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Abstract 

     In order to ensure software performance as well as software 
quality, various testing techniques have been used to detect faults as 
early and as many as possible during the development phase. Over 
the last decade, the size and complexity of software developed have 
increased tremendously. Highly customizable software allow users to 
configure the software to the users’ needs, however, if not tested 
adequately, these software are prone to interaction faults. This paper 
discusses our experiences on implementation of Bees algorithm for 
generating test cases to detect t-way interaction faults (where t 
signifies the interaction strength).  

     Keywords: Interaction testing, software testing, t-way testing, Bees algorithm. 

1      Introduction 

We use software in almost all activities in our life - performing our daily chores 

like washing, watching television, using smart phones and even while we are 

driving. With the advancement of technology, software not only resides in 

computers, but also in many embedded devices such as mobile phones and 

electronic appliances at home. To ensure acceptable quality, software needs to be 

tested before delivery. For highly configurable software, all of the possible 

combinations of configurations need to be tested accordingly to detect interaction 

faults. However, taken into consideration of time-to-market and resource 

constraints, performing exhaustive testing for all configured combinations is 

impractical and inefficient due to combinatorial explosion problem. For example, 
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let us take a system with 20 inputs with each input has 2 possible values. To 

perform exhaustive combinatorial testing, we need to execute 2
20

 (1,048,576) test 

cases, which is obviously impossible to test within finite time limit. 

As a result, many t-way interaction testing strategy (where t indicates the 

interaction strength) have been proposed in the literature for the past 20 years. All 

of the strategies help in constructing test suites with minimal test cases to cover all 

intended interaction strength. Strategies such as GTWay [1], Automatic Efficient 

Test Generator (AETG) [2], Myra Implementation of AETG (mAETG) [3], In-

Parameter Order (IPO) [4] , In-Parameter-Order General (IPOG) [5], Multi-Core 

IPOG (MC-IPOG) [6] and Jenny [7] generate test cases for uniform strength t-

way (i.e. all parameters having interact uniformly among each others). In some 

cases, many researchs have demonstrated the need for generating variable-

strength t-way combinations of inputs. As a result, newly developed t-way 

strategies have been proposed such as Simulated Annealing (SA) [8], Ant Colony 

System (ACS)[9] , Particle Swamp Optimization (PSO)[10]  and Harmonic 

Search Strategy (HSS)  [11] to consider the variable strength parameter 

interaction. The emergence of Artificial Intelligent (AI) based strategies has 

shown good results in term of producing optimal test case size. Based on such 

alluring prospects, we study Bees Algorithm as the basic for t-way test generation. 

Adopting other competing optimization algorithm other than SA, ACS, PSO and 

HSS might give rise to new perspectives on t-way test generation. In this paper, 

we discuss the implementation and the results of our experiment against other AI 

based t-way strategies. 

The rest of this paper is organized as follows. Section 2 presents the theoretical 

background of t-way strategies. Section 3 introduces the Bees Algorithm, while 

section 4 discusses the implementation and experiment results. Lastly in section 5 

we present our conclusion. 

2      Theoretical Background 

Over many years, sampling based strategies such as equivalence partitioning, 

boundary value analysis and decision table have been commonly used for test 

generation. Although helpful in detecting faults for some class of systems, these 

strategies do not detect faults due to interaction amongst input parameters. As a 

result, t-way strategies have been introduced. Here, t represents the interaction 

strength between parameters.  In general, a uniform strength t-way constructs the 

basic of interaction testing. In uniform strength t-way, all of the parameters are 

tested to interact uniformly with t other parameters. For example, in a 2-way 

interaction test suite for a system with 5 input parameters, each of the parameter’s 

value will have to be tested to interact with another parameter at least once. If we 

increase interaction strength to 3, that is, 3-way interaction, all parameters’ value 

will be tested with another 2 parameters’ value at least once. 
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Uniform strength produces decent test cases for interaction testing, however, in 

some cases, we might want to increase the interaction strength for a sub set of 

parameters in the system. In a testing scenario, a good tester knows, based on 

experience or requirement documents, that a particular interaction of parameter 

could give significant impact to the whole system, should failure occurs. Here, 

there is a need to rigorously test that particular sub set so as to increase the 

confidence level of the system, termed variable strength. As a result, on top of 

uniform strength, stronger interaction strength could be assign accordingly to a 

sub-parameter with higher risk of failure. For illustration, Fig.1(a) and Fig.1(b) 

below show the features of uniform strength and variable strength interaction 

respectively. 

 

 

 

 

 

 

 

   

 

Fig.1.Uniform and Variable strength interaction 

For another illustration, consider a system under test (SUT) with 4 configurable 

parameters namely, A, B, C and D. Each parameter has 2 possible values as 

described in Table 1. To perform 2-way interaction test, all 2-way interactions for 

the 4 parameters A, B C and D have to be covered including that of {AB, AC, AD, 

BC, BD, CD}. The complete set of the interaction tuples are shown in Table 2.  

As highlighted earlier, the t-way testing strategy addresses the issue of 

combinatorial explosion. Considering exhaustive generation of test cases for the 

said configuration, we consider all possible combination for each value of each 

parameter (see Table 3). Here, when the configuration increases, the size of the 

test case increase exponentially. For example, exhaustive test for a SUT with 5 

parameters with 2 values for each parameter will give us 2
5
 = 32 test cases. For 

SUT with 10 parameters with 3 values for each parameter gives us 2
10

 = 59,049 

test cases. If we estimate that each test case needs even only 1 minute to execute, 

we need more than 41 days to perform such a test. For this reason, sampling 
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Interaction strength, t  

where 0< t < n 

 

 

 

System Under Test 

 P1 Pn P2 . . . . . . . . . . . . .  

(a) Uniform interaction with strength t for n 

parameters 
(b) Variable strength interaction, with t= a 

for all parameters (P1 to Pn), and t=b for 5 

sub parameters 
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mechanism based on t-way testing is used to reduce the number of test cases, but 

at the same time give adequate coverage for the intended t-way interaction. 

Table1: An example of a system with 4 parameters with 2 values 

Parameters A B C D 

Values 
a1 b1 c1 d1 

a2 b2 c2 d2 
 

Table 2: Complete interaction sets to be covered for 2-way testing 

Parameters Interaction set 

AB a1b1, a1b2,a2b1, a2b2 

AC a1c1, a1c2,a2c1,a2c2 

AD a1d1, a1d2,a2d1,a2d2 

BC b1c1, b1c2,b2c1,b2c2 

BD b1d1, b1d2,b2d1,b2d2 

CD c1d1, c1d2,c2d1,c2d2 

 

Table 3: Exhaustive test suite 

Test Case A B C D 

1 a1 b1 c1 d1 

2 a1 b1 c1 d2 

3 a1 b1 c2 d1 

4 a1 b1 c2 d2 

5 a1 b2 c1 d1 

6 a1 b2 c1 d2 

7 a1 b2 c2 d1 

8 a1 b2 c2 d2 

9 a2 b1 c1 d1 

10 a2 b1 c1 d2 

11 a2 b1 c2 d1 

12 a2 b1 c2 d2 

13 a2 b2 c1 d1 

14 a2 b2 c1 d2 

15 a2 b2 c2 d1 

16 a2 b2 c2 d2 
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At the end of test case generation, the final test suite, F, should cover every t 

combinations of parameter value configurations for at least once, the final test 

suite can be abstracted to covering array notation [4-5] shown in Equation 1. 

 

F = CA(N, t, C) (1) 

where,   

 N   = the number of test data inside the final test suite. 

 t     =  the interaction strength 

 C   =  value configuration can be represented as following: 

  v1
p1

,v2
p2

,…..,vn
pn 

which indicate that there are p1 parameters with v1  

                       values, p2 parameters with v2 values and so on.  

 

Using the aforementioned notation, a 2-way interaction for 4 input parameters 

with each parameter has 2 possible values can be written as CA(N, 2, 2
4
). When a 

system consists of parameters with mixed number of values, we refer this type of 

covering array as mixed covering array (MCA). For example MCA(N, 2, 2
2
 3

2
 4

1
) 

refers to a covering array of strength 2, with two 2-valued parameters, two 3-

valued parameters and one 4-valued parameters. 

With additional notation for variable strength, covering array notation for 

variable strength interaction, (VCA) can be denoted by  

 

VCA(N, t, C, S) (2) 

 where 

 N = the number of test data inside the final test suite. 

 t = the dominant interaction strength 

 C = value configuration can be represented as following: 

   v1
p1

,v2
p2

,…..,vn
pn

  which indicate that there are p1 parameters with 

v1 values, p2 parameters with v2 values and so on. 

 S = the multi-set of disjoint covering array with strength larger than t 

represented using notation similar to CA i.e. CA(N, t, C). 

3      The Bees Algorithm (BA) 

Bees Algorithm (BA) is a relatively new nature inspired, population based 

algorithm [12]. BA is developed based on the foraging behavior of honey bees. In 

order to forage food, a group of scout bee is sent to search the area around the 
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hive for flower patch. Bees can travel up to 10 kilometers in a day. The scout bees 

later will return to the hive and present its findings to the other bees (referred as 

unemployed bees) in a movement known as the waggle dance. By comparing the 

information gained in the waggles dance by scout bees, the unemployed bees will 

determine which flower patch has high quality. The quality of the nectar and its 

range from the hive are among factors considered to determine the chosen patches. 

More bees are sent to the more promising patches (high quality) and fewer bees 

are sent to other patches. The food level in the hive and the amount of nectar in 

the selected flower patches are monitored continuously and the information will 

be used in the next waggle dance. Inspired by the foraging behavior of honey bees, 

Bees Algorithm is developed. The basic form of Bees Algorithm is depicted in Fig. 

2. 

 

1. Initialize population with random solutions (n) 

2. Evaluate fitness of the population 

3. While (stopping criteria not met) 

4. Select (m) sites for neighborhood search (ngh) 

5. Recruit bees (nep and nsp) for selected site (e best elite sites, m-e non 

elite sites) 

6. Select the fittest bee from each patch 

7. Assign remaining bees to search randomly and evaluate their fitness 

8. End While. 

 

Fig.2: Bees Algorithm in its basic form. 

In general, there are six parameters involved in performing BA, the initial 

population size n, the best solution for improvement m, elite solution e, number of 

bees for local search on elite solution  nep, number of bees for local search on non 

elite solution nsp and the neighborhood size for local search ngh. The algorithm 

starts with selecting n random solutions. Then, the fitness of the initial solution is 

evaluated. From here, the best m solution is selected for neighborhood search (i.e. 

local search). From the best m number of solutions selected from n, the best e 

solution (elite solution) will be sent with nep bees. These nep bees, will try to 

improve and find a better solution around the current selected solution. To avoid 

local optima trap, the non-elite solution (m-e) will be sent with nsp bees. Similar 

to elite solution, nsp bees also try to improve the current solution, should there be 

a better solution. If a better solution if found by either nep or nsp bees, the better 

solution will replace the respective solution. In step 7, the solution is re-evaluated 

and sorted according to its fitness. The remaining bees in the population will 

randomly select a solution again and be sorted to get the best m solution. The 

process will be repeated until the criteria are met. In our case, the algorithm will 

keep looping until all of the intended interactions are covered. 
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Although BA is considered as a new swarm-based algorithm, BA has been 

used to solve many optimization problems. BA shows promising results in term of 

effectiveness, problem scale and performance published as in [13], [12], [14], [15], 

[16]. Although many of the BA implementation mentioned is functional 

optimization, BA is claimed suitable to solve not only functional, but also 

combinatorial optimization problems [12]. These factors motivate us to adopt BA 

further for t-way test data generation. 

4      Implementation and Experiment Results 

In order to generate t-way test cases, our strategy is divided into two main parts. 

The first part is the data part where all the information about the test case is stored. 

This includes the interaction set which stores all the interaction that needs to be 

covered and the test suite set (stores all the test case generated by BA). The 

interaction set is initialized at the beginning of the strategy. For experiment in this 

paper, the interaction set is generated using direct forward loop approach to 

generate all possible t-way interaction for the intended parameter-values. An 

example for generated interactions for 2-way, 4 parameters with each parameter 

having two values is shown in Table 2.  The test case set is initialized as an empty 

set. Then, the test case set will store the best test case generated by BA in every 

cycle of the algorithm. At the end, the test set represents the best test suite for the 

intended configuration.  

The second part is the optimization part. In this part, Bees Algorithm is 

implemented. At first, we initialized all the parameters needed for BA. Table IV 

shows the six parameters that are being used in our implementation. In the first 

step, a number of n test cases were generated randomly and its fitness sorted 

accordingly. In principle, the fitness of each test case is calculated by the ratio 

between number of interaction it covers with the number of maximum interaction 

can be covered. While there are still uncovered interactions, m best test cases from 

n which was generated randomly will be analyzed. For each test case in m, the 

algorithm tries to improve the test case by modify the test case to cover more 

interaction set via a process called neighborhood search. In the neighborhood 

search, nep improvement attempts will be performed to the elite test cases, while 

nsp improvement attempt will be performed to the non-elite test cases. If any 

improvement was made, the algorithm will update the fitness of the test case in 

the selected m. a new set of n-m test case then will be re-generated for the next 

cycle. 

In each cycle, every time a test case is selected, the interaction covered by the 

respective test case will be removed from the interaction test set. At the same time, 

the selected test case will be added to the test suite set. Thus, the number of 

interaction set will be reduced in every cycle. The algorithm will keep running 

until the interaction set is empty  (all interaction set has been covered). 
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Table 4: BA parameters 

Parameter Value Description 

n 20 Number of random test case generated 

m 5 Selected test case with best coverage 

for neighborhood search 

e 2 Elite test cases 

nep 10 Number of improvement attempt for 

each elite test case 

nsp 5 Number of improvement attempt for 

each non-elite site 

ngh 0.5 Local search area size for nep and nsp  

 

For the purpose of performance comparison, we benchmark our strategies with 

existing AI-based strategies. The results of existing AI-based strategies are 

obtained from the published works of the respective strategies. We have 

implemented our strategies in JAVA (Netbean 7.0) on a desktop PC running 

Windows XP SP3 with Intel Core2Duo and 2GB RAM.   

We present our results in Table 5 and Table 6 below. For Table 5, we compare 

with other exiting AI-based strategies (HSS, GA, SA, ACA, PSTG), for low 

strength ( 2<t<3). For Table 6, we compare the results for CA(N, t,10,2) where t 

varied from 2 to 10 with existing strategies (AI and computational approaches). In 

the Tables 5 and 6, we have use Not Available (NA) to denote that there are no 

published result for the strategy and configuration of interest and Not Support (NS) 

to denote that the configuration is not supported by the given strategy. 

 

Table 5: Comparison BA test suite against existing AI-based strategies 

Configuration BA HSS SA GA ACA PSTG 

CA(N, 2,4,3) 9 9 9 9 9 9 

CA(N, 2,13,3) 19 18 16 17 17 17 

CA(N, 2,10,10) 183 155 NA 157 159 NA 

CA (N, 2, 10,5) 47 43 NA NA NA 45 

CA(N, 3,6,3) 42 39 33 33 33 42 

CA(N, 3,6,4) 108 70 64 64 64 102 

CA(N, 3,6,5) 198 199 152 125 125 NA 

CA(N, 3,7,5) 227 236 201 218 218 229 
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Table 6: CA(N, t, 10,2) with t varied from 2 to 10 

t BA HSS PSTG IPOG Jenny TConfig 

2 8 7 8 10 10 9 

3 18 16 17 19 18 20 

4 39 37 37 49 39 45 

5 85 81 82 128 87 95 

6 162 158 158 352 169 183 

7 298 298 NS NS 311 NS 

8 503 498 NS NS 521 NS 

9 545 512 NS NS 788 NS 

10 1024 1024 NS NS 1024 NS 

 

Referring to Table 5 and Table 6, although not the best, BA produces 

comparable results against other strategies. In Table IV, the size of test suites 

produce is larger as compared to the other AI-based strategies. We believe the 

results can be improved upon fine-tuning the parameters in BA. In Table VI, BA 

manages to get 2 optimum results which are comparable to that of HSS and Jenny. 

5      Conclusion 

In this paper, we have discussed our preliminary works on adopting Bees 

Algorithm to generate interaction testing test data. We discuss the design of the 

algorithm and share our experiment results. As part of our future work, we are still 

optimizing our strategies to demonstrate the effectiveness with known case study, 

support variable strength interaction as well as to incorporate seeding and 

constraints while generating t-way test data.   
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