. In each 

iteration, the least contributing test case is systematically removed leaving only 

available for selection. For the second strategy, the selection of test candidates is 
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also done iteratively. In this case, in each iteration, the contribution for each 

candidate test case is prioritized based on greedy ordering, that is, to cover the 

most pairs. The iteration stops when no more pairs are available for selection. 

Although helpful, both strategies appear unsuitable for handling large predicates 

owing to the need to generate all exhaustive MC/DC pairs.   

In other work, Jun-Ru and Chin-Yu [4] usefully exploit n-cube graph in order 

to generate appropriate MC/DC compliant test data. In this case, the vertex of the 

cube represents the resultant boolean enumeration for predicates under evaluation. 

Each vertex is traversed and arranged and evaluated using Gray code sequence 

ordering until all the required sequences are covered. As the sequence of ordering 

for MC/DC pairs are non-unique (and not generalizabile to only Gray code 

sequence), this strategy appears not optimized as far as the number of test cases is 

concerned.   

Ghani and Clark [5] are perhaps the pioneer researchers that adopt optimization 

algorithm based on Simulated Annealing (SA) for MCC and MC/DC test 

generation. SA works based on the process of maximizing material’s crystal size 

via heating and slow cooling [9, 10]. The heating process excites the atom to 

move from its initial position (to avoid a local minima of internal energy) while 

the slow cooling process allows the atom to settle for lower internal energy 

configurations for better crystal size. Analogous to the physical process, SA based 

strategy starts with a randomly generated MC/DC pair of test cases (as initial 

state) and applies a series of transformations according to a pre-defined 

probability equation. Here, the probability equation depends heavily on parameter 

T (namely, the controlling temperature of the simulation) to simulate the heating 

and cooling process. 

Complementing the work from Ghani and Clark, Awedikian et al [2] adopt two 

optimization algorithms based on Hill Climbing (HC) and Genetic Algorithm 

(GA) respectively to generate MC/DC compliant test cases.  For HC, the 

algorithm starts by choosing a random test case as an initial solution. The quality 

of the test case is evaluated based on the defined fitness function. HC attempts to 

improve the current test case by moving to better points in a neighborhood of the 

current solution. This iterative process continues until a termination criterion. 

There are two termination conditions. First, for the given major clause, HC 

terminates if test case satisfying the MC/DC clause assignment are found. If after 

a fixed number of attempts, the algorithm is not able to satisfy the MC/DC major 

clause constraints, the search is stopped and another set of possible MC/DC 

assignments is selected. Concerning GA, the algorithm starts by creating an initial 

population of n test cases chosen randomly. Each chromosome represents a test 

case; genes are values of the input variables. In an iterative process, GA tries to 

improve the population from one generation to another. Test cases in a generation 

are selected according to their fitness in order to perform reproduction, that is, 

through crossover and/or mutation. Then, a new generation is constituted by the 

fittest test cases of the previous generation and the offspring obtained from 
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crossover and mutation. The iterative process continues until a stopping criterion 

is met. Here, two stopping criteria are defined. First, for the given major clause, 

GA terminates if test input data satisfying the MC/DC clause assignment are 

found. GA is also stopped when an upper limit in computation is reached. 

 

4     Analysis  

Based on the analysis in the previous sections, this section summarizes the 

description of existing MC/DC test generation strategies.  Specifically, Table 2 

depicts the merits and limitations of these strategies.  

 

Table 2: Analysis of the existing MC/DC coverage test case strategies 

Work Merits Limitations Other 

Observations 

Jones and Harrold [3] Developed two 

strategies: the 

first strategy is 

based on the 

breakdown 

algorithm whilst 

the second 

strategy is based 

on the 

prioritization 

algorithm.  

Both strategies 

can generate 

MC/DC 

compliance test 

cases number 

for small 

systems. 

Difficult to handle 

large predicates 

owing to the need to 

generate all 

exhaustive MC/DC 

pairs. 

Deterministic 

output 

Jun-Ru and Chin-Yu[4] Exploits the 

novel property 

of n-cube graph 

for MC/DC test 

generation. 

Complex 

implementation, 

hence, difficult to 

accommodate large 

predicates 

Deterministic 

output 
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Ghani and Clark [5] Adopts 

optimization 

algorithm based 

on Simulated 

Annealing (SA) 

Depending on the 

choices of initial 

value, SA can get 

stuck into local 

minimum 

Non-

deterministic 

output based 

on local 

search 

Awedikian et al [2] Adopts two 

optimization 

algorithms based 

on Hill 

Climbing (HC) 

and Genetic 

Algorithm (GA) 

respectively to 

generate 

MC/DC 

compliant test 

cases 

HC tends to get stuck 

into local minimum as 

it always uses the 

current best as its 

basis for the 

generation of its new 

neighbor. 

GA requires 

computationally 

intensive structure in 

terms of the need to 

frequently interact 

with peers and the 

environment in order 

to update and 

exchange information 

[11, 12]. 

Non-

deterministic 

output based 

on local 

search. 

 

Non-

deterministic 

output based 

on both local 

and global 

search 

although 

without 

memories of 

the previous 

search. 

Indeed, strategies based on optimization algorithms appear to be the trend for 

the future. However, there are still rooms for improvements particularly on 

improving the simplicity and scalability of the adopted strategies as well as 

reducing the proneness to local optima problem.  Additionally, adopting other 

competing optimization algorithm other than HC, SA, and GA might give rise to 

new perspectives on MC/DC test generation.  

Addressing the aforementioned issues and building from existing work, we are 

investigating the use of Harmony Search (HS) algorithm for our new MC/DC test 

generation strategy. Among the advantages of HS which justifies our choice 

include:  

 

• The musical improvisation analogy in HS is relatively appealing and 

straightforward compared to the existing AI-based algorithms behaviors.  

• HS requires only lightweight computation with small number of parameters 

that require tuning [12] 
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• HS offers good balance as far diversification (i.e., global investigation of 

solution space) and intensification (i.e., fine search around local optimal) are 

concerned [13].  

• HS performs well as compared to other AI-based algorithms for various 

engineering applications (refer to [14 - 18]). 

• HS is free from divergence [17]. 

 

5      Discussion and Conclusion 

To ensure the quality software that conforms to specifications, the software needs 

to be thoroughly tested. One key aspect to be tested is on structural testing. Here, 

like most testing endeavor, exhaustive structural testing is not always feasible as it 

consumes significant resources in term of costing and man power. 

Existing work on MC/DC for structural testing has been useful, but they are not 

without limitations. Our work strives to address the aforementioned limitations (as 

elaborated in Table 2). Summing up, our research questions are as follows: 

• How can the HS strategy decide on which combination of data values to be 

chosen over large combinatorial data sets? 

• How well does HS perform over other existing counter parts? 

• How effective is the MC/DC coverage for finding faults? 

• How can the MC/DC generation process be fully automated? 

 

Finally, to conclude, this paper has highlighted the need to support MC/DC in 

software testing. Additionally, this paper has also highlighted the current state-of-

the-art on existing work involving MC/DC and identifies novel areas for further 

research. 
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