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Abstract

The aim of this paper is to study extensions of RT0 topo-
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1 Introduction

In crisp topology, extension theory is a well developed theory ( for references
please see [2], [3],[9], [12], [19] and [20]). In fuzzy topology only some particular
type of extensions such as compactifications, completions of fuzzy topological
spaces and fuzzy uniform spaces have been studied in [15], [23], [24]. The
fuzzyfication of general extension theory has been started by us in [5], where
a concept of fuzzyfication of extensions of topological spaces of fuzzy sets is
introduced and a method of construction of strongly T0 principal extension of
a strongly T0 topological space of fuzzy sets is provided.
In this paper we study extension theory and provide a method of construc-
tion of RT0 principal extension of an RT0 topological space of fuzzy sets with
the given α-graded trace system for each α ∈ (0, 1]. In this setting for each
α ∈ (0, 1], we find an RT0 principal extension of an RT0 topological space
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(X, u) with the given α-graded trace system.
Chang [4] introduced the notion of fuzzy topological spaces. In this context it
is worth noting that Chang’s fuzzy topology is in fact a crisp topology of fuzzy
sets. In this paper Chang’s fuzzy topology will be referred to as topology of
fuzzy sets. (X, u) will be called a topological space of fuzzy sets if X is a set
and u is a Chang topology on it.
In Section 2, some known definitions and known results are given which will
be used in the sequel.
In Section 3, a definition of RT0 topological spaces of fuzzy sets is given. Some
results concerning principal extensions have been established.
In Section 4, using the concepts and results of Section 3, we present a con-
struction of RT0 principal extension of RT0 spaces with the given α-graded
trace system.

2 Preliminaries

Let X be a nonempty set and Y be a nonempty subset of X. For a fuzzy set
λ of Y , its natural extension λY <X is defined by λY <X(x) = λ(x) if x ∈ Y and
λY <X(x) = 0 if x ∈ X − Y . When there is no chance of confusion, we shall
use (for simplicity) the same symbol λ for λY <X .
In what follows I will stand for [0,1].

Definition 2.1 [14] Let (X, u) be a topological space of fuzzy sets. Then
(X, u) is called T0 if for any pair of distinct points x, y ∈ X, ∃λ ∈ u such that
λ(x) 6= λ(y).

Definition 2.2 [4] Let (X, u) and (Y, v) be two topological spaces of fuzzy
sets. A mapping η : (X, u) → (Y, v) is said to be continuous if η−1(λ) ∈
u,∀λ ∈ v.

Definition 2.3 [5] Let (X, u) and (Y, v) be two topological spaces of fuzzy
sets. A mapping η : (X, u)→ (Y, v) is said to be closed if η(µ) ∈ v′,∀µ ∈ u′,
where u′ and v′ are the families of closed sets in (X, u) and (Y, v) respectively.

Definition 2.4 [11] Let (X, u) and (Y, v) be two topological spaces of fuzzy
sets. A mapping η : (X, u)→ (Y, v) is said to be open if η(λ) ∈ v,∀λ ∈ u.

Definition 2.5 [11] A mapping η : (X, u) → (Y, v) is said to be a homeo-
morphism if η is bijective, continuous and open (or closed).

Definition 2.6 [25] Let (X, u) be a topological space of fuzzy sets and λ be
a fuzzy set in X. Then the closure of λ in (X, u) is defined by

cluλ = ∧{µ ∈ u′ : µ ≥ λ}.
When there is no chance of confusion regarding the role of u, cluλ will simply
be denoted by clλ.
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Theorem 2.7 [16, 17] Let (X, u) and (Y, v) be two topological spaces of
fuzzy sets and η : X → Y be a mapping. Then η : (X, u)→ (Y, v) is continuous
if and only if

η(cluλ) ≤ clvη(λ),∀λ ∈ IX .

Theorem 2.8 [5] For a bijective mapping η : X → Y, η : (X, u) → (Y, v)
is homeomorphism if and only if

η(cluλ) = clvη(λ), ∀λ ∈ IX .

Definition 2.9 [25] Let (X, u) be a topological space of fuzzy sets and A ⊂
X. Let λ be a fuzzy set in X. Then λA is a fuzzy set in A defined by

λA(x) = λ(x),∀x ∈ A.
Define uA = {λA : λ ∈ u}. Then it is easily verified that uA is a topology of
fuzzy sets on A and (A, uA) is called a subspace of (X, u).

Definition 2.10 [1] A fuzzy stack S on X is a subset of IX such that
λ ≥ µ ∈ S implies λ ∈ S.

Definition 2.11 [1] A fuzzy grill G on X is a fuzzy stack on X such that
(i) 0̃X 6∈ G,
(ii) λ ∨ µ ∈ G⇒ λ ∈ G or µ ∈ G.

Remark 2.12 In this article fuzzy stacks and fuzzy grills as defined in [
definitions 2.10 and 2.11 ] will be referred to as stacks of fuzzy sets and grills
of fuzzy sets respectively.

A grill of fuzzy sets G is called proper if G 6= φ.

Definition 2.13 [5] A grill G of fuzzy sets on a topological space (X, u) is
said to be a c-grill of fuzzy sets if clλ ∈ G⇒ λ ∈ G, ∀λ ∈ IX .

Definition 2.14 ∀f ∈ IX , we define Z(f) to be the subset {x ∈ X :
f(x) = 0} of X which is called the zero-set of f in X.

Remark 2.15 Here it is important to note that the symbol Z(f) has been
used by Gillman and Jerison [13] for the zero-set of a real valued continuous
function f on a topological space X. In this article we use the same symbol for
the zero-set of an arbitrary element f ∈ IX for an arbitrary set X.

Definition 2.16 [5] Let (X, u) and (Y, v) be two topological spaces of fuzzy
sets and η : X → Y be a mapping. Then (η, (Y, v)) is said to be an embedding
of (X, u) if η : (X, u)→ (η(X), vη(X)) is a homeomorphism.
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Definition 2.17 [5] Let (X, u) and (Y, v) be two topological spaces of fuzzy
sets and η : X → Y be a mapping. Then (η, (Y, v)) is said to be an exten-
sion of (X, u) if (η, (Y, v)) is an embedding and clvη(1̃X) = 1̃Y or equivalently
clv1̃η(X) = 1̃Y , subject to the assumption that 1̃η(X) is the fuzzy set in Y satis-
fying 1̃η(X)(y) = 1, ∀y ∈ η(X) and 1̃η(X)(y) = 0,∀y ∈ Y − η(X).

Theorem 2.18 [5] If η : X → Y is one-one and (X, u) , (Y, v) are topolog-
ical spaces of fuzzy sets, then (η, (Y, v)) is an extension of (X, u) if and only if

(i) ∀λ ∈ IX , η(cluλ) = (clvη(λ)) ∧ η(1̃X),
and

(ii) clvη(1̃X) = 1̃Y .

Definition 2.19 [5] Let E1 = (η1, (Y1, v1)) and E2 = (η2, (Y2, v2)) be two
extensions of (X, u). Then E1 is said to be greater than or equal to E2 (
written as E1 ≥ E2 ) if there is a continuous function f from (Y1, v1) onto
(Y2, v2) such that foη1 = η2.

Definition 2.20 [5] The extension E1 = (η1, (Y1, v1)) is said to be equiva-
lent to the extension E2 = (η2, (Y2, v2)) ( written as E1 ≈ E2) if there is a
homeomorphism h of (Y1, v1) onto (Y2, v2) such that hoη1 = η2.

Definition 2.21 [5] Let (X, u) be a topological space of fuzzy sets and B be
a family of closed sets in (X, u). Then B is said to be a base for the closed
sets in (X, u) if each closed set in (X, u) can be expressed as the infimum of
a subfamily of B.

Theorem 2.22 [5] Let B ⊂ IX such that
(i) 0̃X ∈ B,
(ii) ∀λ1, λ2 ∈ B ⇒ λ1 ∨ λ2 ∈ B.

Then B is a base for closed sets of some topology of fuzzy sets on X.

Definition 2.23 [5] An extension E = (η, (Y, v)) is said to be a principal
extension of (X, u) if {clvη(µ) : µ ∈ IX} is a base for the closed sets in (Y, v).

Definition 2.24 [18] A fuzzy point in a set X is a mapping αx : X → I,
where x ∈ X,α ∈ (0, 1] defined by αx(x) = α and αx(y) = 0 for y 6= x. Here x
is the support of the fuzzy point αx and α its value.
A fuzzy point αx is said to belong to a fuzzy set λ in X, denoted by αx∈̃λ if
α ≤ λ(x).

Following [21] a definition of remoted neighbourhood of a fuzzy point is given
below:
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Definition 2.25 Let (X, u) be a topological space of fuzzy sets and αx be a
fuzzy point. Then λ ∈ u′ is called a remoted neighbourhood of αx if αx 6 ∈̃λ.
The set of all remoted neighbourhoods of αx is denoted by Rαx.

Definition 2.26 [5] A topological space (X, u) of fuzzy sets is called strongly
T0 if for each pair of distinct points x, y ∈ X, either there is a λ ∈ u such that
λ(x) > 0 and λ(y) = 0 or there is a µ ∈ u such that µ(x) = 0 and µ(y) > 0.

3 Some Basic Results on Extensions of Topo-

logical Spaces of Fuzzy Sets

We begin the section with the following definition.

Definition 3.1 A topological space (X, u) of fuzzy sets is said to be RT0

if for each pair of distinct points x, y of X and for each α ∈ (0, 1], ∃λα ∈
Rαx , λα 6∈ Rαy or ∃µα ∈ Rαy , µα 6∈ Rαx.

Example 3.2 Let X = {x, y} and u =
{

0X , 1X
}⋃{ {x/α, y/1} : α ∈

[0, 1)
}

. Then u′ =
{

1X , 0X
}⋃{ {x/α, y/0} : α ∈ (0, 1]

}
.

Thus for each α ∈ (0, 1], ∃ λα = {x/α, y/0} ∈ u′ such that α > 0 = λα(y) and
α ≤ α = λα(x). i.e., αy 6 ∈̃λα and αx∈̃λα. i.e., λα ∈ Rαy and λα 6∈ Rαx.
Therefore (X, u) is an RT0-topological space of fuzzy sets.

Theorem 3.3 If (X, u) is RT0, then it is strongly T0.

Proof. Let (X, u) be RT0 and x, y ∈ X such that x 6= y. Then for each
α ∈ (0, 1], ∃λα ∈ Rαx , λα 6∈ Rαy or ∃µα ∈ Rαy , µα 6∈ Rαx .
Therefore for each α ∈ (0, 1], ∃ λα ∈ u′ such that α > λα(x), α ≤ λα(y) or
∃ µα ∈ u′ such that α > µα(y), α ≤ µα(x).
Thus for α = 1,∃ λ1 ∈ u′ such that λ1(x) < 1, λ1(y) = 1 or ∃ µ1 ∈ u′ such
that µ1(y) < 1, µ1(x) = 1.
Taking λ′1 = γ and µ′1 = δ we have ∃ γ ∈ u such that γ(x) > 0, γ(y) = 0 or
∃ δ ∈ u such that δ(y) > 0, δ(x) = 0.
Hence (X, u) is strongly T0.

Note 3.4 But the converse of Theorem 3.3 is not true, which is justified by
the following Example.

Example 3.5 Let X = {x, y}, u =
{

0̃X , 1̃X , {x/0.4, y/0}
}
.

Then u′ =
{

1̃X , 0̃X , {x/0.6, y/1}
}
.

If α = 0.5, then Rαx = Rαy . Thus (X, u) is not RT0.
But it is clear that (X, u) is strongly T0.
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Theorem 3.6 If (X, u) is RT0, then it is T0.

Proof. Let (X, u) be RT0. Then it is strongly T0 and hence it is T0.

Note 3.7 But the converse of the theorem is not true, which is justified by
the following example.

Example 3.8 Let X = {x, y, z}, u =
{

0̃X , 1̃X , {x/0.2, y/0.3, z/0.4}
}
.

Therefore u′ =
{

1̃X , 0̃X , {x/0.8, y/0.7, z/0.6}
}
.

If α = 0.5, then Rαx = Rαy = Rαz . Therefore (X, u) is not RT0.
It is easy to check that (X, u) is T0.

Definition 3.9 Let (X, u) be a topological space of fuzzy sets. ∀x ∈ X, ∀α ∈
(0, 1], define

Gαx = { λ ∈ IX : αx∈̃clλ }.

Theorem 3.10 Let (X, u) be a topological space of fuzzy sets. Then (X, u)
is RT0 if and only if ∀x, y ∈ X,Gαx = Gαy for some α ∈ (0, 1] imply x = y.

Proof. Let (X, u) be an RT0 topological space of fuzzy sets. Let α ∈ (0, 1]
and x, y ∈ X such that x 6= y.
Since(X, u) is RT0,
∃λ ∈ Rαx , λ 6∈ Rαy , (1)

or
∃µ ∈ Rαy , µ 6∈ Rαx . (2)

Without any loss of generality we assume that (1) holds.
Then αx 6 ∈̃λ = clλ, αy∈̃λ = clλ , since λ is closed.
i.e., λ ∈ Gαy but λ 6∈ Gαx .
Thus Gαx 6= Gαy . Therefore the condition holds.
Conversely let the condition hold.
Let x, y ∈ X such that x 6= y and α ∈ (0, 1] .
Therefore Gαx 6= Gαy .
Thus there exists λα ∈ Gαx such that λα 6∈ Gαy or there exists µα ∈ Gαy such
that µα 6∈ Gαx .
Therefore there exists λα ∈ IX such that αx∈̃clλα, αy 6 ∈̃clλα or there exists
µα ∈ IX such that αy∈̃clµα, αx 6 ∈̃clµα.
Taking clλα = γα and clµα = δα we have ∃γα ∈ Rαy , γα 6∈ Rαx or ∃δα ∈
Rαx , δα 6∈ Rαy .
Therefore (X, u) is RT0. This completes the proof.

Theorem 3.11 Let (X, u) be a topological space of fuzzy sets. Then ∀x ∈ X
and ∀α ∈ (0, 1], Gαx is a proper c- grill of fuzzy sets in (X, u).
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Proof. Let x ∈ X and α ∈ (0, 1]. Clearly 0̃X 6∈ Gαx .
Let λ, µ ∈ IX . Then

λ ≥ µ ∈ Gαx ⇒ αx∈̃clµ ≤ clλ⇒ λ ∈ Gαx

and
λ ∨ µ ∈ Gαx ⇒ αx∈̃cl(λ ∨ µ)⇒ αx∈̃(clλ ∨ clµ)
⇒ αx∈̃clλ or αx∈̃clµ⇒ λ ∈ Gαx , or µ ∈ Gαx .

Thus Gαx is a grill of fuzzy sets on X.
Let λ ∈ IX . Then

clλ ∈ Gαx ⇒ αx∈̃cl(clλ)⇒ αx∈̃clλ⇒ λ ∈ Gαx .
Therefore Gαx is a c-grill of fuzzy sets in (X, u).
Clearly 1̃X ∈ Gαx . Therefore Gαx 6= φ and hence Gαx is proper.
Thus for each x ∈ X and for each α ∈ (0, 1], Gαx is a proper c-grill of fuzzy
sets in (X, u).

Definition 3.12 Let E = (η, (Y, v)) be an extension of (X, u). Let y ∈ Y
and α ∈ (0, 1]. Define the trace T(αy ,E) of the point αy with respect to the
extension E by

T(αy ,E) = {λ ∈ IX : αy∈̃clvη(λ)}.
When there is no chance of confusion, we shall simply write Tαy for T(αy ,E).
The α-graded trace system XE

α of the extension E is defined by
XE
α = {Tαy : y ∈ Y }.

Also define XE
(0,1] by

XE
(0,1] = {Tαy : y ∈ Y, α ∈ (0, 1]}.

Theorem 3.13 Let E = (η, (Y, v)) be an extension of (X, u). Then
(i) Tαy is a proper c-grill of fuzzy sets in (X, u),∀y ∈ Y, ∀α ∈ (0, 1].
(ii) Tη(αx) = Gαx ,∀x ∈ X, ∀α ∈ (0, 1].

Proof. (i) Let y ∈ Y and α ∈ (0, 1]. Clearly 0̃X 6∈ Tαy .
Let λ, µ ∈ IX such that λ ≥ µ ∈ Tαy . Then

αy∈̃clvη(µ) ≤ clvη(λ).
Therefore

α ≤ clvη(µ)(y) ≤ clvη(λ)(y)⇒ αy∈̃clvη(λ)⇒ λ ∈ Tαy .
∀λ, µ ∈ IX ,

λ ∨ µ ∈ Tαy ⇒ αy∈̃clvη(λ ∨ µ)⇒ αy∈̃clv(η(λ) ∨ η(µ))
⇒ αy∈̃clvη(λ) ∨ clvη(µ)⇒ α ≤ clvη(λ)(y) ∨ clvη(µ)(y)
⇒ α ≤ clvη(λ)(y) or α ≤ clvη(µ)(y)
⇒ αy∈̃clvη(λ) or αy∈̃clvη(µ)⇒ λ ∈ Tαy or µ ∈ Tαy .

Also for λ ∈ IX ,
cluλ ∈ Tαy ⇒ αy∈̃clvη(cluλ)

⇒ α ≤ clvη(cluλ)(y) ≤ clv(clvη(λ))(y),
since η(cluλ) = (clvη(λ)) ∧ η(1̃X) ≤ clvη(λ).
⇒ α ≤ clvη(λ)(y)⇒ αy∈̃clvη(λ) ⇒ λ ∈ Tαy .
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Clearly 1̃X ∈ Tαy . Therefore Tαy 6= φ.
Thus Tαy is a proper c-grill of fuzzy sets in (X, u), for each y ∈ Y and for each
α ∈ (0, 1].
(ii) Let x ∈ X and α ∈ (0, 1]. Let λ ∈ IX . Then

λ ∈ Tη(αx) ⇔ η(αx)∈̃clvη(λ)⇔ αη(x)∈̃clvη(λ)
⇔ α ≤ (clvη(λ))(η(x)) ⇔ α ≤ (clvη(λ) ∧ 1η(X))(η(x))
⇔ α ≤ (clvη(λ) ∧ η(1X))(η(x))⇔ α ≤ η(cluλ)(η(x))
⇔ α ≤ cluλ(x) ( since η is one-one )⇔ λ ∈ Gαx .

Thus Tη(αx) = Gαx .

Theorem 3.14 If E1 and E2 be two equivalent extensions of (X, u), then
XE1
α = XE2

α for each α ∈ (0, 1] and hence XE1

(0,1] = XE2

(0,1].

Proof. Let E1 = (η1, (Y1, v1)) and E2 = (η2, (Y2, v2)) be two equivalent exten-
sions of (X, u).
Then ∃ a homeomorphism h of (Y1, v1) onto (Y2, v2) such that hoη1 = η2.
Let y ∈ Y1, α ∈ (0, 1] and λ ∈ IX . Then

λ ∈ T(αy ,E1) ⇔ αy∈̃clv1η1(λ)⇔ h(αy)∈̃h(clv1η1(λ))
⇔ αh(y)∈̃clv2h(η1(λ))
⇔ αh(y)∈̃clv2η2(λ), since h(η1(λ)) = hoη1(λ) = η2(λ).
⇔ λ ∈ T(α(h(y),E2).

Thus T(αy ,E1) = T(αh(y),E2).

Therefore XE1
α = {T(αy ,E1) : y ∈ Y1}

= {T(αh(y),E2) : y ∈ Y1}
= {T(αy ,E2) : y ∈ Y2}, because Y2 = {h(y) : y ∈ Y1}.
= XE2

α ∀α ∈ (0, 1].
Also

XE1

(0,1] = {T(αy ,E1) : y ∈ Y1, α ∈ (0, 1]}
= {T(αh(y),E2) : y ∈ Y1, α ∈ (0, 1]}
= {T(αy ,E2) : y ∈ Y2, α ∈ (0, 1]}
= XE2

(0,1].

Note 3.15 Example is given below to show that the converse of Theorem
3.14 does not hold.

Example 3.16 Let X, Y, Z be three infinite sets such that X ⊂ Y ⊂ Z and
|X| < |Y | < |Z| , where |X| denotes the cardinal number of the set X.
Let u ⊂ IZ be defined by

∀λ ∈ IZ , λ ∈ u if and only if λ = 0̃Z or Z(λ) is finite.
Then it is clear that u is a topology of fuzzy sets on Z.
Let (X, uX) and (Y, uY ) be subspaces of (Z, u). Let i : X → Z be the inclusion
map. Let i also denote the inclusion map of X into Y .
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Obviously E1 = (i, (Z, u)) is an extension of (X, uX) and E2 = (i, (Y, uY )) is
also an extension of (X, uX).
Note that for each x ∈ X and ∀α ∈ (0, 1], T(i(αx),E1) = Gαx = T(i(αx),E2), i.e.,
T(αx,E1) = Gαx = T(αx,E2).
Let G∗ = {λ ∈ IX : λ(a) = 1 for infinitely many points a of X}.
Then it is easy to check that ∀α ∈ (0, 1],

T(αz ,E1) = G∗, ∀z ∈ Z −X and T(αy ,E2) = G∗, ∀y ∈ Y −X.

Hence XE1
α = XE2

α , ∀α ∈ (0, 1] and hence XE1

(0,1] = XE2

(0,1].
But E1 6≈ E2, as |Y | < |Z|.

Theorem 3.17 For any extension E = (η, (Y, v)) of (X, u) and ∀y, z ∈ Y,
Gαy ⊂ Gαz implies Tαy ⊂ Tαz for each α ∈ (0, 1].

Proof. Let α ∈ (0, 1] and y, z ∈ Y be such that Gαy ⊂ Gαz .
Then ∀µ ∈ IX ,

µ ∈ Tαy ⇒ αy∈̃clvη(µ)⇒ η(µ) ∈ Gαy ⇒ η(µ) ∈ Gαz , since Gαy ⊂ Gαz

⇒ αz∈̃clvη(µ) ⇒ µ ∈ Tαz .
Thus Tαy ⊂ Tαz .

Note 3.18 An example is given below to show that the converse of the above
theorem is not true.

Example 3.19 Let Y be an infinite set. Let v ⊂ IY be defined by
∀λ ∈ IY , λ ∈ v if and only if λ = 0̃Y or Z(λ) is finite.

Clearly v is a topology of fuzzy sets on Y .
Let X be an infinite set such that X ⊂ Y and |Y −X| ≥ 2 and i : X → Y be
the inclusion map. Then it is easy to check that (i, (Y, v)) is an extension of
(X, vX).
Let y, z(6= y) ∈ Y −X. Then it is clear that

Tαy = {λ ∈ IX : λ(a) = 1 for infinitely many points a of X }
= Tαz , ∀α ∈ (0, 1].

Choose λ, µ ∈ IY such that
λ(y) = 0.5, λ(z) = 0.6, µ(y) = 0.6, µ(z) = 0.3

and both the sets {a ∈ Y : λ(a) = 1} and {a ∈ Y : µ(a) = 1} are finite.
Then it is clear that λ ∈ G0.6z , λ 6∈ G0.6y and µ ∈ G0.6y , µ 6∈ G0.6z .
Thus G0.6z 6⊂ G0.6y and G0.6y 6⊂ G0.6z .

However the following result holds.

Theorem 3.20 If (η, (Y, v)) is a principal extension of (X, u), then ∀y, z ∈
Y,

Tαy ⊂ Tαz if and only if Gαy ⊂ Gαz for each α ∈ (0, 1].
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Proof. ‘If part’ has already been proved above.
Let α ∈ (0, 1] and y, z ∈ Y such that Tαy ⊂ Tαz .
Let λ ∈ IY such that λ ∈ Gαy . Then αy∈̃clvλ.
Since { clvη(µ) : µ ∈ IX } is a base for the closed sets in (Y, v),

αy∈̃ ∧ { clvη(µ) : µ ∈ IX , clvη(µ) ≥ λ }.
Thus

αy∈̃ clvη(µ), ∀µ ∈ IX with clvη(µ) ≥ λ,
and hence

µ ∈ Tαy , ∀µ ∈ IX with clvη(µ) ≥ λ.
Since Tαy ⊂ Tαz , µ ∈ Tαz ∀µ ∈ IX with clvη(µ) ≥ λ, which implies that

αz∈̃ ∧ { clvη(µ) : µ ∈ IX , clvη(µ) ≥ λ }.
i.e., αz∈̃ clvλ i.e., λ ∈ Gαz .
Hence Gαy ⊂ Gαz .

The following corollary is an easy consequence of the above theorem.

Corollary 3.21 If (η, (Y, v)) is a principal extension of (X, u), then ∀y, z ∈
Y, Tαy = Tαz if and only if Gαy = Gαz for each α ∈ (0, 1].

Theorem 3.22 If (η, (Y, v)) is a principal extension of (X, u), then (Y, v)
is RT0 if and only if

∀y, z ∈ Y, Tαy = Tαz for some α ∈ (0, 1]⇒ y = z.

Proof. Let (Y, v) be RT0. Let y, z ∈ Y such that Tαy = Tαz for some α ∈ (0, 1].
Thus Gαy = Gαz and hence y = z ( see Theorem 3.10 ).
Conversely suppose that the condition holds.
i.e., ∀y, z ∈ Y, Tαy = Tαz for some α ∈ (0, 1] implies y = z.
Let Gαy = Gαz for some α ∈ (0, 1]. Therefore by the above corollary we have
Tαy = Tαz and hence by the given condition we have y = z.
Hence (Y, v) is RT0 (see Theorem 3.10).

4 Construction of RT0 Principal Extension of

an RT0 Topological Space with the Given α-

graded Trace System

In this section (X, u) will be an RT0 topological space of fuzzy sets and for
each α ∈ (0, 1], X∗α be a collection of proper c-grills of fuzzy sets in (X, u) such
that Gαx ∈ X∗α, ∀x ∈ X.
Let α ∈ (0, 1]. Define,

fα : X → X∗α by fα(x) = Gαx , ∀x ∈ X.
In view of Theorem 3.10, it follows that fα is one-one.
∀λ ∈ IX , , define λcα : X∗α → I by the following :
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λcα(Gαx) = cluλ(x),∀x ∈ X
and for G ∈ X∗α − {Gαx : x ∈ X},

λcα(G) =

{
1 if λ ∈ G
0 if λ 6∈ G.

Let λ, µ ∈ IX . ∀x ∈ X
(λ ∨ µ)cα(Gαx) = clu(λ ∨ µ)(x) = (cluλ ∨ cluµ)(x) = cluλ(x) ∨ cluµ(x)
= λcα(Gαx) ∨ µcα(Gαx) = (λcα ∨ µcα)(Gαx).

Also for G ∈ X∗α − {Gαx : x ∈ X},
(λ ∨ µ)cα(G) = (λcα ∨ µcα)(G) ,

since λ ∨ µ ∈ G if and only if λ ∈ G or µ ∈ G.
Thus (λ ∨ µ)cα = λcα ∨ µcα,∀λ, µ ∈ IX . Also (0̃X)cα = 0̃X∗

α
.

Thus {λcα : λ ∈ IX} is a base for the closed sets of a topology wα (say) of fuzzy
sets on X∗α.

Theorem 4.1 Let α ∈ (0, 1] and (X, u), (X∗α, wα) and the other symbols
used below be same as above. Then
(i) ∀λ, µ ∈ IX , λ ≤ µ⇒ λcα ≤ µcα.
(ii) ∀λ ∈ IX , (cluλ)cα = λcα.
(iii) ∀λ, µ ∈ IX , fα(λ) ≤ µcα ⇔ cluλ ≤ cluµ.
(iv) ∀λ ∈ IX , clwαfα(λ) = λcα.
(v) clwαfα(1̃X) = 1̃X∗

α
.

(vi) ∀λ ∈ IX , ( clwαfα(λ) ) ∧ fα(1̃X) = fα(cluλ).

Proof. Let α ∈ (0, 1].
(i) ∀λ, µ ∈ IX ,

λ ≤ µ⇒ λcα(G) ≤ µcα(G),∀G ∈ X∗α ⇒ λcα ≤ µcα.
(ii) Let λ ∈ IX . Then

(cluλ)cα(Gαx) = clu(cluλ)(x) = cluλ(x) = λcα(Gαx),∀x ∈ X
and clearly

(cluλ))cα(G) = λcα(G) if G ∈ X∗α − {Gαx : x ∈ X},
since G is a c-grill of fuzzy sets in X.

Thus (cluλ)cα(G) = λcα(G),∀G ∈ X∗α.
Hence (cluλ)cα = λcα,∀λ ∈ IX .
(iii) For λ, µ ∈ IX ,

fα(λ) ≤ µcα ⇔ fα(λ)(G) ≤ µcα(G),∀G ∈ X∗α
⇔ fα(λ)(Gαx) ≤ µcα(Gαx),∀x ∈ X
⇔ fα(λ)(fα(x)) ≤ cluµ(x),∀x ∈ X
⇔ λ(x) ≤ cluµ(x),∀x ∈ X, since fα is one-one.
⇔ λ ≤ cluµ
⇔ cluλ ≤ cluµ.

(iv) ∀λ ∈ IX ,
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clwαfα(λ) = ∧{ µcα : µcα ≥ fα(λ), µ ∈ IX}, since {µcα : µ ∈ IX}
is a base for the closed sets in (X∗α, wα).

= ∧{ µcα : cluλ ≤ cluµ, µ ∈ IX }
= ∧{ (cluµ)cα : cluλ ≤ cluµ, µ ∈ IX }
= (cluλ)cα
= λcα.

(v) clwαfα(1̃X) = (1̃X)cα = 1̃X∗
α
, since (1̃X)cα(G) = 1 = 1̃X∗

α
(G) ∀G ∈ X∗α.

(vi) Let λ ∈ IX . Then ∀x ∈ X,(
( clwαfα(λ) ) ∧ fα(1̃X)

)
(Gαx) =

(
λcα ∧ fα(1̃X)

)
(Gαx)

= cluλ(x) ∧ 1̃X(x) = cluλ(x) = fα(cluλ)(fα(x))( since fα is one-one)
= fα(cluλ)(Gαx).

Also if G ∈ X∗α − {Gαx : x ∈ X}, then(
( clwαfα(λ) ) ∧ fα(1̃X)

)
(G) =

(
λcα ∧ fα(1̃X)

)
(G) = λcα(G) ∧ 0

= 0 = fα(cluλ)(G).
Thus ( clwαfα(λ) ) ∧ fα(1̃X) = fα(cluλ).
This completes the proof.

Remark 4.2 Since for each α ∈ (0, 1], fα : X → X∗α is one-one and
∀λ ∈ IX , ( clwαfα(λ) ) ∧ fα(1̃X) = fα(cluλ) and clwαfα(1̃X) = 1̃X∗

α
, it follows

that (fα, (X
∗
α, wα)) is an extension of (X, u) for each α ∈ (0, 1].

Since for each α ∈ (0, 1], { λcα : λ ∈ IX} is a base for the closed sets of
(X∗α, wα) and clwαfα(λ) = λcα,∀λ ∈ IX , it follows that (fα, (X

∗
α, wα)) is a

principal extension of (X, u) for each α ∈ (0, 1].
Note that ∀Gαx ∈ X∗α,

TαGαx = { µ ∈ IX : αGαx ∈̃ clwαfα(µ) }
= {µ ∈ IX : ( clwαfα(µ) )(Gαx) ≥ α }
= { µ ∈ IX : µcα(Gαx) ≥ α }
= { µ ∈ IX : cluµ(x) ≥ α }
= { µ ∈ IX : αx∈̃ cluµ }
= Gαx .

Also if G ∈ X∗α − {Gαx : x ∈ X}, then
TαG = {µ ∈ IX : µcα(G) ≥ α}

= {µ ∈ IX : µcα(G) = 1}
= {µ ∈ IX : µ ∈ G}
= G.

Thus TαG = G, ∀G ∈ X∗α.
Therefore X∗α is the α-graded trace system of the extension (fα, (X

∗
α, wα)).

Also for each α ∈ (0, 1] we have,
∀G1, G2 ∈ X∗α, TαG1

= TαG2
⇒ G1 = G2,

and hence (X∗α, wα) is RT0 for each α ∈ (0, 1].
Thus (fα, (X

∗
α, wα)) is an RT0 principal extension of (X, u) with the given α-

graded trace system for each α ∈ (0, 1].
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Notation 4.3 The extension (fα, (X
∗
α, wα)) will be denoted by Eα(X∗α).

Thus XEα(X∗
α)

α = X∗α.

5 Future Work

In [6], we introduced T0 principal extensions of a T0-topological spaces of fuzzy
sets. In [8], we defined fuzzy conjoint compactness and fuzzy linkage compact-
ness and established conditions on the trace systems which would ensure the
fuzzy conjoint compactness and fuzzy linkage compactness of the T0 principal
fuzzy extensions. In [8], we also introduced basic fuzzy proximities, Lodato
fuzzy proximities and eventually proved a theorem which establishes that there
is a bijection between a class of Lodato fuzzy proximities compatible with a
given strongly T1- topological space of fuzzy sets (X, c) and the class of strongly
T1 principal Type-II fuzzy linkage compactifications of (X, c). Our aim is to
achieve the similar result mentioned above in the RT0 spaces.
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[18] A.P.Šostak. 1989. Two decades of fuzzy topology, Basic ideas, notions
and results, Russian Math. Surveys 44, No. 6, 125-186.

[19] W.J.Thron. 1966. Topological Structures, ( Holt, Rinehart and Winston,
New York ).

[20] W.J.Thron and R.H.Warren. 1973. On the lattice of proximities of Čech
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