

Int. J. Advance Soft Compu. Appl, Vol. 5, No. 3, December 2013

ISSN 2074-8523; Copyright © SCRG Publication, 2013

On Test Case Generation

Satisfying the MC/DC Criterion

Kamal Z. Zamli, AbdulRahman A. Al-Sewari, and Mohd Hafiz Mohd Hassin

Faculty of Computer Systems and Software Engineering

Universiti Malaysia Pahang

Pahang, Malaysia

e-mail:{kamalz, alsewari, hafizhassin}@ump.edu.my

Abstract

 Given the large domain of inputs and possibly too many possible
execution paths, the software is often tested using a sampled set of
test cases. A variety of coverage criteria have been proposed to assess
the effectiveness of the sampled set of test cases. As far as structural
testing involving predicate evaluation is concerned, criteria
exercising aspects of control flow, such as statement, branch and
path coverage have been the most common. Although useful, these
criteria are often susceptible to the problem of masking. Addressing
this issue, this paper explores to adoption of MC/DC as the necessary
criteria for structural testing. Additionally, this paper also highlights
the current state-of-the-art and identifies the strengths and
limitations of existing work. Complementing existing work and in
line with the current trends, this paper justifies on the development
of a Harmony Search based test generation strategy for satisfying the
MC/DC criterion.

 Keywords: MC/DC test generation, structural testing, optimization algorithms,
Harmony Search algorithm.

1 Introduction

Software testing relates to the process of finding errors (i.e. sometimes involves

executing the software of interest) and of validating the software/system against its

specification [1]. Apart from reducing the risk of software failures, software testing

gives a direct indication of quality (i.e. proving that the program is good or

otherwise).

105 On Test Case Generation

Given the large domain of inputs and possibly too many possible execution

paths, the software is often tested using a sampled set of test cases. A variety of

coverage criteria have been proposed to assess the effectiveness of the sampled set

of test cases. As far as structural testing involving predicate evaluation is

concerned, criteria exercising aspects of control flow, such as statement, branch

and path coverage [2], have been the most common. At a glance, statement,

decision and path coverage appear sufficiently effective exercising the various

parts of the software implementation. Nonetheless, a closer look reveals

otherwise. Statement, branch, and path coverage are often susceptible to the

problem of masking. Here, the usage of AND and OR operations to form

compound predicates as the control flow for statement, branch and paths can

potentially be problematic. Consider two predicates – (A or B) and (A and B)

respectively. The predicate (A or B) always evaluates to true when either A is true

(regardless of B) and vice versa. Similarly, the predicate (A and B) is always false

when B is false (regardless of A) and vice versa. In this case, A and B are said to

have masked each other.

For small inputs, the problem of masking can be straightforwardly addressed

by considering all exhaustive input combinations. Yet, for large inputs involving

complex predicates, the number of exhaustive combinations can be prohibitively

too many. Additionally, as the software is modified and new test cases are often

added to the test suite, the test cases grow and the cost of regression testing kept

increasing. To address the test-suite size problem within the context of structural

testing, many researchers (e.g. [2],[3],[4], [5]) have started to advocate the usage

of modified condition/decision coverage (MC/DC) criterion as a strategy to

systematically minimize the number of test cases for testing.

In a nut shell, MC/DC is a white box testing criterion ensuring each condition

within a predicate can independently influence the outcome of the decision - while

the outcome of all other conditions remains constant [6]. In this manner, MC/DC

criterion subsumes statements, decisions, and path coverage [2]. As the problem

of test case generation fulfilling MC/DC criterion is NP complete, no single

existing approach (see related work) can generate optimal set of test set, that is,

with the minimum number of test cases for every predicate consideration

especially involving large and complex expressions [2]. Furthermore, the process

of finding a set of test cases to achieve MC/DC criterion is typically a labor-

intensive activity requiring much automation support.

The rest of the paper is organized as follows. Section 2 illustrates an overview

of Modified Condition/Decision Coverage. Section 3 elaborates the reflection on

related works. Finally, section 4 provides some discussion and conclusion.

2 Overview of Modified Condition/Decision Coverage

As running example, consider the following if statements involving AND and OR

operations (see Figure 1). For both AND and OR operations in Figure 1, decision

Kamal Z. Zamli et al. 106

coverage is registered at 100% even without the need to change the value of y.

Specifically, x is masking y and giving misleading coverage. To illustrate further,

consider the equivalent if statements for both AND and OR operation as shown in

Figure 2. Given the same inputs for x and y (i.e. x=15, y =3 and x=5, y=3), there

are parts of the program which has not been covered (as in shaded regions in

Figure 2).

Fig. 1. Masking Problem

107 On Test Case Generation

Fig. 2. Equivalent if statements

The main concerns here is on how to cover the uncovered path and hence

eliminate masking problems for both AND and OR operations. Exhaustive

combinations (often termed as multiple condition coverage (MCC)) are the most

desirable alternatives. However, considering MCC is practically infeasible

especially when the combinations are large. Here, the number of conditions grew

with 2
n
 where n is the number of Boolean variables.

Condition coverage (CC) and Condition/Decision coverage(C/DC) are also

possible. CC dictates that every condition in a decision has taken all possible

outcomes at least once. C/DC requires CC and also dictates the TRUE and

FALSE decision outcome at least once. Despite being useful, CC and C/DC does

not consider independence as the criteria for selecting test cases.

Summing up in Table 1, it is clear that MC/DC is the most viable alternative

but with significantly reduced test size as compared to exhaustive combination,

MCC. Here, MC/DC dictates that each condition within a predicate can

independently influence the outcome of the decision. MC/DC is a stricter form of

decision coverage. For decision coverage, each decision statement must evaluate

to TRUE on some execution of the program and must evaluate to FALSE on some

execution of the program. MC/DC, however, requires execution coverage at the

condition level.

Kamal Z. Zamli et al. 108

Table 1: Types of Structural Coverage Adopted from Hayhurst et al [7]

Coverage Criteria
Decision

Coverage

Condition

Coverage

Condition/

Decision

Coverage

MC/DC

Multiple

Condition

Coverage

Every point of entry and

exit in the program has been

invoked at least once.

√ √ √ √ √

Every decision in the

program has taken all

possible outcomes at least

once.

√ √ √ √

Very condition in a decision

in the program has taken all

possible outcomes at least

once.

 √ √ √ √

Every condition in a

decision has been shown to

independently affect the

decision’s outcome.

 √ √

Every combination of

condition outcomes within a

decision has been invoked at

least. once

 √

An MC/DC test predicates exist in pairs. Each one of the pair differs only by

the Boolean value of one condition, but gives a different result for the decision

statement. For AND operation, MC/DC pairs are {{F,T}, {T,T}}, {{T,F},

{T,T}}. As the entry {T,T} is redundant, the complete MC/DC compliant test

predicate is reduced to {F,T}, {T,F} and {T,T}. In similar manner, for OR

operation, the MC/DC pairs are compliant test predicates are {{F,F}, {T,F}},

{{F,T}, {T,F}}.

As the entry {T,F} is redundant, the complete MC/DC compliant test predicate

is reduced to {F,F}, {F,T} and {T,F}.Converting the MC/DC compliant

predicates into test cases values for AND and OR operation, Figure 3 revisits the

masking problem in Figure 2. Here, the test cases fulfilling the MC/DC criterion

are able to cover all the paths.

109 On Test Case Generation

Fig.3. MC/DC Coverage

3 Reflection on Related Work

There is already a number of related works that deals with test case generation for

MC/DC coverage. Jones and Harrold [3] introduce two strategies for generating

MC/DC compliant test cases. The first strategy is based on the breakdown

algorithm whilst the second strategy is based on the prioritization algorithm. At

the start, both strategies generate the exhaustive MC/DC pairs as the basis for

selection. For the first strategy, the selection of the test candidates is based on

iterative generation of essential test cases. Here, essential test cases are established

by summing up contribution of each test case towards MC/DC coverage. In each

iteration, the least contributing test case is systematically removed leaving only

available for selection. For the second strategy, the selection of test candidates is

Kamal Z. Zamli et al. 110

also done iteratively. In this case, in each iteration, the contribution for each

candidate test case is prioritized based on greedy ordering, that is, to cover the

most pairs. The iteration stops when no more pairs are available for selection.

Although helpful, both strategies appear unsuitable for handling large predicates

owing to the need to generate all exhaustive MC/DC pairs.

In other work, Jun-Ru and Chin-Yu [4] usefully exploit n-cube graph in order

to generate appropriate MC/DC compliant test data. In this case, the vertex of the

cube represents the resultant boolean enumeration for predicates under evaluation.

Each vertex is traversed and arranged and evaluated using Gray code sequence

ordering until all the required sequences are covered. As the sequence of ordering

for MC/DC pairs are non-unique (and not generalizabile to only Gray code

sequence), this strategy appears not optimized as far as the number of test cases is

concerned.

Ghani and Clark [5] are perhaps the pioneer researchers that adopt optimization

algorithm based on Simulated Annealing (SA) for MCC and MC/DC test

generation. SA works based on the process of maximizing material’s crystal size

via heating and slow cooling [9, 10]. The heating process excites the atom to

move from its initial position (to avoid a local minima of internal energy) while

the slow cooling process allows the atom to settle for lower internal energy

configurations for better crystal size. Analogous to the physical process, SA based

strategy starts with a randomly generated MC/DC pair of test cases (as initial

state) and applies a series of transformations according to a pre-defined

probability equation. Here, the probability equation depends heavily on parameter

T (namely, the controlling temperature of the simulation) to simulate the heating

and cooling process.

Complementing the work from Ghani and Clark, Awedikian et al [2] adopt two

optimization algorithms based on Hill Climbing (HC) and Genetic Algorithm

(GA) respectively to generate MC/DC compliant test cases. For HC, the

algorithm starts by choosing a random test case as an initial solution. The quality

of the test case is evaluated based on the defined fitness function. HC attempts to

improve the current test case by moving to better points in a neighborhood of the

current solution. This iterative process continues until a termination criterion.

There are two termination conditions. First, for the given major clause, HC

terminates if test case satisfying the MC/DC clause assignment are found. If after

a fixed number of attempts, the algorithm is not able to satisfy the MC/DC major

clause constraints, the search is stopped and another set of possible MC/DC

assignments is selected. Concerning GA, the algorithm starts by creating an initial

population of n test cases chosen randomly. Each chromosome represents a test

case; genes are values of the input variables. In an iterative process, GA tries to

improve the population from one generation to another. Test cases in a generation

are selected according to their fitness in order to perform reproduction, that is,

through crossover and/or mutation. Then, a new generation is constituted by the

fittest test cases of the previous generation and the offspring obtained from

111 On Test Case Generation

crossover and mutation. The iterative process continues until a stopping criterion

is met. Here, two stopping criteria are defined. First, for the given major clause,

GA terminates if test input data satisfying the MC/DC clause assignment are

found. GA is also stopped when an upper limit in computation is reached.

4 Analysis

Based on the analysis in the previous sections, this section summarizes the

description of existing MC/DC test generation strategies. Specifically, Table 2

depicts the merits and limitations of these strategies.

Table 2: Analysis of the existing MC/DC coverage test case strategies

Work Merits Limitations Other

Observations

Jones and Harrold [3] Developed two

strategies: the

first strategy is

based on the

breakdown

algorithm whilst

the second

strategy is based

on the

prioritization

algorithm.

Both strategies

can generate

MC/DC

compliance test

cases number

for small

systems.

Difficult to handle

large predicates

owing to the need to

generate all

exhaustive MC/DC

pairs.

Deterministic

output

Jun-Ru and Chin-Yu[4] Exploits the

novel property

of n-cube graph

for MC/DC test

generation.

Complex

implementation,

hence, difficult to

accommodate large

predicates

Deterministic

output

Kamal Z. Zamli et al. 112

Ghani and Clark [5] Adopts

optimization

algorithm based

on Simulated

Annealing (SA)

Depending on the

choices of initial

value, SA can get

stuck into local

minimum

Non-

deterministic

output based

on local

search

Awedikian et al [2] Adopts two

optimization

algorithms based

on Hill

Climbing (HC)

and Genetic

Algorithm (GA)

respectively to

generate

MC/DC

compliant test

cases

HC tends to get stuck

into local minimum as

it always uses the

current best as its

basis for the

generation of its new

neighbor.

GA requires

computationally

intensive structure in

terms of the need to

frequently interact

with peers and the

environment in order

to update and

exchange information

[11, 12].

Non-

deterministic

output based

on local

search.

Non-

deterministic

output based

on both local

and global

search

although

without

memories of

the previous

search.

Indeed, strategies based on optimization algorithms appear to be the trend for

the future. However, there are still rooms for improvements particularly on

improving the simplicity and scalability of the adopted strategies as well as

reducing the proneness to local optima problem. Additionally, adopting other

competing optimization algorithm other than HC, SA, and GA might give rise to

new perspectives on MC/DC test generation.

Addressing the aforementioned issues and building from existing work, we are

investigating the use of Harmony Search (HS) algorithm for our new MC/DC test

generation strategy. Among the advantages of HS which justifies our choice

include:

• The musical improvisation analogy in HS is relatively appealing and

straightforward compared to the existing AI-based algorithms behaviors.

• HS requires only lightweight computation with small number of parameters

that require tuning [12]

113 On Test Case Generation

• HS offers good balance as far diversification (i.e., global investigation of

solution space) and intensification (i.e., fine search around local optimal) are

concerned [13].

• HS performs well as compared to other AI-based algorithms for various

engineering applications (refer to [14 - 18]).

• HS is free from divergence [17].

5 Discussion and Conclusion

To ensure the quality software that conforms to specifications, the software needs

to be thoroughly tested. One key aspect to be tested is on structural testing. Here,

like most testing endeavor, exhaustive structural testing is not always feasible as it

consumes significant resources in term of costing and man power.

Existing work on MC/DC for structural testing has been useful, but they are not

without limitations. Our work strives to address the aforementioned limitations (as

elaborated in Table 2). Summing up, our research questions are as follows:

• How can the HS strategy decide on which combination of data values to be

chosen over large combinatorial data sets?

• How well does HS perform over other existing counter parts?

• How effective is the MC/DC coverage for finding faults?

• How can the MC/DC generation process be fully automated?

Finally, to conclude, this paper has highlighted the need to support MC/DC in

software testing. Additionally, this paper has also highlighted the current state-of-

the-art on existing work involving MC/DC and identifies novel areas for further

research.

ACKNOWLEDGEMENTS

This research is partially funded by ERGS Grant: CSTWay: A Computational

Strategy for Sequence Based T-Way Testing, UMP RDU Short Term Grants:

Development of a Pairwise Interaction Testing Strategy with Check-Pointing

Recovery Support and .myGrants: A New Design of An Artifact-Attribute Social

Research Networking Eco-System for Malaysian Greater Research Network.

References

[1] Zamli, K. Z., Klaib, M. F. J., M. I. Younis, Isa, N. A. M., and Abdullah, R.

2011. Design and Implementation of a T-Way Test Data Generation

Kamal Z. Zamli et al. 114

Strategy with Automated Execution Tool Support. Information Sciences,

Elsevier, Vol. 181, No. 9, 1741-1758.

[2] Awedikian, Z., Ayari, K., and Antoniol, G. 2009. MCDC Automatic Test

Input Generation, Proceedings of the 11th Annual Conference on Genetic

and Evolutionary Computation (GECCO '09), 1657-1664.

[3] Jones, J.A., and Harrold, M.J. 2003. Test-suite Reduction and Prioritization

for Modified Condition/Decision Coverage. IEEE Transactions on Software

Engineering, Vol. 29, No. 3, 195-209.

[4] Jun-Ru, C., and Chin-Yu, H. 2007. A Study of Enhanced MC/DC Coverage

Criterion for Software Testing, Proceedings of the 31st Annual

International Computer Software and Applications Conference (COMPSAC

2007), 457-464.

[5] Ghani, K., and Clark, J.A. 2009. Automatic Test Data Generation for

Multiple Condition and MCDC Coverage, Proceedings of the 4th

International Conference on Software Engineering Advances, Porto,

Portugal, 152-157.

[6] Johnson, L. A. 1998. DO-178B, Software Considerations in Airborne

Systems and Equipment Certification. Crosstalk, October.

[7] Hayhurst, K. J., Veerhusen, D. S., Chilenski, J. J., & Rierson, L. K. 2001. A

Practical Tutorial on Modified Condition. Decision Coverage. NASA

Technical Memorandum TM-2001-210876, NASA Langley Research

Center.

[8] Quadri, S. M. K., & Farooq, S. U. 2010. Software Testing–Goals,

Principles, and Limitations. International Journal of Computer

Applications, Vol. 6, No. 9, 7-10.

[9] Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., &

Teller, E. 1953. Equation of State Calculations by Fast Computing

machines. The Journal of Chemical Physics, Vol 21, 1087.

[10] Kirkpatrick, S., Gelatt, C. D. & Vecchi, M. P. 1983. Optimization by

Simmulated Annealing. Science, Vol. 220, No. 4598, 671-680.

[11] Ahmed, B. S., & Zamli, K. Z. 2011. A Variable Strength Interaction Test

Suites Generation Strategy Using Particle Swarm Optimization. Journal of

Systems and Software, Vol. 84, No. 12, 2171-2185.

[12] Alsewari, A. R. A., & Zamli, K. Z., 2012. Design and Implementation of a

Harmony-Search-Based Variable-Strength T-way Testing Strategy with

Constraints Support. Information and Software Technology, Vol. 54, No. 6,

553-568.

[13] Yang, X. S. 2009. Harmony Search as a Metaheuristic Algorithm. In Music-

Inspired Harmony Search Algorithm, 1-14. Springer Berlin Heidelberg.

115 On Test Case Generation

[14] Geem, Z. W. 2007. Optimal Scheduling of Multiple Dam System Using

Harmony Search Algorithm. Computational and Ambient Intelligence, 316-

323. Springer Berlin Heidelberg.

[15] Geem, Z. W. 2009. Particle-Swarm Harmony Search for Water Network

Design. Engineering Optimization, Vol. 41, No. 4, 297-311.

[16] Geem, Z. W., & Hwangbo, H. 2006. Application of Harmony Search to

Multi-Objective Optimization for Satellite Heat Pipe Design, Proceedings

of US-Korea Conference on Science, Technology, and Entrepreneurship

(UKC 2006), Teaneck, NJ, USA, (CD-ROM). 1-3).

[17] Geem, Z. W., Kim, J. H., & Loganathan, G. V. 2001. A New Heuristic

Optimization Algorithm: Harmony Search. Simulation, Vol. 76, No. 2, 60-

68.

[18] Geem, Z. W., & Park, Y. 2006. Harmony Search for Layout of Rectilinear

Branched Networks. WSEAS Transactions on Systems, Vol. 5, No. 6, 1349-

1354.

