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Abstract 

   Wind power energy has received the biggest attention among the new 
renewable energies. For achieving a stable power generation from wind 
energy, the accurate analysis and forecasting of wind power pattern is 
required. In this paper, we propose subspace clustering method for 
generating clusters of similar wind power patterns from data to be 
analyzed and the calendar–based temporal associative classification rule 
mining for reflecting temporal information of wind power on the 
classification/prediction model. The experiments show that the optimal 
cluster is constructed by applying PROCLUS algorithm and it has 
88.6% accuracy of prediction under application of temporal associative 
classification rules. 

     Keywords: Wind power patterns, subspace clustering, temporal associative 
classification rules, temporal pattern mining 

1      Introduction 

Currently, the wind power energy is getting the spotlight in the new renewable 

energies. Thanks to the use of natural wind, the wind power is unlikely to be 

depleted and has the advantage of less environmental pollution. On the other hand, 

electricity production by wind power is quite erratic due to the irregularity of 

wind energy sources. Therefore, electricity by wind power may not be able to be 

supplied to meet the demand of power and output changes drastically in a short 

period of time. Such disadvantage of fluctuation and irregularity make it very 

difficult to predict the exact generation of power. Among the existing studies on 

prediction of wind power generation, Kusiak and Verma predicted the state of 

generator and generation in the short-term stages [1]. Saurabh and Hamidreza [2] 

divided the time zone into short-term and long-term and predicted the generation 
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using artificial neural net and time-series model. RBF (Radial Basis Function) [3] 

can be used for forecasting the short-term generation; however there is a 

shortcoming that the performance of the RBF is sensitive to the form of RBF basis 

functions and the underlying parameters. The irregular changing characteristics of 

power output by surge or sharp drop of generation is referred to as ramping [4]  

and it is measured with the power ramp rate PRR representing the generation 

output in a given time interval. PRR can be analyzed by multivariate time series 

based statistical methods [5]. However, PRR can only check swings of power 

generation but wind power forecasting is impossible. 

In this paper, cluster analysis and temporal classification techniques are applied in 

order to predict an accurate and efficient wind power patterns in the short-term 

and long-term stage in respect.  

Especially this study uses subspace clustering method for generating clusters of 

similar wind power patterns from data to be analyzed and applies the calendar–

based temporal mining techniques for reflecting temporal information of wind 

power on the classification/prediction model. The framework proposed in this 

study for the prediction of wind power pattern is as follows. 

� Data preprocessing: To perform cleansing for preprocessing the missing 

value and outliers included in the raw data acquired from wind turbine at 

first, then feature extraction, the adjustment of time granularity and 

discretization steps are followed. 

� Subspace cluster analysis: to generate a similar group of wind power 

patterns from the preprocessed data  

� Temporal associative classification: to build the prediction model 

considering temporal characteristics and wind power pattern features by 

extending the FP-growth method and the temporal pattern mining 

technique. 

 

2      Data Preprocessing 

2.1 Data Collection and Cleansing 

For this study we collected one-year data measured at a wind turbine from April 

of 2010 to April of 2011. Actual measurement was performed at every 10 minute. 

The data attributes consist of the exact time, the wind speed and the generation at 

every collection timestamp. The data collected from the wind turbine were 

cleansed so as to remove the missing value and outliers negatively affecting the 

clustering and classification model. 

All the outliers contained raw data are removed and missing values are assigned 

as substitute values provided by using PASW statistics 18 method [6]. Also, since 
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the 10-minute interval data are so detailed, the collected data is generalized to one 

hour-interval. 

 

 
Fig. 1: Graphical representation of collected data; 

 (a) Normal data (b) Abnormal data. 

 

2.1 Feature Extraction and Discretization 

The collected attribute data from the wind turbine are not enough for the accurate forecasting 

of wind power pattern. So we need an additional feature extraction for predicting exact wind 

power pattern. At first, we extract PRR feature representing the rate of generation by using the 

irregular property of wind causing the surge or sharp drop of generation. Then, the value of 

minimum, maximum, average and standard deviation are computed with respect to wind 

speed and the quantity of generation. The entire features used for cluster analysis and 

classification are shown in Table 1. 

 

Table 1: Extracted features from raw data 

Feature Description 

ws_MEAN Average value of wind speed 

ws_MIN Minimum value of wind speed 

ws_MAX Maximum value of wind speed 

ws_SD Standard deviation of wind speed 

wp_MEAN Average value of power generation 

wp_MIN Minimum value of power generation 

wp_MAX Maximum value of power generation 

wp_SD Standard deviation of power generation 
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All the extracted features are the continuous values. They do not matter for cluster 

analysis but should be transformed into nominal valued in order to be applied for 

the frequent pattern-based classifiers. In this step discretizing filter, a preprocessor 

of Weka's implementation [7], is applied. 

 

3 Generating Wind Power Clusters Using Subspace 
Clustering Methods 

Subspace clustering methods might report several clusters for the same object in 

different subspace projections, while subspace clustering methods are restricted to 

disjoint sets of objects in different subspace. These subspace projections also can 

be identified into three major approaches characterized by the underlying cluster 

definition and parameterization of the resulting clustering. First, cell-based 

subspace clustering discretizes the data space for efficient detection of dense grid 

cells in a bottom-up fashion. It was introduced in the CLIQUE [8] approach which 

exploits monotonicity on the density of grid cells for pruning. SCHISM [9] 

extends CLIQUE using a variable threshold adapted to the dimensionality of the 

subspace as well as efficient heuristics for pruning. In contrast, DOC [10] uses 

variable cells represented by hypercube. Second, density-based clustering defines 

clusters as dense areas separated by sparsely populated areas. In SUBCLU [11], a 

density monotonicity property is used to prune subspaces in a bottom-up fashion. 

A FIRE [12] extends this paradigm by using variable neighborhoods and an 

approximative heuristics for efficient computation. Lastly, cluster-oriented 

method optimizes the overall clustering result. This method defines properties of 

the entire set of clusters, like the number of clusters, their average dimensionality 

or more statistically oriented properties. PROCLUS [13] extends the k-medoids 

algorithm by iteratively refining a full-space k-medoid clustering in a top-down 

manner. DOC algorithm is used as the cell-based method, FIRES algorithm is 

used as density-based method and PROCLUS of cluster-oriented method is also 

used for cluster analysis of the given wind power data. In a cluster analysis, the 

determination of optimal number of groups heightening the similarity of inner 

cluster is very important. The conventional method is to evaluate reproducibility 

of clustered results or to use MIA(Mean Index Adequacy), an adequacy measure 

[14]. In the clustering methods, since that the attributes involved in the underlying 

cluster creation can only be applied, it is impossible to use these two methods 
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using all the data attributes. Therefore, clustering, a kind of unsupervised method, 

and classification, a supervised method are combined to determine the optimal 

cluster. The process steps of such evaluation method are shown in Fig. 2. 

� First, we partition the training data into two parts. The ratio is 8:2. The larger 

data set is used as the training set and the smaller one is used as a test set. 

� Second, run the three subspace clustering algorithms on training set to 

produce cluster label(A cluster label is as class label at the supervised 

learning step.). 

� The labels created by three cluster methods are added into a training set. 

� A classification model is created by applying the supervised learning method 

to the added training set. In this step, the decision tree(C4.5) induction is used 

considering its performance. The decision tree is made up of a set of nodes 

that classify the past realizations of the objective variable. Each classification 

is achieved by separation rules according to the numerical or categorical 

values of the explanatory variables. The classification rules of each node are 

derived from a mathematical process that minimizes the impurity of the 

resulting nodes, using the available learning set. The main advantage of the 

decision tree is the easy interpretability of the results and the supply of 

probability values without assuming normal distributions. 

� Finally, the classifier having the highest accuracy is chosen among three 

created classifiers using the test set. At last, the subspace clustering algorithm 

generating the class label of this classifier is optimal clustering of wind power 

data. 
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Fig. 2: Determination process for the optimal number of cluster. 

 

Cell-based DOC algorithm proceeds in two steps: first step is to define what an 

optimal cluster is. Since clusters are discovered one at a time, the extent to which 

this definition models the “natural” clusters in the data determines the quality of 

the result. DOC developed a Monte Carlo algorithm for iteratively computing 

projective clusters. Second step is to design a fast and accurate method for 

computing one such optimal cluster, or a good approximation for it. DOC 

proposed a few simple heuristics to reduce the number of data scans and speed up 

the algorithm. Density-based FIRES is based on an efficient filter-refinement 

architecture that scales at most quadratic with regard to the data dimensionality 

and the dimensionality of the subspace clusters. It consists of three steps. First 

step is the pre-clustering; all 1-D clusters called base clusters are computed. 

Second is the generation of subspace cluster approximations. The base clusters are 

merged to find maximal dimensional subspace cluster approximations. The third 

step is post-processing of subspace clusters, refines the cluster approximations 

retrieved after second step. Cluster-oriented PROCLUS algorithm proceeds in 

three phases: an initialization phase, an iterative phase, and a cluster refinement 

phase. The general approach is to find the best set of medoids by a hill climbing 

process similar to the one used in CLARANS [15], Initialization phase reduces 

the set of points when doing the hill climbing, while at the same time trying to 

select representative points from each cluster in this set. The second phase is to 
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find a good set of medoids during hill climbing process. It also compute a set of 

dimensions corresponding to each medoid by using Manhattan segmental 

distances so that the points assigned to the medoid best form a cluster in the 

subspace determined by those dimensions. Finally, refinement phase uses one 

pass over the data in order to improve the quality of the clustering. The important 

parameter settings and performance evaluation results of the three kinds of 

subspace clustering algorithm are described in detail in section 6. 

4      Generating Wind Power Patterns Using Temporal 
Mining 

This section discusses the temporal mining technique to discover the 

representative patterns of wind power considering the temporal characteristics 

within each cluster group having similar wind power properties. Fig. 3 shows the 

classification/prediction procedure considering time periodicity starting from 

creation. 

 

 

Fig. 3: Wind power pattern forecasting procedure 

 

4.1 Calendar-based Temporal Mining 

The calendar schema is a relational schema determined by calendar’s concept 
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hierarchy [16, 17]. 

 

Definition 4.1 A calendar schema (CS) is defined as a set of the calendar 

based time granularity and the possible domain of in such unit. The form is as 

follows. 

):,,:( 11 DGDGCS nn L=  (1) 

iG  is a time granularity in a calendar concept such as year, month, day 

for ni ≤≤1 . Each 
iD is domain value of iG  as a set of positive integer numbers. 

When a calendar schema is ),,,( 11 GGG nn L
−

, ni ≤≤1 , time granularity 
iG is 

included uniquely into 1+iG . For example, a schema of (month, day) is valid 

because “day” is included in a specific “month”. In case of (year, month, 

week), "week" does not belong to a specific "month". In case 

})30~1{:},12~1{:( daymonthCS = , {1, 20} is valid for expressing 20
th

 day of 

January but {2, 31} is not a valid set.  

 

Definition 4.2. A calendar pattern (CP) is an instance of a given schema 

):,,:( 11 DGDGCS nn L= and can be expressed as },{ 1ddCP n L= . Here each id is a 

domain value of 
iD or symbol "※". If id is "※", it means all the value of 

domain 
iD and can be interpreted as "every". Also it means time periodicity for 

current domain. 

For example, when a calendar schema is given as (month:{1~3}, day:{1~7}), 

calendar pattern {※, 3} expresses time interval {1, 3}, {2, 3}, {3, 3} and 

“Wednesday of every month”. Depending on the number "※" included in a 

calendar pattern, the expression is classified. A calendar pattern containing i "※"s 

is called as )( iCPpatternstari −  and other patterns including no "※" is called as 

"basic time interval". 

 

Table 2: Expression of calendar pattern 

# of symbol Calendar pattern Expression 

0 Basic time interval 0CP  

1 1-star pattern 1CP  

... ... ... 

i i-star pattern iCP  
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4.2 Generating Associative Classification Rules Using Wind Power 
Patterns 

A representative wind power pattern for each cluster can be generated by the 

associative classification rule mining [18]. 

D is a transaction DB, ),,,{ 21 niiiI L= denotes all itemset and ),,,{ 21 mcccC L= is 

called as cluster (or class) label. 

 

Definition 4.3. CARs(Class Association Rules) is expressed as a form like 

icX → , the antecedent of CARs is itemset, rule itself is named as ruleitem.  

 

Definition 4.4. σ , the support of CARs and confidence, δ ; 

     
|| D

countruleitem
=σ  (2) 

countitemset

countruleitem
=δ  (3) 

 

CARs are a set of ruleitem satisfying minimum support and minimum 

confidence. Temporal mining is performed by adding calendar pattern by 

definition 3 and 4. If calendar pattern CP for a calendar schema CS is given, 

transaction of timestamp is expressed as )(CPD  included in a CP. Grammatically, 

the associative classification rules are expressed as <CAR, CP> form. For 

instance, in case CS={year:{1999~2001}, month:{1~12} and day:{1~31}, rule 

>→∧< }3,2{*,,)( 1clusterBA is showing a calendar and cyclic expression. This 

rule is valid in a set of basic time interval such as {1999, 2, 3}, {2000,2,3}, 

{2001,2,3}, means that the rule >→∧< 1)( clusterBA is established during from 

1999 to 2001. The wind power data is a very huge data automatically obtained 

from sensors in a given time interval. So FP-tree structure should be included in 

temporal concept for generating an efficient associative classification rules. For 

design and construction of temporal FP-tree, the following are modifications to 

the temporal FP-tree that make it suitable for frequent pattern mining.  

 

① Count value of every node is replaced in the FP-tree with the class 

distribution, where each element of the distribution stores a number of 

transactions of the class containing a pattern from this node to the root.  

② All item count value in the frequent -item table of the temporal FP-tree 

is now replaced with item class distribution.  

③ Each node in the item prefix sub-tree contains basic time interval 

pattern, CP0. 
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For a given ),( 1GGCS n L= , all the ruleitems are created in order to satisfying the 

condition σ  and δ  in each basic time interval. Temporal FP-tree is a tree 

structure defined as the below: 

 

① The tree has a root labeled as null, a set of item prefix sub-trees as the 

children of the root, and a frequent item table. 

② Each node in the item prefix sub-tree contains three fields: item-name, class 

count for each class ci, basic time interval and node-link.  

③ The number of entries in frequent item table is equal to the number of distinct 

elements in the FP-tree and each entry contains three fields: item-name, class 

count for each class ci and head of node-link. 

 
For example, in case that transaction DB is given as Fig. 4 and minimum support 

threshold (σ) is 2, a descending sort is performed considering the class 

distribution for 1-item at the first DB scan (e(5), b(3), e(3)).  

The first transaction contains item e, b and class c3 that are timestamp, <1,1,1>. A 

class frequent pattern {c3: e, b} insert into FP-tree by generating new nodes and 

branch for basic time interval <1,1,1>. The second transaction {c3: a,b,e} has item 

a that is not class frequent with class c3. Since the pattern {c3: 5,2} has a common 

prefix with the prefix-path and same basic time interval in the tree no new nodes 

are inserted and only counts are updated. The third transaction {c2: c,e,g} is sorted 

into {c3: e,c,g}. Item g is not frequent for class c2, and class frequent pattern {c2: 

e,c} has a different basic time interval, so the pattern {c2: e,c} is inserted by 

generating new nodes and branch. For the fourth transaction {c2: c,e,f}, we insert 

a pattern {c2: e,c} by just updating the counts. No item in the last transaction is 

class frequent. 
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Fig. 4: An example of temporal FP-tree construction 

 

The algorithm for the temporal FP-tree construction is shown as Fig. 5. 
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Fig. 5: Temporal FP-tree construction algorithm 
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Fig. 6: Temporal FP-growth algorithm 

 

After completing a temporal FP-tree construction, all the associative classification 

rules should be extracted through the FP-growth method. The algorithm for 

mining all associative classification rules using temporal FP-growth is described 

in Fig. 6. After all classification rules were discovered in basic time interval, rules 

is used to update i-star patterns CPi. In this phase, we used updating algorithm was 

introduced in [16]. Fig. 8 shows a process to renew all the rules having basic time 

interval into i-star patterns. 

 



 

 

 

 

 

 

 

Heon Gyu Lee et al.                                                                                              14 

 

Fig. 7: Timer pattern extraction program for wind power data 

 

For example, the temporal patterns shown in the lower part of  Fig. 7, "[10, c-12] -

-> 1 star --><4,*,13>, <4,*,14>, <4,*,15>, <4,*,17>, <4,*,18>, <4,*,19>, 

<4,*,20>, <4,*,21>, <4,*,23> " is interpreted as "The wind pattern of ID=10 

corresponds cluster=12 at 13, 14, 15, 17, 18, 19, 20, 21, 23 o’clock every day of 

April”. Here if the wind power pattern of ID=10 shows that maximum wind speed 

is smaller than 17.8 m/s and average generation is between 20.336kW and 

79.2083kW, then it means “A window power pattern which has the largest level 

of wind speed as 17.8 m/s and the average generation is larger than 20.336kW and 

smaller than 79.2083kW at 13, 14, 15, 17, 18, 19, 20, 21, 23 o’clock every day of 

April carries a representative pattern of cluster 12”. After extracting all the 

associative classification rules and temporal patterns, the rules for 

classification/prediction of new data are generated. Generated classification rules 

for each calendar pattern is following format:  

 

(rule1, rule2, ... , rulen, CPi) (4) 

  

where, rulei is the generated associative rules and CPi is the calendar-based 

temporal pattern. However, the number of rules generated by temporal FP-growth 

method can be huge and associative classification rules include redundant rules. 

To remove the redundant rules and make the efficient classifier, we use the rule 
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ranking method. This method is used for rule ranking and redundant pattern 

pruning. Rule ranking is needed to select the best pattern in case of overlapping 

rules. Redundant rules are defined following definition. 

 

Definition 4.5. Redundant rule: A rule r is redundant if and only if any of its 

subrule has higher rank than r. Redundant rule will should be deleted.  

 

Definition 4.6. Rule ranking, given two rules ri and rj, ri >rj  (or ri is ranked 

higher than rj) if  

(1)  confidence, δ (ri) > confidence, δ (rj) or 

(2) δ (ri)=δ (rj) but support, σ (ri) > support, σ (rj).  

 

If itemset X –s a subset of X', rule r1: {X→c} is called as general rule for r2: 

{X'→c}. For two different rule r1  and  r2, in case that both rules are genera rule 

and r1 has higher rank than r2, rule r2 is so redundant rule as to be remove from the 

associative classification rules. After a set of associative classification rules is 

selected for classification model, we classify new data set. First, we select the 

rules whose temporal patterns can cover basic time intervals of cases. Then, we 

find the associative classification rules matching case in the selected one and 

classify class labels of the found rules. If all the rules matching the new data have 

same class label, the new data is assigned to that label. Otherwise, we classify the 

new data as class label of the rule with higher ranking.  

 

5      Experiment Results 

5.1 Subspace Cluster Analysis 

For unsupervised techniques like clustering, it is difficult to provide appropriate 

parameter setting without prior knowledge about the data is available. To speed 

up parameter setting process for users and give them more information to base 

their parameter choice on, the system supports parameter bracketing for direct 

feedback. This means that users can pick the most appropriate one(s) from 

subsequent runs of the subspace clustering algorithms according to given 

parameter settings’ combination. By directly comparing the results of different 

parameter settings, parameterization is no longer a guess, but becomes an 

informed decision based on the visual analysis of the all mined subspace clusters 

by overview browsing and object ranking. Parameter bracketing is used to pick 

the most appropriate one for subsequent runs of the subspace clustering 

algorithms by directly comparing the results of different parameter settings. Table 

3, 4, 5 shows the parameter bracketing for algorithms respectively. 
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Table 3: Parameter bracketing for DOC 

Parameter From Offset Op Step To 

Alpha 0.001 10 * 3 0.1 

Beta 0.1 0.1 + 4 0.4 

Maxtter 1024 0 + 1 1024 

k 9 1 + 5 13 

w 5 1 + 4 8 

Total number of experiments : 288 

 

The description and setting for the parameters for DOC algorithm in Table 1 is as 

follows.  

� Alpha: it can be viewed as a minimum required cluster density, if Alpha is too 

small, we may execute too many outer iterations. On the other hand, if Alpha is 

too large, we can miss an input cluster entirely. The given range is 0.001~0.1. 

� Beta: represents the user’s “opinion” on the relative importance of points versus 

number of dimensions in a cluster. When Beta is small, the algorithm chooses 

more dimensions for a cluster at the cost of throwing away cluster points. At the 

other end, when Beta is large, the algorithm merges input clusters. The given 

range is 0.1~0.4. 

� Maxtter: upper-bound the number of inner iterations. The given value is 1024. 

� k: # of clusters. The given range is 9~15. 

� w: interval of length, define a hyper-cube of given side length. The given range 

is 5~8. 
 

Table 4: Parameter bracketing for FIRES 

Parameter From Offset Op Step To 

Graph_K 1 3 + 4 10 

Graph_MU 1 3 + 4 10 

Graph_MINCLU 1 1 + 4 4 

Base_DBSCAN_ 

EPSILON 
0.4 0 + 1 0.4 

Base_DBSCAN_ 

MINPTS 
6 0 + 5 6 

Graph_SPLIT 0.66 0 + 1 0.66 

Post_DBSCAN_ 

EPSILON 
2 0 + 1 2 

Post_DBSCAN_ 

MINPTS 
6 0 + 1 6 

Post_ 25 0 + 1 25 
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Minimumpercent 

Total number of experiments : 320 

 

FIRES algorithm has main parameters (Graph_K, Graph_MU and 

Graph_MINCLU) and other parameters of minor interest. 

� Graph_K: it is used to find k-most-similar clusters from 1D base clusters. The 

given range is 1~10. 

� Graph_MU: it is used to merge those base clusters which are all mostly similar 

to each other. The given range is 1~10. 

� Graph_MINCLU: it is used to generate best merge clusters. The given range is 

1~4. 

Parameter settings of minor interest are listed as bellow (it is following the 

optimized setting of parameters in OpenSubspace toolkit for FIRES): 

� Base_DBSCAN_EPSILON: the given value is 0.4. 

� Base_DBSCAN_MINPTS: the given value is 6. 

� Graph_SPLIT: the given value is 0.66.  

� Post_DBSCAN_EPSILON: the given value is 2.  

� Post_DBSCAN_MINPTS: the given value is 6.  

� Pre_Minimumpercent: the given value is 25.  

 

Table 5: Parameter bracketing for PROCLUS 

Parameter From Offset Op Step To 

Average 

dimensions 
2 1 + 8 9 

Number of 

clusters 
8 1 + 9 15 

Total number of experiments : 72 
 

 

Parameter description and setting of PROCLUS: 

� Number of clusters: the given range is 8~15. 

� Average dimensions: The given range is 2~9. 
 

Clustering is performed after parameter setting of three subspace clustering 

algorithms, the generated cluster label at that time is added into the training set to 

evaluate the algorithms including DOC, FIRES, PROCLUS. The generated cluster 

labels are regarded as class label for the purpose of testing the supervised learning. 

C.45, a kind of decision tree induction is used for testing the accuracy. After first 

decision tree model is constructed as training set, and then we can evaluate how 

accurate the algorithm can classify by applying the test set on the underlying 

model. The performance indices of the classified results are the rate of accurate 

classification, the rate of the inaccurate classification and RMSE(Root Mean 

Squared Error) shown in Table 6. Moreover, the last column of Table 6 is the 

number of clusters generated by performing a specific clustering algorithm. Based 
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the replicated experiment and the test result of subspace clustering algorithms, 

PROCLUS is adequate for accurate cluster constructing and the optimal number 

of cluster is 15. 

Table 6:  Result s of applying decision tree for each clustering algorithm 

Cluster 

Correctly 

classified 

objects 

Incorrectly 

classified 

objects 

Root mean 

squared error 

# of 

cluster 

DOC 39.33% 60.67% 0.38 5 

FIRES 72,67% 27.33% 0.22 10 

PROCLUS 88.64% 11.36% 0.11 15 

 

5.2 Forecasting Wind Power Pattern Using Temporal Mining 

We perform experiments to compare temporal classifier with state-of-the-art 

classifiers: CMAR(Classification Based on Multiple Class Association Rules), 

Bayesian classifier(TAN), and the widely known SVM(Support Vector Machine). 

We use WEKA's implementation of TAN, and SVM and LUCS-KDD software 

[19] of CMAR. The parameters of the four classifiers were set as follows.  

� For the temporal associative classifier (temporal FP-growth), the minimum 

support threshold=1.2%; the minimum confidence threshold=80%.  

� For the CMAR, the minimum support was set to 1.2%, the minimum 

confidence=80% and the database coverage was set to 3.75 (critical threshold 

for a 5% significance level, assuming degree of freedom equivalent to 1).  

� For the SVM, the soft margin allowed errors during training. We used RBF 

kernel function [20].  

� The parameters of Bayesian were default values. 

In our experiment, we build the four classifiers from the preprocessed wind power 

training data. To evaluate classification performance w. r. t. the number of 

instances and class labels, we used an accuracy, RMSE and weighted average of 

TPR(True Positive Rate)/FPR (False Positive Rate). The results of classifiers 

comparison are shown in Table 7.  

 

Table 7: A description of summary results 

Classifier Accuracy RMSE TPR FPR 

Temporal associative 

classifier 
88.6% 0.108 0.886 0.047 
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CMAR 88.3% 0.109 0.883 0.040 

SVM 75.76% 0.153 0.758 0.076 

Bayesian classifier 72.34% 0.165 0.723 0.051 
 

Fig. 9 shows the predicted result of each classifier with respect to the given 

representative patterns of cluster.  

With respect to performance comparison, the algorithm considering temporal 

characteristics is expected to show more accurate result. According to the results 

shown in Table 7 and Fig. 9, our temporal associative classifier and CMAR 

perform very well. They archive higher accuracy than Bayesian classifier(TAN) 

and SVM 

 

Fig. 8. Comparisons for forecasting results of wind power patterns. 

 

6      Conclusion 

This paper suggests an associative classification approach extended from the 

existent FP-growth algorithm, subspace clustering method and temporal mining 

for accurate prediction of wind power pattern based on data measured at a wind 

turbine. The experimental results show that such approach is similar to CMAR 

method and the prediction is more accurate wind power pattern than a Bayesian 

classifier and SVM. This paper has a limit not to extract sufficient temporal 

patterns from turbine data having time information. That is why the data used for 

experiments is just one year date, therefore no periodicity is found in terms of 
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yearly and monthly scale. If the wind turbine data is sufficient later, temporal 

patterns are likely to have many impacts on the prediction result of wind power 

pattern. 
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