Int. J. Advance. Soft Comput. Appl., Vol. 5, No. 2, July 2013 ISSN 2074-8523; Copyright ©SCRG Publication, 2013 www.home.ijasca.com

Extensions of RT_0 Topological Spaces of Fuzzy Sets

K.C.Chattopadhyay, H.Hazra and S.K.Samanta

Department of Mathematics, The University of Burdwan, Burdwan-713104, India e-mail: kcchattopadhyay2009@gmail.com Department of Mathematics, Bolpur College, Bolpur-731204, India e-mail: h.hazra2010@gmail.com Department of Mathematics, Visva Bharati, Santiniketan-731235, India e-mail: syamal_123@yahoo.co.in

Abstract

The aim of this paper is to study extensions of RT_0 topological spaces of fuzzy sets. We also construct RT_0 principal extensions of RT_0 topological spaces of fuzzy sets with the α -graded trace system for each α in (0, 1].

Keywords: Fuzzy topology, principal extension, remoted neighbourhood, RT_0 space, α -graded trace system.

1 Introduction

In crisp topology, extension theory is a well developed theory (for references please see [2], [3], [9], [12], [19] and [20]). In fuzzy topology only some particular type of extensions such as compactifications, completions of fuzzy topological spaces and fuzzy uniform spaces have been studied in [15], [23], [24]. The fuzzyfication of general extension theory has been started by us in [5], where a concept of fuzzyfication of extensions of topological spaces of fuzzy sets is introduced and a method of construction of strongly T_0 principal extension of a strongly T_0 topological space of fuzzy sets is provided.

In this paper we study extension theory and provide a method of construction of RT_0 principal extension of an RT_0 topological space of fuzzy sets with the given α -graded trace system for each $\alpha \in (0, 1]$. In this setting for each $\alpha \in (0, 1]$, we find an RT_0 principal extension of an RT_0 topological space (X, u) with the given α -graded trace system.

Chang [4] introduced the notion of fuzzy topological spaces. In this context it is worth noting that Chang's fuzzy topology is in fact a crisp topology of fuzzy sets. In this paper Chang's fuzzy topology will be referred to as topology of fuzzy sets. (X, u) will be called a topological space of fuzzy sets if X is a set and u is a Chang topology on it.

In Section 2, some known definitions and known results are given which will be used in the sequel.

In Section 3, a definition of RT_0 topological spaces of fuzzy sets is given. Some results concerning principal extensions have been established.

In Section 4, using the concepts and results of Section 3, we present a construction of RT_0 principal extension of RT_0 spaces with the given α -graded trace system.

2 Preliminaries

Let X be a nonempty set and Y be a nonempty subset of X. For a fuzzy set λ of Y, its *natural extension* $\lambda_{Y < X}$ is defined by $\lambda_{Y < X}(x) = \lambda(x)$ if $x \in Y$ and $\lambda_{Y < X}(x) = 0$ if $x \in X - Y$. When there is no chance of confusion, we shall use (for simplicity) the same symbol λ for $\lambda_{Y < X}$. In what follows I will stand for [0,1].

Definition 2.1 [14] Let (X, u) be a topological space of fuzzy sets. Then (X, u) is called T_0 if for any pair of distinct points $x, y \in X, \exists \lambda \in u$ such that $\lambda(x) \neq \lambda(y)$.

Definition 2.2 [4] Let (X, u) and (Y, v) be two topological spaces of fuzzy sets. A mapping $\eta : (X, u) \to (Y, v)$ is said to be continuous if $\eta^{-1}(\lambda) \in u, \forall \lambda \in v$.

Definition 2.3 [5] Let (X, u) and (Y, v) be two topological spaces of fuzzy sets. A mapping $\eta : (X, u) \to (Y, v)$ is said to be closed if $\eta(\mu) \in v', \forall \mu \in u'$, where u' and v' are the families of closed sets in (X, u) and (Y, v) respectively.

Definition 2.4 [11] Let (X, u) and (Y, v) be two topological spaces of fuzzy sets. A mapping $\eta : (X, u) \to (Y, v)$ is said to be open if $\eta(\lambda) \in v, \forall \lambda \in u$.

Definition 2.5 [11] A mapping $\eta : (X, u) \to (Y, v)$ is said to be a homeomorphism if η is bijective, continuous and open (or closed).

Definition 2.6 [25] Let (X, u) be a topological space of fuzzy sets and λ be a fuzzy set in X. Then the closure of λ in (X, u) is defined by

 $cl_u\lambda = \wedge \{\mu \in u' : \mu \ge \lambda\}.$

When there is no chance of confusion regarding the role of u, $cl_u\lambda$ will simply be denoted by $cl\lambda$. Extensions of RT_0 Topological

Theorem 2.7 [16, 17] Let (X, u) and (Y, v) be two topological spaces of fuzzy sets and $\eta : X \to Y$ be a mapping. Then $\eta : (X, u) \to (Y, v)$ is continuous if and only if

 $\eta(cl_u\lambda) \le cl_v\eta(\lambda), \forall \lambda \in I^X.$

Theorem 2.8 [5] For a bijective mapping $\eta : X \to Y, \eta : (X, u) \to (Y, v)$ is homeomorphism if and only if $\eta(cl_u\lambda) = cl_v\eta(\lambda), \ \forall \lambda \in I^X.$

Definition 2.9 [25] Let (X, u) be a topological space of fuzzy sets and $A \subset X$. Let λ be a fuzzy set in X. Then λ_A is a fuzzy set in A defined by $\lambda_A(x) = \lambda(x), \forall x \in A.$

Define $u_A = \{\lambda_A : \lambda \in u\}$. Then it is easily verified that u_A is a topology of fuzzy sets on A and (A, u_A) is called a subspace of (X, u).

Definition 2.10 [1] A fuzzy stack S on X is a subset of I^X such that $\lambda \ge \mu \in S$ implies $\lambda \in S$.

Definition 2.11 [1] A fuzzy grill G on X is a fuzzy stack on X such that (i) $\tilde{0}_X \notin G$, (ii) $\lambda \lor \mu \in G \Rightarrow \lambda \in G$ or $\mu \in G$.

Remark 2.12 In this article fuzzy stacks and fuzzy grills as defined in [definitions 2.10 and 2.11] will be referred to as stacks of fuzzy sets and grills of fuzzy sets respectively.

A grill of fuzzy sets G is called proper if $G \neq \phi$.

Definition 2.13 [5] A grill G of fuzzy sets on a topological space (X, u) is said to be a c-grill of fuzzy sets if $cl\lambda \in G \Rightarrow \lambda \in G$, $\forall \lambda \in I^X$.

Definition 2.14 $\forall f \in I^X$, we define Z(f) to be the subset $\{x \in X : f(x) = 0\}$ of X which is called the zero-set of f in X.

Remark 2.15 Here it is important to note that the symbol Z(f) has been used by Gillman and Jerison [13] for the zero-set of a real valued continuous function f on a topological space X. In this article we use the same symbol for the zero-set of an arbitrary element $f \in I^X$ for an arbitrary set X.

Definition 2.16 [5] Let (X, u) and (Y, v) be two topological spaces of fuzzy sets and $\eta : X \to Y$ be a mapping. Then $(\eta, (Y, v))$ is said to be an embedding of (X, u) if $\eta : (X, u) \to (\eta(X), v_{\eta(X)})$ is a homeomorphism. **Definition 2.17** [5] Let (X, u) and (Y, v) be two topological spaces of fuzzy sets and $\eta : X \to Y$ be a mapping. Then $(\eta, (Y, v))$ is said to be an extension of (X, u) if $(\eta, (Y, v))$ is an embedding and $cl_v\eta(\tilde{1}_X) = \tilde{1}_Y$ or equivalently $cl_v \tilde{1}_{\eta(X)} = \tilde{1}_Y$, subject to the assumption that $\tilde{1}_{\eta(X)}$ is the fuzzy set in Y satisfying $\tilde{1}_{\eta(X)}(y) = 1, \forall y \in \eta(X)$ and $\tilde{1}_{\eta(X)}(y) = 0, \forall y \in Y - \eta(X)$.

Theorem 2.18 [5] If $\eta : X \to Y$ is one-one and (X, u), (Y, v) are topological spaces of fuzzy sets, then $(\eta, (Y, v))$ is an extension of (X, u) if and only if $(i) \forall \lambda \in I^X, \eta(cl_u\lambda) = (cl_v\eta(\lambda)) \land \eta(\tilde{1}_X),$

and

 $\alpha \leq \lambda(x).$

(*ii*) $cl_v\eta(\tilde{1}_X) = \tilde{1}_Y$.

Definition 2.19 [5] Let $E_1 = (\eta_1, (Y_1, v_1))$ and $E_2 = (\eta_2, (Y_2, v_2))$ be two extensions of (X, u). Then E_1 is said to be greater than or equal to E_2 (written as $E_1 \ge E_2$) if there is a continuous function f from (Y_1, v_1) onto (Y_2, v_2) such that $fo\eta_1 = \eta_2$.

Definition 2.20 [5] The extension $E_1 = (\eta_1, (Y_1, v_1))$ is said to be equivalent to the extension $E_2 = (\eta_2, (Y_2, v_2))$ (written as $E_1 \approx E_2$) if there is a homeomorphism h of (Y_1, v_1) onto (Y_2, v_2) such that $ho\eta_1 = \eta_2$.

Definition 2.21 [5] Let (X, u) be a topological space of fuzzy sets and \mathcal{B} be a family of closed sets in (X, u). Then \mathcal{B} is said to be a base for the closed sets in (X, u) if each closed set in (X, u) can be expressed as the infimum of a subfamily of \mathcal{B} .

Theorem 2.22 [5] Let $\mathcal{B} \subset I^X$ such that (i) $\tilde{0}_X \in \mathcal{B}$, (ii) $\forall \lambda_1, \lambda_2 \in \mathcal{B} \Rightarrow \lambda_1 \lor \lambda_2 \in \mathcal{B}$. Then \mathcal{B} is a base for closed sets of some topology of fuzzy sets on X.

Definition 2.23 [5] An extension $E = (\eta, (Y, v))$ is said to be a principal extension of (X, u) if $\{cl_v \eta(\mu) : \mu \in I^X\}$ is a base for the closed sets in (Y, v).

Definition 2.24 [18] A fuzzy point in a set X is a mapping $\alpha_x : X \to I$, where $x \in X, \alpha \in (0, 1]$ defined by $\alpha_x(x) = \alpha$ and $\alpha_x(y) = 0$ for $y \neq x$. Here x is the support of the fuzzy point α_x and α its value. A fuzzy point α_x is said to belong to a fuzzy set λ in X, denoted by $\alpha_x \in \lambda$ if

Following [21] a definition of *remoted neighbourhood* of a fuzzy point is given below:

Definition 2.25 Let (X, u) be a topological space of fuzzy sets and α_x be a fuzzy point. Then $\lambda \in u'$ is called a remoted neighbourhood of α_x if $\alpha_x \not\in \lambda$. The set of all remoted neighbourhoods of α_x is denoted by R_{α_x} .

Definition 2.26 [5] A topological space (X, u) of fuzzy sets is called strongly T_0 if for each pair of distinct points $x, y \in X$, either there is a $\lambda \in u$ such that $\lambda(x) > 0$ and $\lambda(y) = 0$ or there is a $\mu \in u$ such that $\mu(x) = 0$ and $\mu(y) > 0$.

3 Some Basic Results on Extensions of Topological Spaces of Fuzzy Sets

We begin the section with the following definition.

Definition 3.1 A topological space (X, u) of fuzzy sets is said to be RT_0 if for each pair of distinct points x, y of X and for each $\alpha \in (0, 1], \exists \lambda_{\alpha} \in R_{\alpha_x}, \lambda_{\alpha} \notin R_{\alpha_y}$ or $\exists \mu_{\alpha} \in R_{\alpha_y}, \mu_{\alpha} \notin R_{\alpha_x}$.

Example 3.2 Let $X = \{x, y\}$ and $u = \{0_X, 1_X\} \cup \{\{x/\alpha, y/1\} : \alpha \in [0, 1)\}$. Then $u' = \{1_X, 0_X\} \cup \{\{x/\alpha, y/0\} : \alpha \in (0, 1]\}$. Thus for each $\alpha \in (0, 1], \exists \lambda_{\alpha} = \{x/\alpha, y/0\} \in u'$ such that $\alpha > 0 = \lambda_{\alpha}(y)$ and $\alpha \leq \alpha = \lambda_{\alpha}(x)$. i.e., $\alpha_y \not\in \lambda_{\alpha}$ and $\alpha_x \in \lambda_{\alpha}$. i.e., $\lambda_{\alpha} \in R_{\alpha_y}$ and $\lambda_{\alpha} \notin R_{\alpha_x}$. Therefore (X, u) is an RT_0 -topological space of fuzzy sets.

Theorem 3.3 If (X, u) is RT_0 , then it is strongly T_0 .

Proof. Let (X, u) be RT_0 and $x, y \in X$ such that $x \neq y$. Then for each $\alpha \in (0, 1]$, $\exists \lambda_{\alpha} \in R_{\alpha_x}, \lambda_{\alpha} \notin R_{\alpha_y}$ or $\exists \mu_{\alpha} \in R_{\alpha_y}, \mu_{\alpha} \notin R_{\alpha_x}$. Therefore for each $\alpha \in (0, 1]$, $\exists \lambda_{\alpha} \in u'$ such that $\alpha > \lambda_{\alpha}(x), \alpha \leq \lambda_{\alpha}(y)$ or $\exists \mu_{\alpha} \in u'$ such that $\alpha > \mu_{\alpha}(y), \alpha \leq \mu_{\alpha}(x)$. Thus for $\alpha = 1, \exists \lambda_1 \in u'$ such that $\lambda_1(x) < 1, \lambda_1(y) = 1$ or $\exists \mu_1 \in u'$ such that $\mu_1(y) < 1, \mu_1(x) = 1$. Taking $\lambda'_1 = \gamma$ and $\mu'_1 = \delta$ we have $\exists \gamma \in u$ such that $\gamma(x) > 0, \gamma(y) = 0$ or $\exists \delta \in u$ such that $\delta(y) > 0, \delta(x) = 0$. Hence (X, u) is strongly T_0 .

Note 3.4 But the converse of Theorem 3.3 is not true, which is justified by the following Example.

Example 3.5 Let $X = \{x, y\}, \quad u = \{\tilde{0}_X, \tilde{1}_X, \{x/0.4, y/0\}\}$. Then $u' = \{\tilde{1}_X, \tilde{0}_X, \{x/0.6, y/1\}\}$. If $\alpha = 0.5$, then $R_{\alpha_x} = R_{\alpha_y}$. Thus (X, u) is not RT_0 . But it is clear that (X, u) is strongly T_0 . **Theorem 3.6** If (X, u) is RT_0 , then it is T_0 .

Proof. Let (X, u) be RT_0 . Then it is strongly T_0 and hence it is T_0 .

Note 3.7 But the converse of the theorem is not true, which is justified by the following example.

Example 3.8 Let $X = \{x, y, z\}, u = \{\tilde{0}_X, \tilde{1}_X, \{x/0.2, y/0.3, z/0.4\}\}$. Therefore $u' = \{\tilde{1}_X, \tilde{0}_X, \{x/0.8, y/0.7, z/0.6\}\}$. If $\alpha = 0.5$, then $R_{\alpha_x} = R_{\alpha_y} = R_{\alpha_z}$. Therefore (X, u) is not RT_0 . It is easy to check that (X, u) is T_0 .

Definition 3.9 Let (X, u) be a topological space of fuzzy sets. $\forall x \in X, \forall \alpha \in (0, 1], define$

$$G_{\alpha_x} = \{ \lambda \in I^X : \alpha_x \tilde{\in} cl\lambda \}.$$

Theorem 3.10 Let (X, u) be a topological space of fuzzy sets. Then (X, u) is RT_0 if and only if $\forall x, y \in X, G_{\alpha_x} = G_{\alpha_y}$ for some $\alpha \in (0, 1]$ imply x = y.

Proof. Let (X, u) be an RT_0 topological space of fuzzy sets. Let $\alpha \in (0, 1]$ and $x, y \in X$ such that $x \neq y$.

 $\operatorname{Since}(X, u)$ is RT_0 ,

$$\exists \lambda \in R_{\alpha_x}, \ \lambda \notin R_{\alpha_y}, \tag{1}$$

or

 $\exists \mu \in R_{\alpha_y}, \ \mu \notin R_{\alpha_x}. \tag{2}$ Without any loss of generality we assume that (1) holds. Then $\alpha_x \not\in \lambda = cl\lambda, \ \alpha_y \in \lambda = cl\lambda$, since λ is closed. i.e., $\lambda \in G_{\alpha_y}$ but $\lambda \notin G_{\alpha_x}.$ Thus $G_{\alpha_x} \neq G_{\alpha_y}$. Therefore the condition holds. Conversely let the condition hold. Let $x, y \in X$ such that $x \neq y$ and $\alpha \in (0, 1]$. Therefore $G_{\alpha_x} \neq G_{\alpha_y}.$ Thus there exists $\lambda_\alpha \in G_{\alpha_x}$ such that $\lambda_\alpha \notin G_{\alpha_y}$ or there exists $\mu_\alpha \in G_{\alpha_y}$ such

that $\mu_{\alpha} \notin G_{\alpha_x}$. Therefore there exists $\lambda_{\alpha} \in I^X$ such that $\alpha_x \in cl\lambda_{\alpha}, \alpha_y \not\in cl\lambda_{\alpha}$ or there exists $\mu_{\alpha} \in I^X$ such that $\alpha_y \in cl\mu_{\alpha}, \alpha_x \not\in cl\mu_{\alpha}$.

Taking $cl\lambda_{\alpha} = \gamma_{\alpha}$ and $cl\mu_{\alpha} = \delta_{\alpha}$ we have $\exists \gamma_{\alpha} \in R_{\alpha_y}, \gamma_{\alpha} \notin R_{\alpha_x}$ or $\exists \delta_{\alpha} \in R_{\alpha_x}, \delta_{\alpha} \notin R_{\alpha_y}$.

Therefore (X, u) is RT_0 . This completes the proof.

Theorem 3.11 Let (X, u) be a topological space of fuzzy sets. Then $\forall x \in X$ and $\forall \alpha \in (0, 1], G_{\alpha_x}$ is a proper c- grill of fuzzy sets in (X, u). **Proof.** Let $x \in X$ and $\alpha \in (0, 1]$. Clearly $\hat{0}_X \notin G_{\alpha_x}$. Let $\lambda, \mu \in I^X$. Then $\lambda \ge \mu \in G_{\alpha_x} \Rightarrow \alpha_x \tilde{\in} cl\mu \le cl\lambda \Rightarrow \lambda \in G_{\alpha_x}$ and $\lambda \lor \mu \in G_{\alpha_x} \Rightarrow \alpha_x \tilde{\in} cl(\lambda \lor \mu) \Rightarrow \alpha_x \tilde{\in} (cl\lambda \lor cl\mu)$ $\Rightarrow \alpha_x \tilde{\in} cl\lambda \text{ or } \alpha_x \tilde{\in} cl\mu \Rightarrow \lambda \in G_{\alpha_x}, \text{ or } \mu \in G_{\alpha_x}.$ Thus G_{α_x} is a grill of fuzzy sets on X. Let $\lambda \in I^X$. Then $cl\lambda \in G_{\alpha_x} \Rightarrow \alpha_x \tilde{\in} cl(cl\lambda) \Rightarrow \alpha_x \tilde{\in} cl\lambda \Rightarrow \lambda \in G_{\alpha_x}.$ Therefore G_{α_x} is a c-grill of fuzzy sets in (X, u). Clearly $\tilde{1}_X \in G_{\alpha_x}$. Therefore $G_{\alpha_x} \neq \phi$ and hence G_{α_x} is proper. Thus for each $x \in X$ and for each $\alpha \in (0, 1]$, G_{α_x} is a proper c-grill of fuzzy sets in (X, u).

Definition 3.12 Let $E = (\eta, (Y, v))$ be an extension of (X, u). Let $y \in Y$ and $\alpha \in (0, 1]$. Define the trace $T_{(\alpha_y, E)}$ of the point α_y with respect to the extension E by

$$\Gamma_{(\alpha_y,E)} = \{\lambda \in I^X : \alpha_y \in cl_v \eta(\lambda)\}$$

When there is no chance of confusion, we shall simply write T_{α_y} for $T_{(\alpha_y, E)}$. The α -graded trace system X^E_{α} of the extension E is defined by $X^E_{\alpha} = \{T_{\alpha_y} : y \in Y\}.$

Also define $X_{(0,1]}^E$ by $X_{(0,1]}^E = \{T_{\alpha_y} : y \in Y, \alpha \in (0,1]\}.$

Theorem 3.13 Let $E = (\eta, (Y, v))$ be an extension of (X, u). Then (i) T_{α_y} is a proper c-grill of fuzzy sets in $(X, u), \forall y \in Y, \forall \alpha \in (0, 1]$. (ii) $T_{\eta(\alpha_x)} = G_{\alpha_x}, \forall x \in X, \forall \alpha \in (0, 1]$.

Proof. (i) Let $y \in Y$ and $\alpha \in (0, 1]$. Clearly $\tilde{0}_X \notin T_{\alpha_y}$. Let $\lambda, \ \mu \in I^X$ such that $\lambda \ge \mu \in T_{\alpha_y}$. Then $\alpha_y \tilde{\in} cl_v \eta(\mu) \le cl_v \eta(\lambda)$. Therefore $\alpha \le cl_v \eta(\mu)(y) \le cl_v \eta(\lambda)(y) \Rightarrow \alpha_y \tilde{\in} cl_v \eta(\lambda) \Rightarrow \lambda \in T_{\alpha_y}$. $\forall \lambda, \mu \in I^X$, $\lambda \lor \mu \in T_{\alpha_y} \Rightarrow \alpha_y \tilde{\in} cl_v \eta(\lambda \lor \mu) \Rightarrow \alpha_y \tilde{\in} cl_v (\eta(\lambda) \lor \eta(\mu))$ $\Rightarrow \alpha_y \tilde{\in} cl_v \eta(\lambda) \lor cl_v \eta(\mu) \Rightarrow \alpha \le cl_v \eta(\lambda)(y) \lor cl_v \eta(\mu)(y)$ $\Rightarrow \alpha \le cl_v \eta(\lambda)(y) \text{ or } \alpha \le cl_v \eta(\mu)(y)$ $\Rightarrow \alpha_y \tilde{\in} cl_v \eta(\lambda) \text{ or } \alpha_y \tilde{\in} cl_v \eta(\mu) \Rightarrow \lambda \in T_{\alpha_y} \text{ or } \mu \in T_{\alpha_y}.$ Also for $\lambda \in I^X$, $cl_u \lambda \in T_{\alpha_y} \Rightarrow \alpha_y \tilde{\in} cl_v \eta(cl_u \lambda)$ $\Rightarrow \alpha \le cl_v \eta(cl_u \lambda)(y) \le cl_v (cl_v \eta(\lambda))(y),$ since $\eta(cl_u \lambda) = (cl_v \eta(\lambda)) \land \eta(\tilde{1}_X) \le cl_v \eta(\lambda).$ $\Rightarrow \alpha \le cl_v \eta(\lambda)(y) \Rightarrow \alpha_y \tilde{\in} cl_v \eta(\lambda) \Rightarrow \lambda \in T_{\alpha_y}.$ Clearly $\hat{1}_X \in T_{\alpha_y}$. Therefore $T_{\alpha_y} \neq \phi$.

Thus T_{α_y} is a proper c-grill of fuzzy sets in (X, u), for each $y \in Y$ and for each $\alpha \in (0, 1]$.

(ii) Let $x \in X$ and $\alpha \in (0, 1]$. Let $\lambda \in I^X$. Then $\lambda \in T_{\eta(\alpha_x)} \Leftrightarrow \eta(\alpha_x) \tilde{\in} cl_v \eta(\lambda) \Leftrightarrow \alpha_{\eta(x)} \tilde{\in} cl_v \eta(\lambda)$ $\Leftrightarrow \alpha \leq (cl_v \eta(\lambda))(\eta(x)) \Leftrightarrow \alpha \leq (cl_v \eta(\lambda) \wedge 1_{\eta(X)})(\eta(x))$ $\Leftrightarrow \alpha \leq (cl_v \eta(\lambda) \wedge \eta(1_X))(\eta(x)) \Leftrightarrow \alpha \leq \eta(cl_u \lambda)(\eta(x))$ $\Leftrightarrow \alpha \leq cl_u \lambda(x)$ (since η is one-one) $\Leftrightarrow \lambda \in G_{\alpha_x}$. Thus $T_{\eta(\alpha_x)} = G_{\alpha_x}$.

Theorem 3.14 If E_1 and E_2 be two equivalent extensions of (X, u), then $X_{\alpha}^{E_1} = X_{\alpha}^{E_2}$ for each $\alpha \in (0, 1]$ and hence $X_{(0,1]}^{E_1} = X_{(0,1]}^{E_2}$.

Proof. Let $E_1 = (\eta_1, (Y_1, v_1))$ and $E_2 = (\eta_2, (Y_2, v_2))$ be two equivalent extensions of (X, u).

Then \exists a homeomorphism h of (Y_1, v_1) onto (Y_2, v_2) such that $ho\eta_1 = \eta_2$. Let $y \in Y_1, \alpha \in (0, 1]$ and $\lambda \in I^X$. Then $\lambda \in T_{(\alpha_y, E_1)} \Leftrightarrow \alpha_y \tilde{\in} cl_{v_1} \eta_1(\lambda) \Leftrightarrow h(\alpha_y) \tilde{\in} h(cl_{v_1} \eta_1(\lambda))$ $\Leftrightarrow \alpha_{h(y)} \tilde{\in} cl_{v_2} h(\eta_1(\lambda))$ $\Leftrightarrow \alpha_{h(y)} \tilde{\in} cl_{v_2} \eta_2(\lambda)$, since $h(\eta_1(\lambda)) = ho\eta_1(\lambda) = \eta_2(\lambda)$. $\Leftrightarrow \lambda \in T_{(\alpha_{(h(y)}, E_2)}$. Thus $T_{(\alpha_y, E_1)} = T_{(\alpha_{h(y)}, E_2)}$. Therefore $X_{\alpha}^{E_1} = \{T_{(\alpha_y, E_1)} : y \in Y_1\}$ $= \{T_{(\alpha_{h(y)}, E_2)} : y \in Y_1\}$ $= \{T_{(\alpha_{h(y)}, E_2)} : y \in Y_2\}$, because $Y_2 = \{h(y) : y \in Y_1\}$. $= X_{\alpha}^{E_2} \quad \forall \alpha \in (0, 1]$. Also $X_{(0,1]}^{E_1} = \{T_{(\alpha_y, E_1)} : y \in Y_1, \alpha \in (0, 1]\}$ $= \{T_{(\alpha_{h(y)}, E_2)} : y \in Y_2, \alpha \in (0, 1]\}$ $= \{T_{(\alpha_{h(y)}, E_2)} : y \in Y_2, \alpha \in (0, 1]\}$ $= \{T_{(\alpha_{h(y)}, E_2)} : y \in Y_2, \alpha \in (0, 1]\}$ $= \{T_{(\alpha_{h(y)}, E_2)} : y \in Y_2, \alpha \in (0, 1]\}$

Note 3.15 Example is given below to show that the converse of Theorem 3.14 does not hold.

Example 3.16 Let X, Y, Z be three infinite sets such that $X \subset Y \subset Z$ and |X| < |Y| < |Z|, where |X| denotes the cardinal number of the set X. Let $u \subset I^Z$ be defined by

 $\forall \lambda \in I^Z, \lambda \in u \text{ if and only if } \lambda = \tilde{0}_Z \text{ or } Z(\lambda) \text{ is finite.}$ Then it is clear that u is a topology of fuzzy sets on Z. Let (X, u_X) and (Y, u_Y) be subspaces of (Z, u). Let $i : X \to Z$ be the inclusion map. Let i also denote the inclusion map of X into Y. Obviously $E_1 = (i, (Z, u))$ is an extension of (X, u_X) and $E_2 = (i, (Y, u_Y))$ is also an extension of (X, u_X) . Note that for each $x \in X$ and $\forall \alpha \in (0, 1], T_{(i(\alpha_x), E_1)} = G_{\alpha_x} = T_{(i(\alpha_x), E_2)}$, i.e., $T_{(\alpha_x, E_1)} = G_{\alpha_x} = T_{(\alpha_x, E_2)}$. Let $G^* = \{\lambda \in I^X : \lambda(a) = 1 \text{ for infinitely many points a of } X\}$. Then it is easy to check that $\forall \alpha \in (0, 1]$, $T_{\alpha_x} = C^* = \forall x \in X$.

 $\begin{array}{l} T_{(\alpha_{z},E_{1})}=G^{*}, \ \forall z \in Z-X \ and \ T_{(\alpha_{y},E_{2})}=G^{*}, \ \forall y \in Y-X.\\ Hence \ X_{\alpha}^{E_{1}}=X_{\alpha}^{E_{2}}, \ \forall \alpha \in (0,1] \ and \ hence \ X_{(0,1]}^{E_{1}}=X_{(0,1]}^{E_{2}}.\\ But \ E_{1} \not\approx E_{2}, \ as \ |Y| < |Z|. \end{array}$

Theorem 3.17 For any extension $E = (\eta, (Y, v))$ of (X, u) and $\forall y, z \in Y$, $G_{\alpha_y} \subset G_{\alpha_z}$ implies $T_{\alpha_y} \subset T_{\alpha_z}$ for each $\alpha \in (0, 1]$.

Proof. Let $\alpha \in (0, 1]$ and $y, z \in Y$ be such that $G_{\alpha_y} \subset G_{\alpha_z}$. Then $\forall \mu \in I^X$, $\mu \in T_{\alpha_y} \Rightarrow \alpha_y \tilde{\in} cl_v \eta(\mu) \Rightarrow \eta(\mu) \in G_{\alpha_y} \Rightarrow \eta(\mu) \in G_{\alpha_z}$, since $G_{\alpha_y} \subset G_{\alpha_z}$ $\Rightarrow \alpha_z \tilde{\in} cl_v \eta(\mu) \Rightarrow \mu \in T_{\alpha_z}$. Thus $T_{\alpha_y} \subset T_{\alpha_z}$.

Note 3.18 An example is given below to show that the converse of the above theorem is not true.

Example 3.19 Let Y be an infinite set. Let $v \,\subset I^Y$ be defined by $\forall \lambda \in I^Y, \lambda \in v$ if and only if $\lambda = \tilde{0}_Y$ or $Z(\lambda)$ is finite. Clearly v is a topology of fuzzy sets on Y. Let X be an infinite set such that $X \subset Y$ and $|Y - X| \geq 2$ and $i : X \to Y$ be the inclusion map. Then it is easy to check that (i, (Y, v)) is an extension of

 $(X, v_X).$

Let $y, z \neq y \in Y - X$. Then it is clear that

 $T_{\alpha_y} = \{ \lambda \in I^X : \lambda(a) = 1 \text{ for infinitely many points } a \text{ of } X \}$ $= T_{\alpha_z}, \quad \forall \alpha \in (0, 1].$

Choose $\lambda, \ \mu \in I^Y$ such that

 $\begin{array}{l} \lambda(y) = 0.5, \ \lambda(z) = 0.6, \ \mu(y) = 0.6, \ \mu(z) = 0.3\\ and \ both \ the \ sets \ \{a \in Y : \lambda(a) = 1\} \ and \ \{a \in Y : \mu(a) = 1\} \ are \ finite.\\ Then \ it \ is \ clear \ that \ \lambda \in G_{0.6_z}, \ \lambda \not\in G_{0.6_y} \ and \ \mu \in G_{0.6_y}, \ \mu \not\in G_{0.6_z}.\\ Thus \ G_{0.6_z} \not\subset G_{0.6_y} \ and \ G_{0.6_z}. \end{array}$

However the following result holds.

Theorem 3.20 If $(\eta, (Y, v))$ is a principal extension of (X, u), then $\forall y, z \in Y$,

 $T_{\alpha_y} \subset T_{\alpha_z}$ if and only if $G_{\alpha_y} \subset G_{\alpha_z}$ for each $\alpha \in (0, 1]$.

Proof. 'If part' has already been proved above. Let $\alpha \in (0, 1]$ and $y, z \in Y$ such that $T_{\alpha_y} \subset T_{\alpha_z}$. Let $\lambda \in I^Y$ such that $\lambda \in G_{\alpha_y}$. Then $\alpha_y \in cl_v \lambda$. Since $\{ cl_v \eta(\mu) : \mu \in I^X \}$ is a base for the closed sets in (Y, v), $\alpha_y \in \land \{ cl_v \eta(\mu) : \mu \in I^X, cl_v \eta(\mu) \geq \lambda \}$. Thus

 $\begin{array}{l} \alpha_{y} \tilde{\in} \ cl_{v}\eta(\mu), \ \forall \mu \in I^{X} \ \text{with} \ cl_{v}\eta(\mu) \geq \lambda, \\ \text{and hence} \\ \mu \in T_{\alpha_{y}}, \ \forall \mu \in I^{X} \ \text{with} \ cl_{v}\eta(\mu) \geq \lambda. \\ \text{Since} \ T_{\alpha_{y}} \subset T_{\alpha_{z}}, \ \ \mu \in T_{\alpha_{z}} \quad \forall \mu \in I^{X} \ \text{with} \ cl_{v}\eta(\mu) \geq \lambda, \\ \text{which implies that} \\ \alpha_{z} \tilde{\in} \ \wedge \left\{ \ cl_{v}\eta(\mu) : \mu \in I^{X}, \ cl_{v}\eta(\mu) \geq \lambda \right\}. \\ \text{i.e.,} \ \alpha_{z} \tilde{\in} \ cl_{v}\lambda \quad \text{i.e.,} \quad \lambda \in G_{\alpha_{z}}. \end{array}$

Hence $G_{\alpha_y} \subset G_{\alpha_z}$.

The following corollary is an easy consequence of the above theorem.

Corollary 3.21 If $(\eta, (Y, v))$ is a principal extension of (X, u), then $\forall y, z \in Y$, $T_{\alpha_y} = T_{\alpha_z}$ if and only if $G_{\alpha_y} = G_{\alpha_z}$ for each $\alpha \in (0, 1]$.

Theorem 3.22 If $(\eta, (Y, v))$ is a principal extension of (X, u), then (Y, v) is RT_0 if and only if

 $\forall y, z \in Y, T_{\alpha_y} = T_{\alpha_z} \text{ for some } \alpha \in (0, 1] \Rightarrow y = z.$

Proof. Let (Y, v) be RT_0 . Let $y, z \in Y$ such that $T_{\alpha_y} = T_{\alpha_z}$ for some $\alpha \in (0, 1]$. Thus $G_{\alpha_y} = G_{\alpha_z}$ and hence y = z (see Theorem 3.10). Conversely suppose that the condition holds. i.e., $\forall y, z \in Y, T_{\alpha_y} = T_{\alpha_z}$ for some $\alpha \in (0, 1]$ implies y = z. Let $G_{\alpha_y} = G_{\alpha_z}$ for some $\alpha \in (0, 1]$. Therefore by the above corollary we have $T_{\alpha_y} = T_{\alpha_z}$ and hence by the given condition we have y = z. Hence (Y, v) is RT_0 (see Theorem 3.10).

4 Construction of RT_0 Principal Extension of an RT_0 Topological Space with the Given α graded Trace System

In this section (X, u) will be an RT_0 topological space of fuzzy sets and for each $\alpha \in (0, 1]$, X^*_{α} be a collection of proper c-grills of fuzzy sets in (X, u) such that $G_{\alpha_x} \in X^*_{\alpha}, \forall x \in X$.

Let $\alpha \in (0, 1]$. Define,

 $f_{\alpha}: X \to X_{\alpha}^*$ by $f_{\alpha}(x) = G_{\alpha_x}, \forall x \in X$. In view of Theorem 3.10, it follows that f_{α} is one-one. $\forall \lambda \in I^X$, , define $\lambda_{\alpha}^c: X_{\alpha}^* \to I$ by the following : Extensions of RT_0 Topological

 $\lambda_{\alpha}^{c}(G_{\alpha_{x}}) = cl_{u}\lambda(x), \forall x \in X$ and for $G \in X_{\alpha}^{*} - \{G_{\alpha_{x}} : x \in X\},$

$$\lambda_{\alpha}^{c}(G) = \begin{cases} 1 & \text{if } \lambda \in G \\ 0 & \text{if } \lambda \notin G. \end{cases}$$

Let $\lambda, \mu \in I^X$. $\forall x \in X$ $(\lambda \lor \mu)^c_{\alpha}(G_{\alpha_x}) = cl_u(\lambda \lor \mu)(x) = (cl_u\lambda \lor cl_u\mu)(x) = cl_u\lambda(x) \lor cl_u\mu(x)$ $= \lambda^c_{\alpha}(G_{\alpha_x}) \lor \mu^c_{\alpha}(G_{\alpha_x}) = (\lambda^c_{\alpha} \lor \mu^c_{\alpha})(G_{\alpha_x}).$ Also for $G \in X^*_{\alpha} - \{G_{\alpha_x} : x \in X\},$ $(\lambda \lor \mu)^c_{\alpha}(G) = (\lambda^c_{\alpha} \lor \mu^c_{\alpha})(G),$ since $\lambda \lor \mu \in G$ if and only if $\lambda \in G$ or $\mu \in G.$ Thus $(\lambda \lor \mu)^c_{\alpha} = \lambda^c_{\alpha} \lor \mu^c_{\alpha}, \forall \lambda, \mu \in I^X.$ Also $(\tilde{0}_X)^c_{\alpha} = \tilde{0}_{X^*_{\alpha}}.$

Thus $\{\lambda_{\alpha}^{c} : \lambda \in I^{X}\}$ is a base for the closed sets of a topology w_{α} (say) of fuzzy sets on X_{α}^{*} .

Theorem 4.1 Let $\alpha \in (0,1]$ and $(X,u), (X^*_{\alpha}, w_{\alpha})$ and the other symbols used below be same as above. Then (i) $\forall \lambda, \mu \in I^X, \lambda \leq \mu \Rightarrow \lambda_{\alpha}^c \leq \mu_{\alpha}^c$. (*ii*) $\forall \lambda \in I^X, (cl_u \lambda)^c_\alpha = \lambda^c_\alpha.$ (*iii*) $\forall \lambda, \mu \in I^X, f_\alpha(\lambda) \leq \mu_\alpha^c \Leftrightarrow cl_u \lambda \leq cl_u \mu.$ $(iv) \ \forall \lambda \in I^X, cl_{w_\alpha} f_\alpha(\lambda) = \tilde{\lambda}^c_\alpha.$ $(v) \ cl_{w_{\alpha}} f_{\alpha}(\tilde{1}_X) = \tilde{1}_{X_{\alpha}^*}.$ (vi) $\forall \lambda \in I^X$, $(cl_{w_\alpha} \tilde{f}_\alpha(\lambda)) \wedge f_\alpha(\tilde{1}_X) = f_\alpha(cl_u\lambda)$. **Proof.** Let $\alpha \in (0, 1]$. (i) $\forall \lambda, \mu \in I^X$, $\lambda \leq \mu \Rightarrow \lambda_{\alpha}^{c}(G) \leq \mu_{\alpha}^{c}(G), \forall G \in X_{\alpha}^{*} \Rightarrow \lambda_{\alpha}^{c} \leq \mu_{\alpha}^{c}.$ (ii) Let $\lambda \in I^X$. Then $(cl_u\lambda)^c_\alpha(G_{\alpha_x}) = cl_u(cl_u\lambda)(x) = cl_u\lambda(x) = \lambda^c_\alpha(G_{\alpha_x}), \forall x \in X$ and clearly $(cl_u\lambda))^c_\alpha(G) = \lambda^c_\alpha(G) \text{ if } G \in X^*_\alpha - \{G_{\alpha_x} : x \in X\},\$ since G is a c-grill of fuzzy sets in X. Thus $(cl_u\lambda)^c_{\alpha}(G) = \lambda^c_{\alpha}(G), \forall G \in X^*_{\alpha}.$ Hence $(cl_u\lambda)^c_{\alpha} = \lambda^c_{\alpha}, \forall \lambda \in I^X.$ (iii) For $\lambda, \mu \in I^X$, $f_{\alpha}(\lambda) \leq \mu_{\alpha}^{c} \Leftrightarrow f_{\alpha}(\lambda)(G) \leq \mu_{\alpha}^{c}(G), \forall G \in X_{\alpha}^{*}$ $\Leftrightarrow f_{\alpha}(\lambda)(G_{\alpha_{x}}) \leq \mu_{\alpha}^{c}(G_{\alpha_{x}}), \forall x \in X$ $\Leftrightarrow f_{\alpha}(\lambda)(f_{\alpha}(x)) \le cl_{u}\mu(x), \forall x \in X$ $\Leftrightarrow \lambda(x) \leq c l_u \mu(x), \forall x \in X, \text{ since } f_\alpha \text{ is one-one.}$ $\Leftrightarrow \lambda \leq c l_u \mu$ $\Leftrightarrow cl_u \lambda \le cl_u \mu.$ (iv) $\forall \lambda \in I^X$,

$$cl_{w_{\alpha}}f_{\alpha}(\lambda) = \wedge \{ \mu_{\alpha}^{c} : \mu_{\alpha}^{c} \ge f_{\alpha}(\lambda), \ \mu \in I^{X} \}, \text{ since } \{\mu_{\alpha}^{c} : \mu \in I^{X} \}$$

is a base for the closed sets in $(X_{\alpha}^{*}, w_{\alpha}).$
$$= \wedge \{ \mu_{\alpha}^{c} : cl_{u}\lambda \le cl_{u}\mu, \mu \in I^{X} \}$$
$$= \wedge \{ (cl_{u}\mu)_{\alpha}^{c} : cl_{u}\lambda \le cl_{u}\mu, \mu \in I^{X} \}$$
$$= (cl_{u}\lambda)_{\alpha}^{c}$$
$$= \lambda_{\alpha}^{c}.$$

v) $cl_{w_{\alpha}}f_{\alpha}(\tilde{1}_{X}) = (\tilde{1}_{X})_{\alpha}^{c} = \tilde{1}_{X_{\alpha}^{*}}, \text{ since } (\tilde{1}_{X})_{\alpha}^{c}(G) = 1 = \tilde{1}_{X_{\alpha}^{*}}(G) \ \forall G \in X_{\alpha}^{*}.$
vi) Let $\lambda \in I^{X}$. Then $\forall x \in X,$
$$\left((cl_{w_{\alpha}}f_{\alpha}(\lambda)) \wedge f_{\alpha}(\tilde{1}_{X}) \right) (G_{\alpha_{x}}) = \left(\lambda_{\alpha}^{c} \wedge f_{\alpha}(\tilde{1}_{X}) \right) (G_{\alpha_{x}})$$
$$= cl_{u}\lambda(x) \wedge \tilde{1}_{X}(x) = cl_{u}\lambda(x) = f_{\alpha}(cl_{u}\lambda)(f_{\alpha}(x)) (\text{ since } f_{\alpha} \text{ is one-one})$$
$$= f_{\alpha}(cl_{u}\lambda)(G_{\alpha_{x}}).$$

Also if
$$G \in X_{\alpha}^{c} - \{G_{\alpha_{x}} : x \in X\}$$
, then

$$\begin{pmatrix} (cl_{w_{\alpha}}f_{\alpha}(\lambda)) \land f_{\alpha}(\tilde{1}_{X}) \end{pmatrix} (G) = (\lambda_{\alpha}^{c} \land f_{\alpha}(\tilde{1}_{X})) (G) = \lambda_{\alpha}^{c}(G) \land 0$$

$$= 0 = f_{\alpha}(cl_{u}\lambda) (G).$$
Thus $(cl_{w_{\alpha}}f_{\alpha}(\lambda)) \land f_{\alpha}(\tilde{1}_{X}) = f_{\alpha}(cl_{u}\lambda).$

This completes the proof.

Remark 4.2 Since for each $\alpha \in (0,1]$, $f_{\alpha} : X \to X_{\alpha}^*$ is one-one and $\forall \lambda \in I^X$, $(cl_{w_{\alpha}}f_{\alpha}(\lambda)) \land f_{\alpha}(\tilde{1}_X) = f_{\alpha}(cl_u\lambda)$ and $cl_{w_{\alpha}}f_{\alpha}(\tilde{1}_X) = \tilde{1}_{X_{\alpha}^*}$, it follows that $(f_{\alpha}, (X_{\alpha}^*, w_{\alpha}))$ is an extension of (X, u) for each $\alpha \in (0, 1]$. Since for each $\alpha \in (0, 1]$, $\{\lambda_{\alpha}^c : \lambda \in I^X\}$ is a base for the closed sets of

Since for each $\alpha \in (0,1]$, $\{\lambda_{\alpha}^{c} : \lambda \in I^{X}\}$ is a base for the closed sets of $(X_{\alpha}^{*}, w_{\alpha})$ and $cl_{w_{\alpha}}f_{\alpha}(\lambda) = \lambda_{\alpha}^{c}, \forall \lambda \in I^{X}$, it follows that $(f_{\alpha}, (X_{\alpha}^{*}, w_{\alpha}))$ is a principal extension of (X, u) for each $\alpha \in (0, 1]$. Note that $\forall G_{\alpha} \in X^{*}$

$$T_{\alpha_{G_{\alpha_x}}} = \{ \mu \in I^X : \alpha_{G_{\alpha_x}} \tilde{\in} cl_{w_\alpha} f_\alpha(\mu) \}$$

$$= \{ \mu \in I^X : (cl_{w_\alpha} f_\alpha(\mu))(G_{\alpha_x}) \ge \alpha \}$$

$$= \{ \mu \in I^X : \mu_\alpha^c(G_{\alpha_x}) \ge \alpha \}$$

$$= \{ \mu \in I^X : cl_u\mu(x) \ge \alpha \}$$

$$= \{ \mu \in I^X : \alpha_x \tilde{\in} cl_u\mu \}$$

$$= G_{\alpha_x}.$$
Also if $G \in X_\alpha^* - \{G_{\alpha_x} : x \in X\}$, then
$$T_{\alpha_G} = \{ \mu \in I^X : \mu_\alpha^c(G) \ge \alpha \}$$

$$= \{ \mu \in I^X : \mu_\alpha^c(G) = 1 \}$$

$$= \{ \mu \in I^X : \mu \in G \}$$

$$= G.$$

Thus $T_{\alpha_G} = G$, $\forall G \in X^*_{\alpha}$. Therefore X^*_{α} is the α -graded trace system of the extension $(f_{\alpha}, (X^*_{\alpha}, w_{\alpha}))$. Also for each $\alpha \in (0, 1]$ we have,

 $\forall G_1, G_2 \in X^*_{\alpha}, T_{\alpha_{G_1}} = T_{\alpha_{G_2}} \Rightarrow G_1 = G_2,$ and hence $(X^*_{\alpha}, w_{\alpha})$ is RT_0 for each $\alpha \in (0, 1]$. Thus $(f_{\alpha}, (X^*_{\alpha}, w_{\alpha}))$ is an RT_0 principal extension of (X, u) with the given α -graded trace system for each $\alpha \in (0, 1]$.

(•

Notation 4.3 The extension $(f_{\alpha}, (X_{\alpha}^*, w_{\alpha}))$ will be denoted by $E_{\alpha}(X_{\alpha}^*)$. Thus $X_{\alpha}^{E_{\alpha}(X_{\alpha}^*)} = X_{\alpha}^*$.

5 Future Work

In [6], we introduced T_0 principal extensions of a T_0 -topological spaces of fuzzy sets. In [8], we defined fuzzy conjoint compactness and fuzzy linkage compactness and established conditions on the trace systems which would ensure the fuzzy conjoint compactness and fuzzy linkage compactness of the T_0 principal fuzzy extensions. In [8], we also introduced basic fuzzy proximities, Lodato fuzzy proximities and eventually proved a theorem which establishes that there is a bijection between a class of Lodato fuzzy proximities compatible with a given strongly T_1 - topological space of fuzzy sets (X, c) and the class of strongly T_1 principal Type-II fuzzy linkage compactifications of (X, c). Our aim is to achieve the similar result mentioned above in the RT_0 spaces.

ACKNOWLEDGEMENTS.

The present work is partially supported by Special Assistance Programme (SAP) of UGC, New Delhi, India.

References

- K.K.Azad. 1981. Fuzzy grills and a characterization of fuzzy proximity, J. Math. Anal. Appl., 79, 13-17.
- [2] B.Banaschewski. 1964. Extensions of topological spaces, Canad. Math. Bull. 7, 1-22.
- [3] E. Čech. 1966. Topological Spaces, rev. ed. (Publ. House Czech. Acad. Sc. Prague, English transl. Wiley, New York).
- [4] C.L.Chang. 1968. Fuzzy topological spaces, J. Math. Anal. Appl., 24, 182-190.
- [5] K.C.Chattopadhyay, H.Hazra and S.K. Samanta. 2008. Extensions of strongly T_0 -topological spaces of fuzzy sets, *The Journal of Fuzzy Mathematics*, Vol. 16, No. 1 ,143-155.
- [6] K.C.Chattopadhyay, H. Hazra and S.K. Samanta. 2008. Extensions of T₀topological spaces of fuzzy sets, *The Journal of Fuzzy Mathematics*', Vol. 16, No. 4, 935-948.

- [7] K.C.Chattopadhyay, H. Hazra and S.K. Samanta. 2011. Relation between trace systems and compactnesses of T_0 principal fuzzy extensions of a T_0 space of fuzzy sets, *The Journal of Fuzzy Mathematics*', Vol. 19, No. 3, 717-726.
- [8] K.C.Chattopadhyay, H. Hazra and S.K. Samanta.2012. A correspondence between Lodato fuzzy proximities and a class of principal Type-II fuzzy extensions, *The Journal of Fuzzy Mathematics*', Vol. 20, No. 1, 29-46.
- [9] K.C.Chattopadhyay and W.J.Thron. 1977. Extensions of closure spaces, Canad. J. Math. Vol.29, 1277-1286.
- [10] Erdal Ekici.2005. Generalization of some fuzzy functions, Bulletin of the Institute of Mathematics Academia Sinica, Vol. 33, No. 3.
- [11] David H. Foster. 1979. Fuzzy Topological Groups, J. Math. Anal. Appl., Vol. 67, No. 2, 549-564.
- [12] M.S.Gagrat and W.J.Thron. 1975. Nearness structures and proximity extensions, *Trans. Amer. Math. Soc.* 208, 103-125.
- [13] L.Gillman and M. Jerison, 'Rings of Continuous Functions', Van Nostrand Reinhold company.
- [14] R.Lowen and A.K.Srivastava.1989. FTS_0 : The epireflective hull of the Sierpinski object in FTS., *Fuzzy Sets and Systems*, 29, 171-176.
- [15] M. Peiyuan and Z. Wuneng. 1994. L-fuzzy Wallman-type compactification, Fuzzy Sets and Systems, 63, 99-110.
- [16] B.M.Pu and Y.M.Liu. 1980. Fuzzy topology I, Neighbourhood structure of a fuzzy point and Moore-Smith Convergence, J. Math. Anal. Appl., 76, 571-599.
- [17] B.M.Pu and Y.M.Liu. 1980. Fuzzy topology II,Product and quotient Spaces, J. Math. Anal. Appl., 77, 20-37.
- [18] A.P.Šostak. 1989. Two decades of fuzzy topology, Basic ideas, notions and results, *Russian Math. Surveys* 44, No. 6, 125-186.
- [19] W.J.Thron. 1966. Topological Structures, (Holt, Rinehart and Winston, New York).
- [20] W.J.Thron and R.H.Warren. 1973. On the lattice of proximities of Cech compatible with a given closure space, Pac. J. Math. 49, 519-535.

- [21] G.J. Wang. 1983. A new fuzzy compactness defined by fuzzy nets, J. Math. Anal. Appl., 94, 59-67.
- [22] C.K. Wong. 1974. Fuzzy points and local properties of fuzzy topology, J. Math. Anal. Appl., 46, 316-328.
- [23] X. Xianzhong and L. Wangjing. 1994. L-fuzzy Smirnov compactification, Fuzzy Sets and Systems, 61, 97-105.
- [24] L. Ying-ming and L. Mao-Kang. 1989. Fuzzy Stone- Čech-type compactification, Fuzzy Sets and Systems, 33, 355-372.
- [25] Liu Ying-Ming and Luo Mao-Kang. 1997. Fuzzy Topology, World Scientific Publishing Co. Pte. Ltd. .